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A k.p theory is used to investigate the electronic structure of semiconductor superlattices grown

along the [001] and [111]axes. The present work considers the case of Ga& „In,As-A1~ «In«As su-

perlattices. We specifically treat three alloy composition pairs: a lattice-matched case

(x =0.53, y =0.52), a case where the Cxa-containing layers are in biaxial tension with a 0.8% lattice

mismatch (x =0.53, y =0.64), and a case where the Ga-containing layers are in biaxial compression

with a 1.5% lattice mismatch (x =0.53, y =0.30). We analyze the effects of the growth axis on the

electronic structure of the superlattice from a consideration of the subband dispersion both parallel

and perpendicular to the growth direction. Apart from point-group symmetry considerations, a ma-

jor factor which differentiates the electronic structure of [001]- and [111]-growth-axis superlattices

is the presence of large (exceeding 100 kV/cm) internal strain-induced electric fields in strained-layer

superlattices grown along the [111]axis. These internal electric fields are directed along the [111]
growth axis and are generated by the internal strain because the constituent semiconductors are

piezoelectric. In [001]-growth-axis strained-layer superlattices, the orientation of the lattice-

mismatch-induced strains is such that these fields are not present. We demonstrate that the strain-

induced electric fields result in sizeable Stark shifts on the superlattice electron and hole subbands

and lead to a substantial reduction of the superlattice band gap. Moreover, these strain-induced

internal electric fields modify the superlattice wave functions and cause a spatial separation of elec-

trons and holes within the confining superlattice layers. This latter effect greatly modifies the inter-

band optical matrix elements. It also leads to a screening of the strain-induced internal electric

fields by photogenerated free carriers which causes nonlinear (i.e., intensity-dependent) optical

response of [111]-growth-axis strained-layer superlattices.

I. INTRODUCTION

Semiconductor superlattices are made by the alternating
epitaxial growth of thin layers of two semiconductors
with approximately (i.e. , to within a few percent) the same
lattice constant. Superlattices in which both semiconduc-
tors are III-V, II-VI, or group-IV zinc-blende structure
materials are currently being grown by molecular-beam
epitaxy and metal-organic chemical vapor deposition. '

Such artificial structures are currently of great technologi-
cal interest because they afford the possibility of tailoring
the electronic structure of the resulting system by con-
trolled modifications of the growth parameters (layer
thicknesses, alloy compositions, growth axis, strain, etc.).
The flexibility at tuning the electronic band structure of
semiconductor superlattices is currently being exploited
through the novel design of semiconductor diode lasers,
electro-optical modulators, nonlinear optical devices, in-
frared imaging systems, etc. In the case where the con-
stituent semiconductors have somewhat different lattice
constants, it is possible to accommodate the lattice
mismatch by uniform internal strain rather than by the
generation of dislocations, provided the individual layers
are grown thin enough (typically less than 250 A). It has

been demonstrated that these strained-layer superlattices
can be grown with a high degree of crystalline perfec-
tion.

The possibility of modifying the electronic structure of
semiconductor superlattices according to variations in the
layer thickness of the constituent semiconductors is well
documented. ' However, little is known about the effects
of the growth orientation on the electronic structure of
semiconductor superlattices. This lack of knowledge ap-
parently has its origin in the fact that, until recently, most
III-V semiconductor superlattices have been grown along
the [001] axis. Likewise, most studies of strained-layer
superlattices have been performed for III-V semiconduc-
tor systems with the growth axis being along a [001]
direction. However, the epitaxial growth of III-V semi-
conductor heterojunctions along various crystallographic
axes has recently been demonstrated. ' Moreover, II-VI
semiconductor superlattices are currently being grown
along the [111]axis. " ' A study of strained-layer semi-
conductor superlattices grown along various crystallo-
graphic orientations is therefore desirable and timely since
these systems are now being experimentally investigated.

The purpose of this paper is to demonstrate that
strained-layer superlattices grown along the [111]axis ex-
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hibit major features not found in [001]-growth-axis
strained-layer superlattices. Foremost among these differ-
ences is the presence of strain-induced polarization fields
in the layers of [111]-growth-axis superlattices. ' Indeed,
the lattice-mismatch-induced strain in [111]-growth-axis
superlattices is piezoelectrically active whereas in [001]-
growth-axis superlattices it is not. The magnitude of
these strain-induced internal piezoelectric fields can
exceed 100 kV/cm, a value typical of breakdown fields in
III-V zinc-blende structure compound semiconductors.
These internal electric fields produce sizeable Stark shifts
of the superlattice energy subbands and consequently
modify the electronic properties of [111]-growth-axis
strained-layer superlattices with respect to those of their
[001] counterparts. In the case where photogenerated free
carriers are present to screen the strain-induced electric
fields, it is expected that the optical response of [111]-
growth-axis superlattices will be strongly nonlinear, i.e.,
dependent on the intensity of the excitation.

A thorough study of the symmetry-related differences
between [001]- and [111]-growth-axis HgTe-CdTe super-
lattices has recently appeared in the literature. ' This sys-
tem is characterized by a lattice mismatch of only 0.3%
and consequently the effects of strain-induced internal
fields were neglected in Ref. 15. Application of our
model to a point-group symmetry analysis of [001]- and
[111]-growth-axis Hg Te-CdTe superlattices' yields re-
sults in quantitative agreement with those reported in Ref.
15.

Our analysis of the electronic structure of [111]-and
[001]-growth-axis semiconductor superlattices is based on
a k p theory of semiconductor heterointerfaces. A
description of the superlattice wave function is formulated
in terms of a linear combination of propagating and
evanescent bulk Bloch states of the constituent semicon-
ductors. These bulk Bloch states are generally associated
with complex values of the component of the crystal wave
vector parallel to the superlattice growth axis. A single
expansion set of zone-center (k=O) basis functions, de-
rived from an average reference pseudopotential Hamil-
tonian, is used to describe the bulk Bloch states of the
constituent semiconductors. A distinctive feature of the
present k-p model is the correct description of superlat-
tice energy band mixing, band crossings, and band split-
tings for superlattice wave vectors parallel or perpendicu-
lar to the growth axis. A correct description of the super-
lattice point-group symmetry is an essential ingredient to
a meaningful analysis of the effects of the growth orienta-
tion on the electronic structure of the superlattice. More-
over, since a pseudopotential formalism is used to gen-
erate the (single) basis set of zone-center functions,
momentum matrix elements are explicitly calculated in a
plane-wave representation. Consequently, the number of
empirical parameters is reduced to a knowledge of pseu-
dopotential form factors.

In the case of lattice-mismatched superlattices, the ef-
fects of the resulting internal strain on the superlattice
electronic band structure are also investigated. This is ac-
complished by a deformation potential description of the
bulk band structure of each constituent semiconductor
under the influence of a lattice-mismatch-induced internal

strain. In the case of [111]-growth-axis strained-layer su-
perlattice, the effects of strain-induced electric fields are
incorporated by an extension of our basic k.p model to in-
clude slowly varying potentials.

For illustrative purposes, we consider Ga& In As-
AI& «In«As superlattices grown along the [001] and [111]
crystrallographic axes. One motivation for studying this
system lies in its potential application in the field of opti-
cal communications. ' This material system also has the
feature that the small band-gap (carrier confining) Ga-
containing alloy can either be under biaxial tension or
compression by proper choice of alloy compositions.
Moreover, Ga~ „In„As-Al

& y Illy As superlattices are
currently being epitaxially grown on InP[100] substrates
for an alloy composition which exhibits lattice matching
with this substrate, i.e., x =0.53 and y =0.52. '

The paper is organized as follows: in Sec. II we briefly
review the theoretical formalism which serves as the basis
for the calculation of the electronic structure of semicon-
ductor superlattices. Results relating to lattice-matched
Gao 47Ino»As-Alo 48Ino 52As superlattices are presented in
Sec. III. The electronic structures of superlattices grown
along the [001] and [111] axes are presented and point-
group symmetries are discussed. In Sec. IV, we present
results for strained-layer Ga& In As-Al& „InyAs super-
lattices. Special attention is given to the effects of strain-
induced internal piezoelectric fields on the electronic
structure and optical matrix elements of [111]-growth-
axis superlattices. Applications involving nonlinear opti-
cal response arising from screening of these strain-induced
electric fields by (photogenerated) free carriers are also
considered in this section. We conclude with a synopsis in
Sec. V.

II. THEORETICAL FORMALISM

H~„(k)=—k.p+ b, V'~(x),
m

(la)

where k is the crystal wave vector, p is the momentum
operator and b, V"'(x) is the difference between the pseu-
dopotential of semiconductor i and that of the reference
Hamiltonian,

5 V"(x)—= V' (x)—V" (x), (lb)

with

The electronic structure calculations presented below
are based on a k.p formalism designed to treat semicon-
ductor heterojunctions and superlattices. At a general k
point (near k=O) the bulk Bloch states in each semicon-
ductor are expanded to first order in terms of zone-center
(k=O) basis functions associated with a single reference
Hamiltonian. This feature is essential to a correct
description of the superlattice point-group symmetry.
The expansion set is explicitly derived from a reference
pseudopotential Hamiltonian obtained by averaging the
bulk pseudopotentials of the constituent semiconductors.
Since the pseudopotentials associated with the constituent
semiconductors are different, the operator treated as a
perturbation in semiconductor i (i =A, B) is
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with

In the present k-p treatment the zone-center states of the
reference Hamiltonian belonging to the irreducible repre-
sentations I 7, I 8, and I 6 of the T~ double group are
treated explicitly. Lowdin perturbation is used to include
an additional 46 zone-center states (including spin) and to
calculate higher-order k.p momentum matrix elements.

The bulk Bloch solutions associated with complex wave
vector k in material i are given to first order in perturba-
tion theory, by

[H ' (d, d';k) F5d d
—]C '(d', k) =0,

where the Hamiltonian matrix is

(3a)

(2b)
The explicitly treated zone-center functions

ud(x)—:&x Id) span the eight-dimensional subspace of
the irreducible representations I 7, I 8, and I 6. The 46
zone-center basis functions u~(x)—:&x P) are treated in
Lowdin perturbation theory. In Eq. (2), ed (e~) are the
zone-center energies of the basis functions

I
d ) (

I
p) ) of

the reference Hamiltonian.
The expansion coefficients C"(d,k) in Eq. (2a) are ob-

tained by solving the secular equation

H"(d d' k)=[ed+«'/2m)
I

k I']&d, d + &d
I
«/m)k p Id'&+ &d

I
~v'+H". '. +H't'

I
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I
(fi/m)k. p+b. V)'

I
p) &p

I

(A'/m)k. p+hV")
I

d')
+

1

2 (Ed+Ed ) —Ep
(3b)

Here H,", and H,", describe the spin-orbit and strain in-
teractions in material i, respectively, and E is the energy
of the Bloch state. For a description of an interface, the
component of the wave vector k perpendicular to the in-
terface is in general complex.

In previous models based on the k p formalism,
the zone-center energy eigenstates of the two constituent
semiconductors are assumed to be the same. This as-
sumption is equivalent to including 6V" only to first or-
der in energies and zeroth order in the wave functions.
We include AV" to second order in energies and first or-
der in wave functions. Neglecting AV" in the wave-
function description introduces more symmetry in the
model than the physical system actually has. As a result,
energy-band crossings, mixings, and splittings are not
properly described.

A description of the superlattice wave function is for-
mulated in terms of a linear combination of bulk propa-
gating (k real) and evanescent (k complex) states of the
constituent semiconductors, )Ir)' (k;x) [Eq. (2)]. Interface
matching of the constituent material bulk eigenfunctions
is accomplished using results derived about the com-
ponent of the current-density operator parallel to the
growth axis. Superlattice translational symmetry is used
to derive an eigenvalue equation for the superlattice wave
vector and eigenfunctions.

Calculations are carried out to first order in H~",„r(k)
for wave functions and current densities and second order
in Hz",„(k) for energies. Spin-orbit and stress interactions
are included between the explicitly included states: I 7,
I 8, and I 6. The momentum matrix elements appearing in
Eq. (3b) are explicitly calculated from a pseudopotential
plane wave representation of the reference Hamiltonian.
Therefore, the input parameters are the pseudopotential

form factors of the constituent semiconductors and conse-
quently our model does not require an empirical
knowledge of momentum matrix elements. A set of pseu-
dopotential form factors which provide a good description
of the bulk band structure of GaAs, A1As, and InAs is
given in Ref. 23 ~ A modified virtual-crystal approxima-
tion is used to obtain the empirical pseudopotential form
factors of the alloys Ga& In~As and Al& ~In~As from a
knowledge of the corresponding quantities in GaAs,
AlAs, and InAs. The reference pseudopotential Hamil-
tonian is expressed in a plane-wave basis (113 plane
waves are included) and diagonalized at k=0. The result-
ing zone-center energy eigenstates (

I
d ),

I
p) ) and eigen-

values (ed, e~) are used to evaluate the matrix elements of
H')(d, d';k) in Eq. (3b). These matrix elements are listed
in Table I for the alloys Ga& ~In~As and Al, ~In~As
corresponding to the composition pairs ( x =0.53,y
=0.52), (x =0.53,y =0.30), and (x =0.53,y =0.64). A
definition of the matrix elements appearing in Table I can
be found in Appendix I of Ref. 23 using the nomenclature
of Ref. 28

The energy line-up (energy-band offset) constitutes an
empirical input to our model and is extracted from recent
current-voltage profiling measurements on Ga] In As-
Al] y In~As heterojunctions' at the lattice-matched alloy
composition, x=0.53 and y=0.52. This work shows that
the ratio of the conduction-band offset (b,E, ) to the
difference in band gap between Gao 47Ino 53As and
Alo4sIno ~qAs (AEg) is of the order of (0.71+0.07). For
the present purposes, a value of AE:AEg AE,
=0.3155Eg was adopted for the magnitude of the
valence-band offset for all alloy compositions studied. In
the determination of AE„ the quantity AEg represents the
band-gap difference between the unstressed alloys.
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TABLE I. Numerical values (in Rydberg atomic units) of various matrix elements used in the
evaluation of the bulk Hamiltonian and current density matrices for Cia] „In„As-Al] „InyAs superlat-
tices. The matrix elements are defined in Appendix I of Ref. 23 and are evaluated using the zone-center
energy eigenstates and eigenvalues of the reference Hamiltonian. Energy band gaps are expressed in eV.

B
p
L'
M
N'

(&)
S
(2)
P

gp(A)

& ~sz
i Azs
i AXy

E (ra& „In„As)
Eg (Al ] y Iny As )

x =0.53
y=0.52

—5.17X 10
4.48 X 10-'
1.10

—1.40
—2.92
—1.80

2.26 X 10-'
3.85 X 10-'
2.48X10 '
1.38 X 10-'

—6.34 X 10—'
—1.65 X 10—'

0.79
1.52

x =0.53

y =0.64

—5.42 X 10-'
4.79X10 '
1.09

—1.39
—2.89
—1.79
—1.36 X 10—'

1.31 X 10—'
4.84X 10—4

7.83 X 10-4
—1.75 X 10—'
—1.40 X 10-'

0.79
1.20

x =0.53
y=0.30

—4.68 X 10-'
4.34 X 10-'
1.11

—1.42
—2.96
—1.86
—4.06 X 10

8.88 X 10
5.60 X 10-'
2.36 X 10-'

—1.36X10 '
2.21X 10-'

0.79
2.15

III. LATTICE-MATCHED SUPERLATTICES

In this section, we investigate the electronic structure of
Gao 47Ino 53As-Alo 48Ino 5&As superlattices grown along
the [001] or the [111]axis. Such superlattices are lattice-
matched to a InP[100] substrate and are currently being
investigated for their potential application in optical corn-
munication systems. ' ' %'e emphasize the difference in
electronic structure arising from the different point-group
symmetries between [001]- and [111]-growth-axis super-
lattices. Detailed considerations of strain-induced effects
are given in the following section.

A. [001]-growth-axis superlattices

Figure 1 shows the electronic band structure of a
[001]-growth-axis superlat tice consisting of 70 A of
Gao47Ino 53As alternating with 30 A of Alo48Ino 52As.
Superlattice subband dispersion is shown for superlattice
wave vectors both parallel (g —[001]) and perpendicular
(k„—[100]) to the [001]-growth axis. Subbands are la-
beled according to their dominant bulk state component:
conduction (C), heavy-hole (HH), and light-hole (LH).
Spin split-off hole subbands (SOH) are not shown here.

In [001]-growth-axis superlattices, the Td point-group
symmetry associated with bulk zinc-blende structure com-
pound semiconductors is reduced to D2d. The symmetry
elements which survive consist of a fourfold rotoinversion
axis (Q —[001]), two twofold rotation axes (k„—[100]
and kz —[010]), and two mirror planes containing the
fourfold axis and bisecting the angles between the twofold
axes. There are two twofold irreducible representations of
D2d compatible with spin: I 6 and I 7. ' The odd-
number conduction-band states ( C &, C3, . . . ), the odd-
number heavy-hole band states (HH&, HH3, . . . ) and the
even-number light-hole band states {LH2, LH4, . . . )

transform like I 6 whereas the even-number conduction
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FIG. 1. Electronic energy band structrure of a [001] lattice-
0

matched superlattice consisting of 70 A of Crap 47Inp 53As alter-
0

nating with 30 A of Alp48Inp»As. The energy zero coincides
with the valence-band maximum of the bulk Gap47IIlp 53As al-
loy.
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and heavy-hole band states and the odd-number light-hole
band states transform like I 7

For superlattice wave vectors directed along the [001]
growth axis (kII ——0; Q&0), the factor group is C2„. The
double group contains a single two-dimensional represen-
tation. I &.

' Therefore all bands are twofold degen-
erate and crossing of superlattice subbands is forbidden
along this direction. This symmetry-induced anticrossing
behavior along the [001] growth axis is clearly shown in
Fig. 1 for the hole subbands LH] and HHz. The present
k.p model is able to reproduce this anticrossing behavior
through the inclusion of the term AV"(x) [Eq. (lb)] in
the expression of the current-density matrices used in the
interfacial boundary conditions. In prior k-p models,
where the zone-center states in the two constituent materi-
als are assumed to be the same, such mixing is not
described and the bands LH] and HHz would cross in
these models.

In the case where the superlattice wave vector lies in the
plane of the interface along one of the twofold axis the
factor group is reduced to Cz. The group C2 contains
two one-dimensional representations compatible with
spin: I 3 and I &. Subband crossing is allowed in this
direction for superlattice subbands belonging to different
irreducible representations. For kI~ in the [110]and [110]
directions, the factor group is C~. For k~~ in other direc-
tions, all spatial symmetry is lost. The lack of inversion
symmetry in [001]-growth-axis superlattices made from
zinc-blende structure compound semiconductors produces
a splitting of the Kramers doublet throughout the super-
lattice Brillouin zone, except along the [001] growth
axis. ' This splitting is proportional to the second-order
matrix element coupling the s state of the conduction-
band minimum to the p states of the valence-band max-
imum. If such a matrix element were zero, as is the case
for diamond-structure semiconductors with a center of in-
version, a twofold Kramers degeneracy would exist
throughout the superlattice Brillouin zone by a combina-
tion of time-reversal and inversion symmetries.

B. [111]-growth-axis superlattices

In Fig. 2, we show subband dispersions for a [111]-
0

growth-axis superlattice consisting of 70 A of
Gao 47Ino 53As alternating with 30 A of Ala 48Ino 52As.
We consider superlattice wave vectors with components
parallel (Q —[111])and perpendicular (k„—[110)) to the
[111]-growth direction. The labeling of the subbands
refers to the convention adopted for [001]-growth-axis su-
perlat tices.

When superlattices consisting of zinc-blende structure
compound semiconductors are grown along the [111]axis,
the bulk T~ point-group symmetry is reduced to C3, .
Thus, for [111]-growth-axis superlattices, the symmetry
elements which persist are a threefold rotation axis
(Q —[111]),a mirror plane containing the threefold axis
and perpendicular to the [110]direction (k —[110]),and
two other mirror planes generated by the rotation acting
on the first mirror plane. There are three irreducible rep-
resentations of C3, compatible with spin: I 4, I 5, and I 6.
The irreducible representation I 4 is twofold degenerate
whereas I 5 and I 6 are one-dimensional. At the zone
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880—
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FIG. 2. Electronic energy band structure of a [111] lattice-
0

matched superlattice consisting of 70 A of Gao47Ino 53As alter-
0

nating with 30 A of Alo4&Ino 5&As. The energy zero coincides
with the valence band maximum of the bulk Gao47Ino 53As al-
loy.

center I 5 and I 6 are degenerate by time reversal. The
conduction-band states ( CI, Cz, Cs, . . . ) and light-hole
states (LHI, LH2, LHs, . . . ) transform like I 4 and the
heavy-hole states (HHI, HHq, HHs, . . . ) transform like
(1 s I 6).

For superlattice wave vectors directed along the [111]-
growth axis (kII

——0; Q&0) the factor group remains the
entire C3, point group. While time-reversal symmetry re-
quires that the one-dimensional irreducible representations
I 5 and I 6 be degenerate at the center of the superlattice
Brillouin zone (kII ——0;Q =0), these states should in prin-
ciple split away from the center of the Brillouin zone.
However, the interactions which lead to this splitting, @-

dependent spin-orbit interactions, are very small. We
have not included these very small terms in the calcula-
tion (although it is easy to do so), and therefore the I s
and I 6 bands do not split away from Q =0 in the calcula-
tion. States belonging to the two-dimensional irreducible
representation I 4 do not mix with those belonging the
(1 s, 1 6) irreducible representations and crossing is allowed
for superlattice wave vectors along the [111]growth axis.
Such a crossing behavior is reproduced by our k.p model
as is evident in Fig. 2 for the case of the hole subbands
HH3 and LH&.
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C. Symmetry of superlattice zone-center wave functions

We now discuss the symmetry character of the super-
lattice wave functions at the center of the Brillouin zone
(k~~

——O, Q=O). At the center of the superlattice Brillouin
zone, the factor group is equivalent to the entire superlat-
tice point group. We consider, in turn, [001]- and [111]-
growth-axis superlattices and we illustrate our discussion
by focusing on the first and second light-hole subbands
(LH& and LH2) of the superlattices whose subband disper-
sion are shown in Figs. 1 and 2. The superlattice subband
LH2 is not shown in Figs. 1 and 2, however. A descrip-
tion of the zinc-blende periodic basis functions transform-
ing according to the various irreducible representations at
the center of the superlattice Brillouin zone is given in
Appendix A.

The superlattice wave functions can be written as

%g (x)=, g v'lFp (z)up(x),
exp( iQ x) —.

g
(N)' p

(4)

where Q=k~~+zQ is the superlattice wave vector, a is a
set of quantum numbers labeling the superlattice solu-
tions, % is the number of superlattice unit cells, l is the
length of a zinc-blende unit cell in the growth direction,
and up(x) are the zinc-blende periodic basis functions.
The envelope functions F(z) are functions of distance
along the growth axis "z" alone because of k~~ conserva-
tion at the interfaces. They are superlattice periodic func-
tions. Wave function normalization requires

In the case where the superlattice wave vector lies in the
plane of the interface and is in one of the mirror planes
(k~~-[112], [121],or [211] and Q=0), the factor group
is C~. The group Cz contains two nondegenerate repre-
sentations compatible with spin. Subband crossing is al-
lowed in these directions for superlattice subbands belong-
ing to different representations. For other directions of
k~~, all spatial symmetry is lost. In all cases with k~~&0,
the subbands are nondegenerate.

Comparing Figs. 1 and 2, one sees many similarities.
The conduction and light-hole subbands have very nearly
the same zone-center energies for the two growth direc-
tions. But the zone-center energies of the heavy-hole
bands are significantly higher for the [111]-growth-axis
material. (That is, the quantum confinement energy is
much less for heavy holes in [111]-growth-axis material
than for [001]-growth-axis material. ) These results occur
because the electron and light-hole effective masses in
zinc-blende materials are nearly isotropic whereas the
heavy-hole effective mass is larger in the [111]direction
than the [001] direction. The electron dispersion is very
similar for the two growth direction materials. Hole
dispersion in k~~ directions are not similar. Light-hole
dispersion along the growth axis (Q&0) are similar for
the two growth axis materials except for cases where the
light- and heavy-band energies become close and the
bands mix and repel each other for [001]-growth-axis ma-
terial but do not mix and cross each other for [111]-
growth-axis material (see Figs. 1 and 2). The above re-
sults, based on point-group symmetry considerations, are
fully compatible with those reported in Ref. 15.

g J ~Fd(z)
~

dz=l, (&)
d

where only the eight explicitly included states are kept in
the sum and the integration is across one superlattice unit
cell along the growth direction. The superlattice period is
( a +b) E. xplicit expressions for the envelope func-
tions are given in Ref. 23. However, in the definition of
the envelope functions used in Eq. (4), a phase
exp(iQ x) =exp(ik~~ x~~)exp(iQz) has been factored out
(see Eqs. 44 of Ref. 23).

At the zone center, the superlattice wave function
transforms like one of the irreducible representations of
the superlattice point group which is compatible with
spin. The zinc-blende periodic functions up(x) can be
written as basis functions of these representations. The
envelope functions Fp(z) are functions of z alone. For the
D2d point group of a [001]-growth-axis superlattice, a
function of z alone can only transform like I [ or I 4. The
envelope function F(z) is an even function of z through
the center of each material layer if it transforms like I

&

and an odd function of z through the center of each ma-
terial layer if it transforms like I 4. Superlattice transla-
tional symmetry ensures that if a function of z is even
(odd) through the center of one material layer, it is even
(odd) through the center of the other. Since the direct
product of I, with I 6 (I 7) is I 6 (I z) and the direct prod-
uct of I 4 with I 6 (I z) is I 7 (1 6), a zone-center [001] su-
perlattice wave function which transforms like I 6 will
contain a sum of terms consisting of a I

&
envelope func-

tion times a I 6 zinc-blende periodic function and a I 4 en-
velope function times a I 7 zinc-blende periodic function,
that is

'Pl.,
' = +Fr ur + +Fr ur, . (6a)

Likewise, a zone-center [001] superlattice wave function
which transforms like I 7 will contain a sum of terms con-
sisting of a I

&
envelope function times a I 7 zinc-blende

periodic function and a I 4 envelope function times a I 6
zinc-blende periodic function, that is

= g Fz' uz', + g Fr u r, . (6b)

The two-dimensional representations I 6 and I 7 can be
chosen so that pairs of basis functions can be labeled
"spin up" and "spin down" and the Clebsch-Gordan coef-
ficients for the direct products in Eqs. (6) do not mix
these labels.

For the C3, point group of a [111] superlattice, any
function of z transforms like I ~. (The symmetry opera-
tors of C3, do not change z). Therefore a zone-center
[111]superlattice wave function which transforms like I 4
(I q or I 6) will contain a sum of terms consisting of an
envelope function that transforms like I

~
times a zinc-

blende periodic function that transforms like I 4 (I ~ or
I 6) that is

4I-'")= +Fr ur (i =4, 5, or 6) .

The two-dimensional representation I 4 can be chosen so
that pairs of basis functions can be labeled spin up and
spin down and the sum in Eq. (7) will not mix these labels
(for i=4).
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In Fig. 3, we show the envelope functions multiplying
the four explicitly included spin-up basis states for the
spin-up LH& and LH2 hole subband zone-center states for
the [001]-growth-axis superlattice whose dispersion curves
are shown in Fig. 1. The LH] state transforms like I 7.
The large-amplitude envelope functions which multiply
the zinc-blende periodic functions ' I 7(z p ) and I 7

[(x+iy)l] are even (transform like I, ). The 'I
7 and I 7

periodic functions combine to make up the k, ~O light-
hole (and split-off hole states), in the bulk material. The
smaller amplitude envelope functions which multiply the
zinc-blende periodic functions 'I s(s t ) and I 6

[i (x iy—) 1] are odd (transform like I 4). The 'I s and I 6

periodic functions make up the k, ~O conduction and
heavy-hole bands, respectively. The inclusion of the I 6

periodic-function component in LH& is a consequence of
the heavy-hole and light-hole mixing which result from
the inclusion of terms proportional to 6V" in the current
density matrices. It is the same interaction which causes
the mixing of the LH& and HHz bands evident in Fig. 1.
The LH2 state transforms like I 6. The large-amplitude
envelope functions which multiply the ' I 7 and I 7 zinc-
blende periodic functions are odd whereas the small am-
plitude envelope functions which multiply the 'I 6 and I 6
zinc-blende periodic functions are even. The inclusion of
the periodic I 6 function component is, again, an example
of heavy-hole and light-hole mixing.

In Fig. 4, we show the envelope functions multiplying
the explicitly included spin-up I & basis states for the
spin-up LH] and LHz hole subband zone-center states for

~ 1 ~
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FIG. 3. Symmetry-resolved light-hole envelope functions for
0

a [001]-growth-axis superlattice consisting of 70 A of
0

Gap 47Inp 53As alternating with 30 A of Alp 48Inp 5qAs. The ener-

gy band structure of this superlattice is shown in Fig. 1. The
spin-up component (quantized along the [001] growth axis) is
shown. Wave-function symmetries are defined in Appendix A.
(a) First light-hole state LH]. (b) Second light-hole states LH2.

40—80 0
z&K) i)i

FIG. 4. Symmetry-resolved light-hole envelope functions for
0

a [111]-growth-axis superlattice consisting of 70 A of
0

Gap 47Inp 53As alternating with 30 A of Alp 48Inp 52As. The
energy-band structure of this superlattice is shown in Fig. 2.
The spin-up component (quantized along the [111]-growth axis)
is shown. Wave-function symmetries are defined in Appendix
A. (a) First light-hole state LH&. (b) Second light-hole state
LH2.
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the [111]-growth-axis superlattice whose dispersion curves
are shown in Fig. 2. We first notice that there are no I

&

or I 6 zinc-blende periodic functions mixed into the LH]
and LH2 states for the [111] superlattice. The envelope
function must transform like I, for [111] superlattices
and therefore cannot mix I"& or I 6 periodic functions into
a I 4 state. The I 5 and I 6 periodic functions make up the
k, ~0 heavy-hole states in the bulk material. The non-
mixing of these functions into the LH& and LH2 states
seen in Fig. 4 corresponds to the nonmixing and band
crossing of the LH& and HH3 seen in the dispersion curves
of Fig. 2. From Appendix A, we see that the 'I 4 function
of the [111]superlattice is analogous to the 'I

6 function
of the [001] superlattice, the I q function is analogous to
the I 7 function, and the I 4 function is analogous to the
'I

7 function. From symmetry there are no restrictions on
the envelope functions of the [111]superlattice other than
that they have superlattice periodicity. However, by com-
paring Figs. 3 and 4, we see a very close correspondence
between analogous envelope functions for the two cases.

Deformation
potentials (eV) GaAs (=A1As)

—8.23
—1.70
—5.20

InAs

—5.80
—1.70
—5.20

Elastic constants
(10" dyncm ) GaAs (=A1As)

11.81
5.32
5.92

InAs

8.33
4.53
3.96

Piezoelectric constant
(Cm )

e14

GaAs (=AlAs)

—0.16

InAs

—0.045

TABLE II. Numerical values of deformation potential con-

stants, elastic constants and piezoelectric constants for GaAs
(=A1As) and InAs.

IV. STRAINED-LAYER SUPERLATTICES

We now consider superlattices in which the bulk con-
stituent semiconductors have slightly different lattice con-
stants (relative difference of the order of 1—2%%uo). In this
case, high-quality epitaxial growth can be achieved pro-
vided the layers are thin enough so that the lattice
mismatch is accommodated by uniform internal strain
rather than by the generation of dislocations. The ef-
fects of lattice-mismatch-induced strain on the electronic
structure of [001] semiconductor superlattices is well do-
cumented. In this section we emphasize differences in
strain-induced effects as they relate to various growth
orientations. Foremost among these differences is the
presence of strain-induced internal electric fields in [111]-
growth-axis strained-layer superlattices. ' These internal
fields arise from piezoelectric effects and are shown to
modify significantly the electronic structure and optical
matrix elements of strained-layer superlattices. Such
fields vanish in [001]-growth-axis strained-layer superlat-
tices due to the symmetry properties of the strain tensor
in this case.

The results presented below illustrate the effects of
strain-induced piezoelectric fields on the electronic struc-
ture of [111]-growth axis Ga, „In As-Al~ «In~As
strained-layer superlattices. We consider the two cases
where the (confining) Ga& In„As layers are under biax-
ial tension with a relative lattice mismatch of 0.8%%uo

(x =0.53,y =0.64) and under biaxial compression with a
relative lattice mismatch of —1.5% (x =0.53,y =0.30).
The case of a free-standing superlattice in which both
semiconductors are strained is considered. The empirical
parameters describing the strain Hamiltonian (deforma-
tion potential constants, elastic constants and piezoelectric
constants) are listed in Table II for the systems considered

32 —34

[111]strained-layer superlattices:
Strain-induced piezoelectric fields

Lattice mismatch-induced strains do not change the
symmetry of a strained-layer superlattice compared to the =(1'+2m')ez, (&b)

unstrained case. These strains do, however, lead to local
energy-level splittings in each constituent material making
up the superlattice. These energy-level splittings can be
described by bulk deformation potentials for the constitu-
ent materials. As for [001] superlattices, these energy-
level splittings for [111]superlattices are described by H, ,

"
[see Eq. (3b)) in the Hamiltonians for the constituent ma-
terials. Bulk material deformation potentials appear in
H,",'. The strains have a different orientation for (111]su-
perlattices than for [001] superlattices, hence H, ,

" is dif-
ferent for the two cases.

Strained-layer superlattices grown in the [111]direction
from III-V materials have large internal electric fields
which are oriented along the growth direction and have
opposite polarity in the two constituent materials making
up the superlattice. ' We describe these internal fields by
a linearly varying potential in each of the constituent ma-
terials making up the superlattice. The approach to solv-
ing for the superlattice electronic structure in the presence
of such slowly varying potentials is discussed in Appendix
B.

The calculation of lattice mismatch-induced strain
Hamiltonians (H,",') for [111]-growth-axis strained-layer
superlattices proceeds in a manner similar to that of the
[001] growth axis case. For [ill]-growth-axis superlat-
tices the symmetry of the problem dictates that the three
diagonal strain components be equal and that the three
off-diagonal strain components be equal in each material.
Thus, there are four unknowns: a diagonal and an off-
diagonal strain component in each material. These strain
components are given in Ref. 14.

The [111]strain Hamiltonians describing local stress in-
teractions in material i is spin-diagonal, symmetric and
has upper-triangle nonvanishing matrix elements

(. ~H(,'"),) =3, .;, (ga)

( x
/

H(t"')
f

x ) = (y
/

H(,"')
/ y ) = (z

f

H(t'"1
/

z )
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(8c)

D; =epE;+EQE; +2e,4EJk, (10)

where 7 is the susceptibility and D; is the electric dis-
placement. If there are no external charges, D; vanishes,
and the electric field reduces to

E;=—2e i 4 8~.g
5

606

where E~i—=E„'~=E~,=E' (Ref. 32) and EI =E„'„=E~~=E' .
In Eqs. (8), the constants c', n', and m' are the deforma-
tion potential constants of semiconductor i. The defor-
mation potentials have been taken so that (l'+2m') =0
each material. This choice fixes the "center of mass" of
the zone-center valence-band states under the effect of the
lattice-mismatch-induced internal strain.

The presence of strain in [111]-growth-axis semicon-
ductor superlattices gives rise to internal electric fields in
the strained layers due to the piezoelectric effect. Zinc-
blende structure compound semiconductors are piezoelec-
tric materials. Off-diagonal strains induce an electric po-
larization given by

P; =2e&4cJk

where P is the induced polarization, e &4 is the piezoelec-
tric constant, and Ezk is a symmetrized strain component.
However, diagonal strains (e.g. , e„„)do not induce a po-
larization (i.e., equi

——0) in these materials. A strained-
layer superlattice with a [001]-growth direction will in-
duce only diagonal strains but with a [111]-growth direc-
tion, off-diagonal strains also occur. Thus [111]-growth-
axis strained-layer superlattices will generate strain-
induced polarization fields, whereas [001]-growth-axis
materials will not. Because the three off-diagonal stress
components are equal, the components of the polarization
vector are equal and the polarization vector is in the [111]
direction. The sign of the polarization vector in a materi-
al depends on whether it has the larger or smaller lattice
constant and on the sign of the piezoelectric coefficient.
The common III-V semiconductors have a negative
piezoelectric coefficient and the common II-VI semicon-
ductors have a positive piezoelectric coefficient. ' A
III-V semiconductor with the larger lattice constant in a
[111]strained-layer superlattice, will have the polarization
vector pointing from the 3 (cation) to the B (anion) face.
A III-V semiconductor with the smaller lattice constant
will have the polarization point from the 8 to the 2 face.
For II-VI semiconductors, the direction of the polariza-
tion vectors will be reversed. Thus, for a strained-layer
superlattice with a [111]-growth axis of two III-V or two
II-VI semiconductors, polarization vectors along the
growth axis, and of opposite sign in the two materials, are
induced by the piezoelectric effect. If one were to grow a
superlattice of a III-V and a II-VI semiconductor, the po-
larization vectors in the two materials would have the
same sign.

The strain-induced electric polarizations P; will lead to
electric fields E; given by

where @=1+7 is the low-frequency dielectric constant.
Application of Eq. (11) to typical III-V strained-layer su-
perlattices, reveals that the magnitude of the strain-
induced electric field is of the order of 100 kV/cm for a
relative lattice-mismatch of approximately 1.5%.' These
fields are comparable to or larger than those that occur in
the depletion region of a p-n junction and are approaching
breakdown fields ( —350 kV/cm in GaAs). As one would
expect, the fields are larger in the thinner material because
the strain is greater in that region. Although the electric
fields in the two materials are of opposite sign, they do
not, in general, cancel to zero. Thus, in general, the fields
described by Eq. (11) consist of an alternating periodic
component (that is, the potential returns to zero across a
superlattice unit cell) plus a net long-range field. We as-
sume that the long-range field will be canceled by surface
charges on the superlattice sample and we treat only the
effects of the periodic component on the superlattice elec-
tronic structure. We describe this periodic field by linear-
ly varying potentials in each constituent material of the
superlattice. The treatment of this linearly-varying poten-
tial is described in Appendix B.

B. Effects of strain-induced electric fields
on the electronic structure of [111]superlattices

We now investigate the effects of the strain-induced
electric fields on the electronic structure of [111]superlat-
tices. We compare calculations of zone-center subband
energies, subband dispersion, and wave functions with and
without the electric fields. We find that the superlattice
band gap is reduced ' and subband energy splittings are
significantly altered by the electric fields. The subband
wave functions and optical matrix elements are also
strongly modified by the fields. The wave functions are
displaced in space so that free carriers tend to screen the
internal fields. We find that heavy holes are more effec-
tive at screening the fields than electrons or light holes. It
requires a density of —10' cm heavy holes to reduce
the internal fields by a factor of two. We are interested in
the possibility of modifying the internal fields by the in-
jection of free carriers using, for example, photoabsorp-
tion. Therefore, we present calculations as a function of
the electric fields for values less than or equal to the un-
screened value.

We first consider the case where the confining layers
are under biaxial compression due to a lattice mismatch of
—1.5%%uo. In Fig. 5, we show the energy position of the
subband levels C], HH], HHz, and LH] at the center of
the superlattice Brillouin zone as a function of superlat-
tice layer thickness for superlattices whose primitive cells
contain an equal number of Gap 47InQ 53As ( M, ) and
Alp 7plnp 3QAs ( Nb ) layers ( M, =Mb ). An electric field of
107 kV/cm is induced in each material by the strain. Re-
sults are shown both including the strain-induced electric
fields and neglecting them. The zero of energy is taken at
the valence-band maximum of the strained (biaxial
compression) bulk GaQ 47InQ 53As alloy at the center of the
Gao 47Ino 53As layer. In bulk Ciao 47Ino 53As in compres-
sion, the heavy-hole band is raised with respect to the
li.ght-hole band at the center of the bulk Brillouin zone.
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the subband levels and the results derived from a pertur-
bation theory treatment are no long applicable. This is
seen in Fig. 5 as the sign of the Stark shifts on the heavy-
hole subbands HH] and HH2 becomes the same at large
superlattice periods [(M, +Nb) =2M, & 50 layers].

We now consider the case where the confining layers
are stressed under biaxial tension due to a lattice
mismatch of 0.8%. Figure 6 shows the energy position of
the subband levels C&, HH~, HH2, and LH& at the center
of the superlattice Brillouin zone as a function of super-
lattice layer thickness for superlattices whose primitive
cells contain three times as many AlQ 36InQ 64As layers as
Gao 471np 53As layers ( Nb ——3M, ). An electric field of 84
kV/cm is induced in the thinner-layer material and a field
one-third of this value is induced in the thicker-layer ma-
terial. Results are shown both including the strain-
induced piezoelectric fields and neglecting them. The
zero of energy coincides with the valence-band maximum
of the strained (biaxial tension) bulk Ga04TIno 53As alloy
at the center of the GaQ47InQ 53As layers. In the present
case, the confining GaQ 47InQ 53As layers are under biaxial
tension and the light-hole band is raised with respect to
the heavy-hole band at the center of the bulk Brillouin
zone. A LH&-HH& strain-induced reversal occurs for a su-
perlat tice layer thickness greater than approximately
(M, +Nb)=4M, & 50 layers. The position of this strain-
induced LH&-HH& crossing is fairly independent of the
presence of strain-induced piezoelectric fields, as can be
seen by inspection of Fig. 6. Again, heavier particles are
more strongly perturbed by the presence of strain-induced
piezoelectric fields than are the lighter ones, as can be
seen by comparing the Stark shifts on the subbands LH],
C&, and HH].

We have also analyzed the effects of strain-induced
piezoelectric fields on the subband energy dispersion in
the interface plane perpendicular to the [111]growth axis.
The results of such an analysis are shown in Fig. 7 for the
case of a [111]-growth-axis strained-layer superlattice (lat-
tice mismatch of 1.5%) consisting of 40 layers of
GaQ 47InQ 53As alternating with 40 layers of AlQ 7QInQ 3QAs.
Calculations are performed for k„—[110]and k» —[112]
in three cases: one case in which there are no electric
fields [panel (a)], one case in which the fields are reduced
to half of their unscreened values [panel (b)], and one case
in which the strain-induced electric fields have their full
unscreened values [panel (c)]. From Fig. 7, one sees that
energy position and splittings of the highest heavy-hole
subbands are significantly modified by the electric field.
The effect on the dispersion is rather small, however. The
masses become somewhat lighter as the electric fields are
reduced from their unscreened values. However, Fig. 7
shows a case in which heavy- and light-hole zone-center
energies are well separated (see Fig. 5). If the heavy- and
light-hole zone-center states are close in energy, band mix-
ing occurs and the dispersion curves become rather com-
plicated away from the center of the superlattice Brillouin
zone [see panel (a)].

An illustration of the effects of strain-induced
piezoelectric fields on the superlattice wave functions is
provided in Fig. 8 where the coarse grain averaged charge
densities associated with the zone-center (kII ——O, Q =0)

states C&, HH&, HH2, and LH] are plotted along the
[111]-growth axis. The superlattice consists of 24 layers
of GaQ 47InQ 53As alternating with 24 layers of
Gao 7QIno 3QAs grown along the [1 1 1] axis (see Fig. 5). Re-
sults including and neglecting the strain-induced electric
field are cotnpared. The electric field displaces the carrier
wave functions in space. The effect is larger for the
heavy-hole subbands than for the electron or light-hole
subbands owing to the larger effective mass of the heavy
hole. The spatial displacement of the electron and hole
wave functions leads to a carrier-generated electric field

E
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FIG. 7. In-plane energy subband dispersion for a [111]-
growth-axis strained-layer superlattice consisting of 40 layers of
Cxao 47Ino q3As alternating with 40 layers of Alo 70Ino 30As.
Energy-band structures are calculated in orthogonal directions
perpendicular to the [111]-growth axis for various values of
strain-induced electric field. (a) E=O kV/cm (totally screened
field). (b) E=54 kV/cm (partially screened field). (c) E= 107
kV/cm (unscreened field).
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C. Carrier-induced screening polarization fields
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We now analyze the screening polarization fields
originating from the spatial separation of free carriers
along the [111]growth axis of the strained-layer superlat-
tice. In order to determine the screening polarization field
arising from the field-induced spatial separation of car-
riers within the Gao 47Ino»As confining layers, we calcu-
late the field-dependent polarization length in the confin-
ing layers of thickness a,

0
I„"(E)= 1 dzz g (

I
+a(z)

I

IFd"'(z
d

where Fd(z) are the envelope functions, the superscripts

P„„,„(n,E)=n eIHH (E),(a +b} c,
a 1

(13)

where n is the free carrier density, (a +b) is the superlat-
tice period, and e is the electronic charge. The electric
field dependence of P„„,„ is included in the polarization

C]
length IHH (E). In the absence of external charges, the

1

screened electric field E is related to the free carrier densi-
ty n by the relation

E 1+ Pscreen (

EocE
(14)

where Eo is the unscreened strain-induced internal field
given by Eq. (11).
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n, n refer to subband indices, and the integration is over
the Ga047Ino 53As layer. The coordinate z is along the
[111]growth axis.

Ci
The variation of IHH (E) as a function of strain-

]

induced piezoelectric field strength is illustrated in Fig. 9
for various superlattice layer thicknesses (a +b) T.he
screening polarization field is proportional to IHH(E) and
is given by

0 I I I 1 l
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FICx. 9. Screening polarization length per electron-heavy hole
pair ( Cl-HH]) as a function of strain-induced piezoelectric field
strength. Calculations correspond to a [111]-growth-axis
strained-layer superlattice consisting of M, layers of
GaQ&7InQ»As alternating with %b layers of AlQ7QInQ3QAs for
different values of M, and Xq. The unscreened field is the
maximum value for which calculations are performed.

FIG. 10. Screening polarization length per electron-hole pair
as a function of strain-induced piezoelectric field strength. Cal-
culations correspond to a [111]-growth-axis strained-layer super-
lattice consisting of 24 layers of CxaQ47InQ 53As alterating with 24
layers of AlQ 7QInQ 3QAs for various intersubband transitions. The
unscreened field is the maximum value for which calculations
are performed.
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The magnitude of P„„,„(n,E) increases with electric
field strength and superlattice layer thickness, as indicated
by Fig. 9. For a given piezoelectric field strength, the spa-
tial separation of electrons and holes along the [111]axis
is limited by thickness of the quantum wells. As the
width of the Gap 47Inp &3As layers increases, so does the
screening polarization length as indicated by Fig. 9. A
straightforward calculation, based on the result of Fig. 9
shows that a density of —10' cm free carriers are re-
quired to reduce the internal field in the small-gap materi-
al to one-half of its unscreened value.

We have analyzed the dependence of the polarization
length I„"(E) on various superlattice subband levels. The
results of such an analysis are shown in Fig. 10 where the

C:i C] C]
polarization lengths HH, , HH LH, p o s a

function of strain-induced piezoelectric field strength for
a [111]-growth-axis strained-layer superlattice consisting
of 24 layers of Gap 47Inp 53As alternating with 24 layers of
Alp 7pInp ~pAs. For all electric fields the inequality

C] 1 ClIHH )ILH )IHH is obeyed. This ordering can be un-
1 1 .2

derstood by examination of the charge densities plotted in
Fig. 8. Since electrons and light holes are not displaced in
space as much as heavy holes by the presence of a strain-
induced piezoelectric field, they give rise to smaller
screening polarization fields and are therefore not as ef-
fective at screening the piezoelectric field generated by

Ga047 I11053As AIQ7Q TAQ3QAs

[I I INGROWTH-AXIS SUPERLATTICES

ELECTRIC-FIELD- INDUCED
BAND-GAP VARIATION

Vs.
ELECTRIC FIELD STRENGTH

I6/l6

2I/2I

strain. Similarly, excited heavy-hole states (HH„, n &1)
are more rigid than the heavy-hole ground state and are
not displaced spatially as much along the [111]-growth
axis.

It was shown above that the presence of strain-induced
piezoelectric fields lead to sizeable reductions of the ener-

gy band gap of [111]-growth-axis strained-layer superlat-
tices. In Fig. 11, we show the field-induced band-gap
variation (band gap with field minus band gap without
field) as a function of strain-induced piezoelectric field
strength for a [111]-growth-axis superlattice consisting of
various thicknesses of Ga0$71no 53As and Alo7oinII3oAs.
Numerical results demonstrate that the variation of the
superlattice band gap is quadratic with the strain-induced
piezoelectric field strength. In the context of the above
discussion on carrier-induced screening of the internal po-
larization field, one can see that large band-gap variations
(and therefore optical-absorption threshold variations) can
be achieved by the generation of free carriers. Considera-
tion of Fig. 11 indicates that this effect can be maximized
if a superlattice-based device is designed to operate about
an electric field for which band-gap variations respond
quadratically to the field modulations.

D. Optical matrix elements

By substantially modifying the superlattice wave func-
tions, strain-induced piezoelectric fields are expected to
have dramatic effects on the optical properties of
strained-layer superlattices grown along the [111]axis. In
particular, both the optical matrix elements and the ab-
sorption threshold (see Sec. IV C above) are sensitive func-
tions of the value of the strain-induced piezoelectric field.
We have therefore performed calculations of the optical
matrix elements at the center of the superlattice Brillouin
zone (kII ——O, Q =0) as a function of the strain-induced
piezoelectric field strength. We calculate the optical ma-
trix elements to zeroth order

(n, jp[n, )= g (ud [p[u„)
E

LLJ

&] -20—
24/24

d, d'

b
dz I'd z Fd z (15)
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FICx. 11. Field-induced variation of the superlattice energy
band gap as a function of strain-induced piezoelectric field
strength. Calculations correspond to a [111]-growth-axis
strained-layer superlat tice consisting of M, layers of
CJao 47Ino 53As alternating with Xb layers of Alo»Ino 3OAs for
different values of M and i'. The unscreened field is the
maximum value for which calculations are performed.

where the sums on d are over the eight explicitly included
states. We display the squared optical matrix elements
defined as

(n, Ip min, '& I',
ll

where
~
n;) are superlattice zone-center eigenstates, the

sum on i is over the degenerate pair of eigenstates, and e
is a unit polarization vector. The results of these calcula-
tions are shown in Fig. 12 for the HH&-C& transition in
the case of incoming light polarized in the plane of the su-
perlattice interfaces. This situation corresponds to the
usual experimental geometry. Calculations are performed
for various superlattice layer thicknesses for a [111]-
growth axis Gao q71no s3As-Alo 7olno 3oAs strained-layer
superlattice. The spatial separation of the states HH& and
CI along the [111]growth axis produced by the strain-
induced electric field reduces the wave-function overlap
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and attenuates the HH&-C& optical matrix element. The
reduction of the optical matrix elements is more pro-
nounced for thicker Gao&7Ino 53As wells since the max-
imutn separation (minimum wave-function overlap) be-
tween the states HH& and C] is ultimately governed by
the quantum-well widths (assuming no tunneling through
the A1Q7QInQ3QAs barriers). Under zero-field conditions,
however, the optical matrix elements are nearly indepen-
dent of superlattice layer thickness.

Figure 13 shows calculations of optical matrix elements
for various optical transitions as a function of piezoelec-
tric field strength for a [111]-growth-axis strained-layer
superlattice consisting of 24 layers of Gap 47Ino 53As alter-
nating with 24 layers of Alo 70Ino 3oAs. Light polarization
parallel (x,y) and perpendicular (z) to the superlattice in-
terfaces are considered. Since heavy holes are more per-
turbed by the presence of strain-induced piezoelectric
fields, optical matrix elements corresponding to the transi-
tions HH&-C& and HH2-C] are more affected by the elec-
tric field than the LH&-C] transition. The presence of
strain-induced electric fields alters substantially the orbi-
tal admixture and wave-function overlap of the superlat-
tice states. As the piezoelectric field is increased, oscilla-

0.2 0.4 0.6 0.8 I.O

ELECTRIC FIELD (IOO kV/cm)

FIG. 12. Squared optical matrix element associated with a
HH~- C] transition as a function of strain-induced piezoelectric
field strength. Calculations correspond to a [111]-growth-axis
strained-layer superlat tice consisting of M, layers of
Gao 47Ino 53As alternating with Nb layers of Alo 7olno»As for
different values of M, and Nb. The incoming light is polarized
perpendicular to the [1 1 1]-growth axis. The unscreened field is

the maximum value for which calculations are performed.

0
0 0.2 0.4 0.6 0.8

ELECTRIC FIELD(IOO kV/cm)
I.2

FIG. 13. Squared optical matrix elements as a function of
strain-induced piezoelectric field strength. Calculations corre-
spond to a [111]-growth-axis strained-layer superlattice consist-
ing of 24 layers of Gao&7Ino»As alternating with 24 layers of
A107OIn03oAs for various intersubband transitions. The label
z(x,yj refers to light polarized parallel (perpendicular) to the
[I 1 1]-growth axis. The unscreened field is the maximum value
for which calculations are performed.

tor strength is transferred from the HH~-C& transition to
the HH2-C& transition.

V. SYNOPSIS

The electronic structure of [001]- and [111]-growth-axis
Ga~ ~In~As-Al] ~In~As semiconductor superlattices is
investigated with the use of a realistic k.p model derived
from a pseudopotential scheme. Strained ( x =0.53,y
=0.30, and x =0.53,y =0.64) and unstrained
( x =0.53,y =0.52) superlattices are considered. The
present k.p model embodies a correct description of su-
perlattice energy band splitting, mixing and crossing
features and therefore permits a meaningful discussion of
symmetry-related differences between [001]- and [111]-
growth-axis superlattices. Apart from differences in
point-group symmetry, the electronic structure of
strained-layer superlattices grown along a [111]axis differ
from that of [001]-growth-axis superlattices in the pres-
ence of large (exceeding 100 kV/cm) strained-induced
electric fields directed along the [111]-growth axis in the
latter. In [111]-growth-axis strained-layer superlattices
these fields are generated by the presence of strain owing
to the piezoelectric effect. Symmetry considerations for-
bid the presence of such fields in strained-layer superlat-
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tices grown along the [001] axis. These strain-induced
electric fields substantially modify the electronic structure
of [111]-growth axis superlattices by causing sizeable
reduction ( —50 meV) of the superlattice band gap and
producing a spatial separation of electrons and holes along
the [111]-growth axis within the confining (small gap)
GaQ 47InQ 53As layers. These energy-band-edge shifts
modify the optical properties of strained-layer superlat-
tices grown along the [111] axis. In particular, the ab-
sorption threshold is shifted to lower energies. The spa-
tial separation of confined electrons and holes screens the
strain-induced electric fields. The extent of the screening
depends on the density of electrons and holes. In the case
where the electrons and holes are generated by photoab-
sorption, the extent of screening and thus the photoab-
sorption profile, is intensity dependent. Therefore, the
strain-induced electric fields lead to a nonlinear optical
response. Nonlinear optical effects are maximized in con-
figurations where the electric field strength is modulated
about a point where the response varies quadratically with
the amplitude of the field modulation. Screening polari-
zation fields and interband momentum matrix elements
are shown to be sensitive functions of the net internal
electric field and of the superlattice layer thickness.
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APPENDIX A: SYMMETRY ANALYSIS
OF ZONE-CENTER ZINC-BLENDE PERIODIC

BASIS FUNCTIONS

In this appendix we construct basis functions
transforming according to irreducible representations of
the superlattice point group from the eight explicitly in-
cluded zinc-blende periodic basis functions. We consider
in turn superlattices grown along the [001] and [111]crys-
tallographic axis.

1. [001]-growth-axis superlattices

u('r ")= ~zl&

v 2u('r, '/2)=
~

(x+iy)»,
W2u ( I 7

'
) =

~

—(x iy) —t &,

(A lf)

(A lg)

(A 1h)

where x —[100], y —[010], and z is along the [001]-
growth axis.

[111]-growth-axis superlattices

(A2a)

, , (~x&+ ~y& —2~z&),
1

(6)1/2

I
+3&=,/, (

I

x &+ ly &+ lz &)
l

(3)1/2

(A2b)

(A2c)

where
~

x &,
~ y &, and

~

z & are oriented along the axes
[100], [010],and [001],respectively. The functions

~
@&&,

~
@2&, and

~

@3& are oriented along the axes [110],[112],
and [111], respectively. We quantize spin along [111].
Spins quantized along the [111] direction are related to
those quantized along the [001] axis by the spin
transformation matrix.

With the above transformations, we construct basis
functions transforming according to the I"4, I z, and I 6 ir-
reducible representations of the C3, point group

u('r,'")= ~st&,

u('I 4
' )= ~st&,

~2u( 14 )= ~(@~+i@2)t&,

(A3a)

(A3b)

(A3c)

The symmetry-point group of superlattices grown along
the [111]axis is C3„. The point group C3„contains three
irreducible representations compatible with spin. One of
these irreducible representations is two-dimensional (I &)

whereas the other two are one-dimensional (I 5, I &). In
constructing basis functions transforming according to
the irreducible representations I 4, I z, and I 6 of the C3„
point group, it is convenient to define mutually orthogo-
nal functions referenced with respect to the [111]growth
axis. We define

In the case of superlattices grown along a [001] axis and
having a common anion (or cation), the point group is
Dzd. The point group D2d contains two two-dimensional
irreducible representations compatible with spin: I 6 and
I 7. From the zinc-blende periodic basis functions

~

s &,

~

x &,
~
y &,

~

z &, and the two-component spinor ( t, t ), we
construct basis functions transforming according to the ir-
reducible representations I 6 and I 7 of the D2d point
group,

M2u ('r ")=
~

—(e, —i e,)»,
u('I,'")=

~
e,»,

u( I ' )=~4 1&,

2u(l )= ~(@ + + )t&+
~

(4' —@ )1&,

2u (I 6) =
~

(4)+i+2) t &
—

~

(&0) —i@p) 1 &,

where y=f)i] and l=l()).

(A3d)

(A3e)

(A3fl

(A3g)

(A3h)

u('I' ')= ~st &,

u('r ")=~si&,

W2u( 16 )= ~i (x iy)l &, —
v2u( I 6

' )= ~i(x+iy)t&,
u('I' )= izt&,

(Ala)

(A lb)

(A 1c)

(Ald)

(Ale)

APPENDIX B: TREATMENT
OF SLOWLY VARYING POTENTIALS

In this appendix, we extend our basic k.p model of the
electronic structure of semiconductor superlattices to in-
clude the effects of electrostatic potentials whose spatial
variations are small on the scale of a bulk lattice constant.
We use this approach to describe the linearly varying po-
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s=1
(B1a)

tentials caused by stress-induced electric fields in [111]su-
perlattices.

We consider slowly varying electrostatic potentials (no
restriction is placed on the magnitude of the variation of
the potential within the superlattice layers, however),
divide each superlattice layer into a series of sublayers and
assume that the electrostatic potential is constant within
each sublayer. Let a and b be the thickness of semicon-
ductor 2 and B, respectively, within a superlattice repeat
cycle. Let the layer in semiconductor A (8) be divided
into M ( X) sublayers of thickness a,
(s =I, . . . , M)[b, (r =I, . . . , X)] with

(B lb)

The energy on the sublayer s is

E, =Eo+ V(s), (B2)

where Eo is the reference energy and V(s) is the value of
the electrostatic potential evaluated at the center of the
sublayers. We now treat each sublayer as an individual
material layer and use the multilayer superlattice equa-
tions derived in Appendix D of Ref. 23. In the linearly
varying potentials, we have taken the thickness of all sub-
layers to be equal ~ We have explicitly checked for numer-
ical convergence by taking thinner sublayers.
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