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Photocurrents in polyvinylcarbarzole were studied over 10 decades in time. An analytical ap-

proach is proposed for extracting rate distributions from the measured photocurrents. We find that

the trapping-rate distribution is not exponential but "flat" and that it shows a cutoff at low rates.

This distribution gives rise to the novel feature of a gradual transition from dispersive to nondisper-

sive charge transport during a single transit. The temperature and field dependence of the cutoff
rate r, was studied in the framework of a Poole-Frenkel model.

I. INTRODUCTION

Pulsed photocurrents are a powerful means of investi-
gating the dynamic parameters of amorphous materials
over a large range. In this paper we will present experi-
mental data which cover 10 orders of magnitude in time
and can therefore be used to study not only the absolute
values of the pertinent rates, but also draw conclusions
concerning their frequency distribution.

For testing our analytical and experimental approach,
we chose a well-investigated system, polyvinylcarbarzole
(PVK), because we could compare our data with other ex-
perimental data and discuss the new aspects of our ap-
proach on the background of previous methods and con-
clusions.

It is well documented that photocurrents in polymer
systems like PVK show dispersive behavior. The general
theory of dispersive transport was developed by Scher and
Montroll (SM). ' In the theory, the key physical idea is
that the microscopic processes which control carrier
transport are governed by a distribution of event times
which is broad over the time range of experimental obser-
vation. SM used the formalism of continuous-time ran-
dom walk (CTRW) to describe carrier motion with an
event-time distribution P(t); the event time could either be
due to, e.g. , hopping between localized states or release
from a trap. SM showed that for a g(t) with a slowly
varying algebraic time dependence, P(t)-t "+ ', with a
disorder parameter a, in the range 0 & a & 1, one could ac-
count for all of the key features of dispersive transport.

Noolandi and Schmidlin showed that the conventional
set of coupled kinetic equations describing carrier motion
with repeated trapping (co;) and thermal release (r; ) can
be cast into the framework of the CTRW and is therefore
equivalent. They demonstrated the exact form of the g(t)
for multiple trapping (MT) in terms of I to;, r; I; therefore,
MT is a subset of the microscopic transport processes
describable by the g(t).

Scher used a simpler form of the f(t) for MT and de-

rived a=T/To for an exponential distribution of trap-
ping states with a width parameter kTo. Hence, specify-
ing a microscopic model (hopping, trapping, etc.), which
leads to a P(t) one can calculate the transient photo-
current I(t). The experimentalist is, however, especially
interested in solving the inverse problem, since he is able
to measure I(t) and would like to draw conclusions about
the transport mechanisms, density of localized states, etc.

The simplest approach to inversion is to assume a
transport mechanism, most amenable to analytic treat-
ment, e.g. , MT, and see whether the I (t) can be explained
with physically reasonable model parameters. Recently a
number of authors ' have used the MT model in this
mode. It should be added that the MT model can also
function as a phenomenological framework yielding useful
characterization of microscopic processes in which the main
source of dispersion is due to energy leuel fluc-tuation
Simulation studies have demonstrated, e.g. , that hopping
between localized states with random site energies, distri-
buted exponentially [p(E) ~ exp( —ElkTo)], also yields
a=T/To. The approach of Michiel and Adriaenssens il-
lustrate some of these issues. They have discretized a con-
tinuous distribution of trap states, leading to a formula-
tion similar to Schmidlin, and used simple matrix
methods to determine I(t). There is some arbitrariness to
this procedure. One is simply generating a theoretical fit
to a reasonable finite set of [co;,r; I. The intrinsic ambi-
guity in the discrete representation of p(E) is complicated
by the fit to I(t) only over a time range, typically of two
decades. We have clarified the issue of the intrinsic reso-
lution of the rate distribution derivable from I(t) mea-
surements.

The method, which will be presented below, is adapted
to the needs of the experimentalist; in particular, it does
not make assumptions about rate distributions. It can be
demonstrated that the rate distributions can be extracted
from the experimental data. There is a price, however,
which we have to pay for making no restricting assump-
tions about the trap distributions. We have to perform ex-
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periments, which cover many orders of magnitude in time
or rate. In our case we performed experiments over 10 de-
cades and derived rate distributions over 5—6 decades.
This "loss in information" is due to comparatively broad
distribution functions, which enter into our Laplace
analysis. We do not want to rule out that there is a more
sophisticated approach, which has a higher intrinsic reso-
lution. Our main goal is, at the present time, to raise the
issue of rate distributions, discuss our results versus the
usefulness of effective mobilities p,ff and to present our
data for further theoretical considerations.

II. MANIPULATION OF THE SOLUTION
FOR THE PHOTOCURRENT IN THE FRAMEWORK

OF THE MULTIPLE TRAPPING MECHANISM

In our mathematical description of the photocurrent we
use the treatment of the multiple trapping model as has
been formulated by Schmidlin:

aI (z, r) =q (z, t)+ g p; (z, t)r; —p (z, t) g co;
Bt

a
p (z, t)pE(z, t),

az

C)P;

Bt
=p~t —pi I'i ~

The trapping rates co; and detrapping rates r; populate
and depopulate the charge densities p (z, t) and p; (z, t) in
the conduction band and in the traps, respectively. The
function q(z, t) stands for the rate of charge carrier pro-
duction. B(ppE)/Bz describes the process of charge accu-
mulation by a gradient in the local flux. In the following
we assume that space-charge effects can be neglected and,
hence, we assume a constant electric field across the sam-
ple (see Fig. 1).

Assuming pulsed excitation in our sample with light of
an infinitely short penetration depth we have

q(z, t) =N5(z —0)6(t —0),

and for this special case the Laplace transform of the total
current I (t) can be calculated as

1 —exp[ —a (r)to]I(r)=N
a (r)to

(2)

to ——d/pE stands for the microscopic transit time, i.e., the
transit time of a fictive charge carrier which remains in
the band as a free carrier as it traverses the sample of
thickness d under the influence of a field E. The quantity
a(r) contains the rate variable r in Laplace space as well
as the trapping and detrapping rates co; and r;,

a (r) =r 1+ g r+r; (3)

it is proportional to g '(r), where tt is the Laplace
transform of P(t).

In our experiments we obtained I(t) in digitized form
and the Laplace transform I(r) could be calculated nu-
merically. Thus, I(r) can be regarded as the experimental
input for the subsequent mathematical procedures.

If one extrapolates Eq. (2) to r~0, one obtains the total
charge contributing to the photocurrent

I(r~O) =N .

This presumes that the initially generated charge carriers
N are entirely contained in the conduction band (no initial
occupation of the traps). N can be used to normalize I,

1 —exp( —at() )
I/N =

ato
(4)

so that a (r)to can be gained from the experimental data
I/N by inversion of Eq. (4). This is done by finding the
roots of the following equation using the Newton method:

1 —exp( —ato)I/N- =0
ato

The microscopic mobility p, contained in the propor-
tionality factor to, is approximated from the value of the
peak current at each field E. Due to the instrumental
time resolution ( —10ns), this procedure yields a lower
limit for p. This, in turn, leads to a least upper bound for
the rate spectrum we can analyze (see below). Note, that
a (r) [Eq. (3)] contains all the model parameters r; and co;,
which we like to determine. To do so, we introduce the
logarithms r* = lnr and r;* = lnr;* and rewrite Eq. (3),

Transp.
Electrode

Z=0

Z Z+dZ

Z=d

ZI'/ll/'

Substrate

Traps

(5)

F(r*):=d(ato)*/dr* e" to-
= g [M f(r;*—r*)] .

1
Q (7'*)to =e" to+ gM.

1+e '

We have also introduced the quantity M; =co;to (number
of trapping events into the ith level during the microscop-
ic transit time to). Differentiation of Eq. (5) with respect
to r* yields

FIG. 1. Multiple trapping parameters (for holes); q is the car-
rier production term, co; the trapping rate, r; the detrapping
rate, E the electric field, d the sample thickness, p the carrier
density, and z is the integration coordinate (see Ref. 3).

This represents a superposition of the bell-shaped curves
M~f(r;* —r*) centered around the detrapping rates r; and
weighted with M;. Note that f (x) is normalized to 1. Its
shape is depicted in Fig. 2.
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—0.2

ping rates were introduced as parameters which were nor-
malized to the inverse microscopic transit time to, with

R; =r;to and M; =co;to

(letting rto~r)
For the numerical evaluation we followed Fleming and

Schmidlin ' and used a set of seven parameters of

R; =0.01(~10)' ', i =1,2, . . . , 7

and (9)

FIG. 2. f (x) function limiting our resolution in the Laplace
transform. The function is normalized to 1. f(x), plotted on a

log-log scale, will appear like a rounded-off triangle with slopes
l on either side (see Fig. 3).

The functional dependence of the distribution F(r*), as
defined in Eq. (6), on the quantities M~ and r; suggests
the following generalization to a continuum of traps:

F(r*)= f M(s*)f(s* r*)—ds', (7)

with the following definition of M(r*): M(r")dr* gives
the number of trapping events during the time to into
traps having detrapping rates between r * and r *+dr *. It
is M (r" ) that gives us information about the trap density
through the relation M(r*)=tob, n(r"), where b, is the
trap capture coefficient and n(r*)dr* the trap density in
the interval r', r*+dr*. One can relate n(r') to the
density of states p(E), once r(e) is specified (see below).

The distribution function F(r*) can be obtained from
our experimental photocurrents, which yield a(r)to [via
Eq. (4)] and the definition in Eq. (6). The right-hand side
of Eq. (7) corresponds to a rate distribution M(r*), which
is broadened by the function f. A deconvolution of F(r )

is not very well defined because of the width of f and be-
cause of boundary problems (not included in Ref. 6).
Therefore we treat F(r') as a broadened distribution of
M(r*) and try to get information fram our experiments
by measuring the photocurrents over many orders of mag-
nitudes in time (e.g. , 10 decades in the experimental re-
sults presented in a later section). This corresponds to a
large range of available F(r ) data on the r* scale and
the larger this interval, the smaller the relative width of f.
This width of f(r") is a clearer statement of the resolu-
tion limit of using I(t) as a spectroscopy tool, e.g. , it cor-
responds to some of the ill-posed nature of the discretiza-
tion of p(e) discussed in Ref. 6.

III. TEST OF OUR DATA ANALYSIS
THROUGH NUMERICAL CALCULATIONS

In order to check the applicability of the above evalua-
tion algorithms for obtaining densities in the parameter's
space of trapping and detrapping rates, we performed nu-
merical simulations of photocurrents based on Eq. (1).
The generation term q(z, t) of charge carriers was imple-
mented by chosing the appropriate initial conditions for
p (z,0).

In our calculations the pertinent trapping and detrap-

M;=R;

The details of implementing the drift term of the electric
field into our calculations are given elsewhere. ' We also
limited the number of charge carriers to a value which
was low enough to neglect the influence of space charges.
This was achieved by maintaining the condition

Idt =10 ' CU, (10)

where I is the photocurrent, C the sample capacitance,
and U the applied voltage.

Figure 3 shows in a double-logarithmic plot the product
of the rates M, broadened by the function f (R~.

" r') as-
given by a single term in Eq. (6). The width of the seven
bell-shaped curves (dotted) characterizes the "resolution"
of our analysis based on the Laplace transform procedure
as given in Sec. II. One single set of rate parameters
R;,M; would yield one single bell-shaped curve. The sum
of the various rates i =1,2, . . . , 7 is depicted by the en-
velope function (heavy dots).

Using our numerical program for calculating the photo-
current, we arrived at the solid line, which is shown in the

log, r =

LL

C)

— 0

0

= log„t

FIG. 3. Lower part: Contribution of the product functions
M;f(R;*—r*) (see triangular, dotted curves). The sum of the
seven contributing rates is drawn by the dotted line (heavy dots);
the "deconvoluted" rate distribution (see text) is given by the
dashed line. (The arrows point in the direction of the axes. )

Upper part: Photocurrent I(t) (solid line) calculated from the
original rate distribution (heavy dots). Note that the exponents
agree with the predictions of the CTRW theory (the falloff at
long times is due to the arbitrary cutoff of the given rate distri-
butions).
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upper part of Fig. 3. This photocurrent was then taken as
the starting point for checking the quality of our Laplace
analysis. The flow diagram as given in Fig. 4 was taken
to reproduce the rate density as given by Eq. (6).

For the given example the evaluation scheme repro-
duces the initial rate distribution well for rates r &40 (in
units of I/to). For rates r & 40 the procedure of deconvo-
luting the photocurrent with our method fails (see Fig. 3).
This is, in our opinion, due to the fact, that the numerical
subtraction, as given by Eq. (6), becomes ill defined. Here
one has to subtract two large expressions, namely,
d(ato) /dr* and exp(r*)to. Both terms have comparable
magmtude and their difference yields the F(r*) function.
When analyzing our experimental data in the following
section, we have to limit our analysis to rates which are
smaller than 10/to. Since to turns out to be on the order
of 20 ps, our analysis will work rather well below rates of
5X10' s-'.

It should be mentioned, that our calculation of the pho-
tocurrent reproduces the predictions of the CTRW theory
rather well: The slopes of the calculated photocurrent
(Fig. 3) come close to the predicted values of
a= —(1+0.6) as can be expected after using the ansatz
M;=R;

Our calculation gives us a convenient tool to also inves-
tigate the influence of space-charge effects. Figure 5 gives
a corresponding calculation of the photocurrent I belong-
ing to an identical rate distribution, but with an injected
charge which is 500 times larger [0.5CU, see Eq. (10)]. It
is evident that the Laplace evaluation scheme is not as
consistent as it is for negligible space charges. Here the
deconvoluted rate distribution differs from the initial dis-
tribution for rates r ~ 1, thus reducing the range in which
self-consistency can be achieved with our model. Before
evaluating our experimental data one can summarize the
main features of our evaluation scheme: We can extract

log r
10

0

C)

C)

U

C3

— 0

0

log t

FIG. 5. Initial rate distribution (heavy dots), photocurrent
(solid line), and deconvoluted rate distribution (dashed line).
The calculation was performed under moderate space-charge
conditions (see text) and, thus, gives less self-consistency.

trapping rate distributions from a given photocurrent for
detrapping rates smaller than 10lto, where to is the mi-
croscopic transit time. Within this limit the procedure is
self-consistent. Our model calculations show one intrinsic
limitation. Since the functional dependence of F(r *

)

characterizing one set of rates 8; and M; is rather broad
(see dotted inserts in Fig. 3) we believe, that a meaningful
data analysis has to exceed the time range of 6 orders of
magnitude, in order to yield substantial information about
rate distributions. Therefore we have taken a great deal of
effort to cover a time range of about 10 decades in order
to extract information about rate distributions, which are
reliable over 5—6 orders of magnitude.

l(t ) (=1.. n
I

Maximum
max

IV. EXPERIMENTAL RESULTS

Numerical Laplace
Transform

((r ) j=1 m

—&r -r -rc ct„~ j m Fj

Extrapolationr~ P

j( r, )
Total Cha~ge N Microscopic

N
Transit Time t

Numerical Inversion of
e-x

x

d r 4E—ot -e t 1F
0 0

Ir

M(s )f(s-r )ds --—————--- —————-~ Result

FIG. 4. Calculational procedure of our Laplace convolution
method (see text).

As samples we used commercial PVK (102, Luvican,
trade name BASF) which was purified by repeated precip-
itation from solution and which contained less than
0.05%%ug monomer carbazole. The films were cast from
THF solution. To maintain a well-defined sample thick-
ness, we used a technique in which a spatula could be
moved parallel to a precision surface with an accuracy of
&1 p. The substrate onto which the films were spread

was mylar coated with a thin Al layer. The evaporation
rate of the solvent after the spreading procedure could be
optimized by casting the films in a glove box with vari-
able gas flow. (There was no measurable difference in
sample quality comparing inert gas and air. ) After air
drying the samples were annealed at 80'C for 30 min to
remove the residual solvent.

A typical sample thickness was 10 pm. As the second
electrode we used a thin layer of semitransparent, eva-
porated aluminum. Contacts to both aluminum surface
layers were formed in a way which is schematically shown
in Fig. 6. The additional layer of insulating varnish on
the side of the sample, at which the top electrode was con-
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Contac

Semitransparent Contact Area logr =
I

o

Aluminized

polyester Film Insulating Varnish 0

FIG. 6. Cross section through the sample between two alumi-
num electrodes. The insulating varnish covering the right edge
of the sample was introduced as a means to prevent breakdown.

tacted, was implemented to prevent breakthrough prob-
lems along the edges of the sample.

As a light source we used a pulsed nitrogen laser with a
pulse energy of about 5 mJ at the wavelength 337 nm.
The pulse width was 10 ns. With the above excitation
conditions, the penetration depth of the light was & 0.2
pm, i.e. about 50 times less than the sample thickness.
This provided adequate conditions for surface excitation,
i.e., for justifying a 6-function-like charge carrier distribu-
tion for our calculations at t =0.

One of the major challenges of the experiment was to
measure currents in the time domain of 1 ns to 10 s with a
maximum sensitivity of 10 A. There is no single tran-
sient recorder which would provide a large enough
dynamic range, therefore we subdivided each curve into
five segments which were measured in subsequent experi-
ments. The fast decay was monitored with a Tektronix
7912 digitizer (risetime 1 ns) and the slow part of the de-
cay was monitored with a logarithmic time sweep (for de-
tails see Ref. 9). In the "long-time regime" we also used
an amplifier with logarithmic conversion. The various
sections of the decay curve were digitized; the linear sec-

I I

-4 -2 0

log t

FIG. 8. Solid lines: Photocurrent of PVK (10 pm thick) at
constant voltage (400 V) and variable temperature. The experi-
mental data cover ten decades (left and lower axis). Dotted
lines: Rate distributions as calculated by our Laplace transform
(right and upper axis). Note, that for short times (fast rates) the
validity of our evaluation scheme breaks down in the ps region
(see text). The arrows point into the directions of the axes. The
dotted line (heavy dots) gives the contribution of one rate r,
(61.5 C 400 V).

I

-8-10

tions of the decay curve were converted to log scales. The
complete decay curve was subsequently displayed on a
screen as depicted in Fig. 7. The figure also shows the
limits of the various individual decay sections.

Using the above-described setup, we were able to mea-
sure the photocurrent in our PVK sample over ten de-
cades in time and over more than eight decades in intensi-
ty. Figures 8 and 9 show our results as a function of sam-
ple temperature and electric field strength.

First we used the data of Figs. 8 and 9 to evaluate the
effective mobilities as defined by

logr =

o -4 U

C)

I

-6
-10 -8 -2 0

log t
FIG. 7. Typical experimental photocurrent; the arrows mark

the limits of five individual measurements, which are joined to a
single curve (see text). The wavy arrow marks the transit time
tT, here the influence of the back electrodes leads to a dropoff in
current.

-10
-8 -2

log t

FIG. 9. Solid lines: Photocurrent of PVK (10 pm thick) at
constant temperature (61.5'C) and variable field strength. Dot-
ted lines: Rate distribution as calculated by our Laplace
transform. The dotted line (heavy dots) gives the contribution
of one rate r, (61.5 C, 250 V).
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P,rr=(d /tT)U .

d is the sample thickness and tT is the effective transit
time, as taken from the experimental decay curves (see
Fig. 7).

If we follow previous publications by plotting 1n(p, ff)
versus 1/T (Refs. 10 and 11), we get straight lines for
each temperature cycle, yet, the various curves, belonging
to different field strengths, do not intersect at 1/T=O,
but at a finite temperature (see Fig. 10). Note, that in a
simple model, the lines should intersect at 1/T =0 and
yield the "band mobility, " i.e., the mobility in the absence
of trapping (see Refs. 10 and 11). If we adopt the empiri-
cal procedure of introducing an effective temperature T',
with

)o-8
12 18 24

1/T' = 1/T —1/T (12) Ilv)

p ff
——po exp[ —e(E)/kT'] (13)

where e(E) is the field-dependent activation energy. If we

we obtain an intersection point at the temperature
T*=540 K and a value for the effective band mobility of

Jll ff—0.02 (cm /Vs).
In the past this behavior of effective mobilities was at-

tributed to a temperature dependence of the dielectric con-
stant. ' Our numerical analysis of the data would require
a comparatively strong temperature dependence of the
dielectric constant to support the above assumption (about
40% increase with AT =+50 K).

Proceeding with the above arguments, one can express
the effective mobility p, rr as a function of the electric field
strength by assuming a field-dependent barrier height and
get

assume that a Poole-Frenkel mechanism is responsible for
lowering the barrier height, then we get

e( E)= eo P~E— (14)

Here co is the barrier height in the absence of a field
and P is a nonadjustable parameter of 4.4&& 10 " e v'V cm.

0 0.5 1
13 I I I

f
~ ~ ~ l

f
I ~

12

FIG. 11. Field dependence of the effective mobility in a
Poole-Frenkel picture {see text).

2.5 3.0 3.5
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/cn

C

Ct

C)

)
E~ 01 )0-6

Og

0.01 10 7

0.001
1.5 2.0

l

2.5

1 10
T K j

I I 0
3 3.5 4

FIG. 10. Effective mobility as measured by the transit time,
plotted vs 1/T. Note, that the straight lines intersect at 540 K.
{For the sake of saving space, the figure is subdivided into two
sections. ) The numbers label the applied voltages.

FIG. 12. Slowest rate r„as obtained by our rate analysis,
plotted vs 1/ T. Note, that the straight lines intersect at
1/T=O. (For the sake of saving space the figure is subdivided

into two sections. ) The numbers label the applied voltages.
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lnr, = lnv E(E)/kT —. (15)

Figure 12 shows, that if we plot the data in the above
manner, we get straight lines which intersect at 1/T =0.
At this intersection point, we obtain a frequency v of
2)&10' s ', which we can interpret as an "attempt-to-
escape" frequency. This frequency is close to values,
which have been discussed earlier. "

Cxoing a step further in this interpretation, we can
check the validity of a Poole-Frenkel interpretation of the

Our experimental data (Fig. 11) yield ED
——0.64 eV and

p=2.4)&10 ev'Vcm, i.e., the p value is about a-
factor-of-2 off from the theoretical value.

At this point we can summarize our results with the
conclusion, that we get moderate agreement with
semiempirical theories, describing the field and tempera-
ture dependence of the effective mobility. Above all, we
do not see a convincing argument for maintaining the
concept of an effective temperature T' to accommodate
our data on a 1/T' plot.

In the remainder of the paper we focus our attention on
the distribution function of trapping rates, as obtained by
our Laplace algorithm. Figures 8 and 9 show the rate dis-
tribution, which we were able to extract from our data in
the range between 10 s ' to 1 s ', i.e., over about six de-
cades. This is a large range scaled on presently available
data; it is, however, a small range, compared to our exper-
iments, which cover ten decades. This is a consequence of
the low intrinsic resolution of our Laplace evaluation
scheme (see Fig. 3), yet, it gives us enough information to
draw several important conclusions: First, the rate distri-
bution does not follow an exponential behavior as has
been assumed for our model calculations (see Fig. 3). It
seems to be rather flat over several orders of magnitude
and then fall off towards lower rates at the critical lowest
rate r, . This rate is marked on Figs. 8 and 9 for the
61.5 C curve. The falloff of the rate distribution is given
by the falloff of our resolution function (slope 1 in a log-
log plot). Second, the lowest rate r, shows a typical tem-
perature and field dependence; it decreases for lower tem-
peratures and increases for higher fields. This interesting
behavior encouraged us to evaluate the observed minimal
rates r, on a 1/T plot. We investigated the following an-
satz:

V. DISCUSSION AND SUMMARY

Based on our experimental data we come to the con-
clusion that the distribution of trapping rates is flat over
the parameter range r &10 s ' which we can evaluate
experimentally. At a critical minimal rate r, the distribu-
tion of rates falls off with the resolution of our Laplace
transform analysis.

The large time range of the experiment has enabled us
to encompass these two distinct features of the trapping
rate distribution. These features cause a transition in I(t)
from a highly dispersive transport to an essentially non-
dispersive one. This type of transition has been observed
in both a-Se (Ref. 14) and a-Si:H, ' however, as a function
of T. The transition in I(t) observed in Fig. 7 occurs
within a single transit time. The form for I(t) for t &tr
for dispersive transport' is

I(t) ~ t (16)

We can characterize the transition in Fig. 7 as one in
which ca=0.0 for —7. 1& logt & —5.25 and +~1.0 for
logt & —2.4. The change of slopes is gradual —nearly
three decades.

We will show that a characterization of I(t) with a
time dependent a( logt) can lead directly to an approxi-
mate form for p(s), which is in agreement with our more
accurate determination of F(r).

The MT model is a particularly simple mechanism for
generating an algebraic g(t) as it involves the independent
sampling of a single random variable c. (the trap energy)
with a general distribution p(E). An excellent approxima-
tion to P(t) for MT, in the repeated trapping and release
time range, i.e., r~&&1, ~ = ~,. co;, is

—1

measured field dependence. Figure 13 shows the depen-
dency of the rates r, on the square root of the applied
voltage. From the figure we get a straight line with an c0
of 0.69 eV and with a p value of 3.4X10 e&Vcm.
This value is rather close to the theoretical value of
4.4&10 ev'Vcm (see above). In a forthcoming publi-
cation' we will show that the observed temperature and
field dependence of the effective mobility can be modeled
under the assumption that Eqs. (15) and (14) hold for all
traps, so that the introduction of an effective temperature
T' (12) can be avoided.

The field dependence in Eq. (14) can also be understood
as Coulomb effect in a charge transfer step between local-
ized molecular states. If the microscopic mobility is due
to hopping, the hole can be trapped in a lower ionization
energy state, forming a cation and detrapped when an
electron transfers up from a neutral molecule, leaving
behind a cation.

P(t) = g no;r;e (17)

I

12
I

18

FICz. 13. Poole-Frenkel plot of the slowest rate r, (see text).

(cf. the derivation in Secs. 2.3 and 2.4 in Ref. 4), the
weighted sum of the probability per unit time to be
released from the ith level. One can immediately derive
a=T/TD, as was first done using Eq. (17) (Ref. 4) for
p(E) cc exp( —e/kTD) and also derive the form of P(t) for
a finite width p(s) with a minimum r, cutoff [Eqs. (43)
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lna
cz =

lnb
(19)

We can generate the continuum version of Eq. (19) for the
MT model by rewriting

T
CX

To

—ElkTO ln[p(e)/po]
—e/kT ln[r(E)/v]

where r (E)=v exp( e/k—T) is the release rate at the effec-
tive energy c, which can include field-induced barrier
lowering. For a general p(E) we conjecture that

in[& (Ed )/pal
a( lnt) =

ln[r ( cd ) /v]

where

(21)

Ed
——kT ln(vt ), (22)

the time-dependent demarcation energy. ' In Eq. (21) we
have a direct relation between the slope parameter of I(t)
and the density of states. We have calculated p(E) using
Eq. (21) and the time-dependent tangent to the [logI(t)]-
( logt) curve in Fig. 7 (the details will be given elsewhere).
The expression in Eqs. (14) and (15) has been used for r(c)
(Ep denotes the field-independent part of e). The general
feature of the density of states are as follows: (1) p(E) is
flat ( Ta)) T) for so &0.61 eV; (2) a slow rollover occurs
for 0.61 &so&0.64 eV with an average To ——80 meV; (3)
between 0.65 and 0.69 eV the average To ——50 meV; (4) at
eo) 0.69 eV there is a very sharp cutoff of p(e), with the

and (44) of Ref. 4]. An interesting interpretation has been
made of the form of f(t) in Eq. (17). Shlesinger' has in-
troduced the notion of fracta1 time in analogy with a spa-
tial RW occurring on all length scales. Shlesinger distin-
guishes each level or hierarchy with a multiplicative
(power-law) weighting,

f(t)= g a "b"e xp( b"—t)
1 —a

a n=1

and for b &a & 1 one has P(t) cc t ', with

effective To « T. These features, derived from Eqs. (21)
and (22), are in very good agreement with the more accu-
rately determined F ( r ) of Fig. 8, and the value of
Eo ——0.69 eV (Fig. 13) for r, .The gradual change from
highly dispersive to nondispersive transport corresponds
to a quasiexponential range of p(E) (82) To) 47 meV)
with an energy range nearly 0.1 eV wide. The validity of
Eqs. (21) and (22) has the same range as the simpler, more
intuitive treatment of MT in Ref. 17. The approach of
Ref. 17 would yield similar results for p(e), derived from
our I(t) data. However, Schiff (Ref. 5) has cautioned that
there are p(c), e.g. , nonmonotonic ones, that would lead to
I(t) features, using the method of Ref. 17, in disagree-
ment with experiment. One purpose of the present paper
is to present a general procedure to extract a rate spec-
trum from I(t) data and show the intrinsic resolution of
this deconvolution.

The nearly nondispersive transport usually ascribed to
PVK occurs over a time range less than 2 decades prior to
tr If o.ne restricts measurement of I (t) to this time range
than one would conclude that there is a very narrow range
of trap energies instead of the broad one with a cutoff
determined in the present study. The release rate r, at the
cutoff, dominates p, ff, and may be a better characteriza-
tion of the transport properties of PVK.

In conclusion, we would like to point out that more
data over a comparable interval of rates should be made
available to be able to draw more general conclusions than
the ones we have suggested for the PVK system.
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