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Transferability and scaling of Slater-Koster parameters in transition metals

J. D. Shore and D. A. Papaconstantopoulos
Metal Physics Branch, Naual Research Laboratory, 8'ashington, D.C. 20375-5000

(Received 7 August 1986)

We present a study of the following aspects of the Slater-Koster method in transition metals: (a)
A quantitative analysis of the band structures resulting from Harrison s solid-state table. (b) An
evaluation of the Andersen-Harrison scaling laws for obtaining tight-binding parameters at different
lattice constants. (c) An examination of the transferability of Slater-Koster parameters from ele-
ments to compounds.

I ~ INTRODUCTION

The results of first-principles band-structure calcula-
tions can be recast in a linear combination of atomic orbi-
tals (LCAO) basis using the Slater-Koster (SK) method. '

We have recently presented SK parameters for 53 ele-
ments in the periodic table derived by a least-squares fit to
augmented plane wave (APW) calculations.

In his recent book Harrison has developed an elegant
theory by which one can determine the SK parameters
with little computational effort. In the present work, we
assess the quantitative validity of Harrison's theory and
present studies of two different ways in which the range
of applicability of the SK parameters can be broadened.
The first study is a test of the transferability of the SK
parameters from transition elements to a compound.
That is, we explore the possibility of using the parameters
of two different elements to derive a set of parameters for
an ordered compound formed from these two elements.
The second study is to check the accuracy of the scaling
laws proposed by Andersen et al. and Harrison, which
allow one to scale the SK parameters for a change in the
lattice constant of a material.

In this communication we indeed demonstrate the po-
tential transferability of the SK parameters of the transi-
tion elements in obtaining the band structure of com-
pounds. We believe that the SK parameters can be
exceedingly useful in calculations of the band structure of
complicated materials with many atoms per unit cell and
low crystallographic symmetry. Such calculations, in-
volving for example, a system with 50 atoms per unit cell
are not possible to perform with the present state of the
art of first-principles band theory.

II. HARRISON'S THEORY

In this section we present a comparison between the
band structure obtained by our SK fit to the APW calcu-
lations and that found by applying Harrison's LCAO
theory. Harrison has made the simplification of consid-
ering a 6)& 6 secular equation that includes the s and d or-
bitals, omitting the p orbitals, which by contrast are part
of our 9 X 9 Hamiltonian. The basis of this simplification

is the observation that the p-like states at the symmetry
points I and H lie approximately 2 and 1 Ry, respective-
ly, above the Fermi level EF for typical transition metals.
However, at the point N one finds that, in the transition
metals, the state N&, which has pure p-like symmetry, lies
very near EF. Therefore, neglecting the p orbitals in the
SK scheme, although it appears to be a reasonable approx-
imation for the 6 direction, is a serious error in other
directions in the Brillouin zone. In view of this problem
we propose an improved way of applying the Harrison
theory. We use a 9)&9 Hamiltonian for which we deter-
mine all hopping integrals for first and second neighbors
using the formulas given by Harrison in his solid-state
table. However, the on-site parameters e„ez, e, , and

2g

e, , we determine by fitting to the APW results at the
g

points I ~, N~, I 2&, and I &z respectively. We have ap-
plied the Harrison theory using both a 6&6 and 9&(9
Hamiltonian for Nb and Fe. The resulting energy bands
of Nb are shown in Fig. 1 in three panels. The lower
panel shows the results of the very accurate fit that we
performed on the APW results. The middle and top
panels correspond to the results from the 9&(9 and 6&(6
Hamiltonian, respectively. It is clear that there exist sub-
stantial differences between our elaborate fit and the two
calculations based on the Harrison theory. The most seri-
ous deficiency of the Harrison calculations is the location
of EF, particularly in relation to I 25. Also, the higher
energy bands tend to be placed at too high energies in the
Harrison theory. There are also several less-pronounced
qualitative differences in mainly the shape of the bands.
This is particularly true for the Harrison calculation,
which omits the p states. Figure 2 shows the density of
states (DOS) of Nb for the three calculations discussed
above. It is very important to note that the three-peak
structure of the DOS below EF (shown in the right panel)
characteristic of the bcc transition metals, is lost in the
simple Harrison theory (shown in the two left side panels).
We thus conclude that the Harrison theory is improved
significantly by incorporating the p states, but that even
then, the band structures (and DOS) produced suffer from
some rather serious deficiencies that would limit their use-
fulness. The need to include p states for the pure metals
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FIG. 2. The left side panels show the DOS of Nb for the 6)&6 and 9&9 Hamiltonians, respectively, derived by the Harrison
theory. The right side shows the DOS generated from our SK parameter calculations.

seems analogous to finding that it is necessary to add d
states to get the conduction bands correct in semiconduc-
tors.

III. TRANSFERABILITY

In order to test the transferability of SK parameters
from the elements to a compound, we chose to study the
compound TiFe whose energy bands in the CsCl structure
are known. First, self-consistent APW calculations were
performed, in the bcc structure, for both Ti and Fe at the
TiFe lattice constant of 5.624 a.u. Energy-band values
were calculated at 55 k points in the irreducible Brillouin
zone in the final APW iteration. We then applied the SK
method, fitting the bands to our LCAO Hamiltonian at
these 55 k points. We used an orthogonal basis set and
considered first- and second-neighbor interactions. The
resulting Hamiltonian contained 27 three-center SK pa-
rameters. rms errors for both fits averaged 7—8 mRy in
the first 6 bands.

Next, we used the resulting parameters to calculate en-

ergy bands at 285 k points and then applied the tetrahed-
ron method in order to calculate the DOS and the Ez of
Ti and Fe. Neglecting any possible charge transfer we
aligned the EF of Ti to that of Fe by adding the appropri-
ate uniform shift to the Ti on-site SK parameters.

Finally, we combined the Ti and Fe parameters to form
48 TiFe parameters. The on-site and second-nearest-
neighbor parameters were taken directly from the bcc Ti
and Fe parameters (since, in the CsC1 lattice, the second-
nearest-neighbors of an atom are atoms of the same type).
However, the nearest-neighbor parameters in TiFe involve
interactions between Ti and Fe atoms, so in this case, we
performed an arithmetic averaging of the corresponding
Ti and Fe parameters, and used these for both the Ti-Fe
and Fe-Ti interaction parameters. It should be mentioned
that, due to phase differences in the definition of SK pa-
rameters it was necessary to reverse the signs of four of

the Fe-Ti parameters: E, (111), E„„z(111),E„~,(111),
E d i(111).

Figure 3 on the left shows the total and decomposed
DOS calculated using these parameters, while Fig. 3 on
the right shows the DOS calculated using a direct fit to
the APW calculations of TiFe in the CsC1 structure (with
rms errors of only 2—3 mRy in the first 10 bands). Both
figures were produced by calculating energy bands at 165
k points and applying the tetrahedron method. While the
figures show differences in their details, we can see that
we have accurately reproduced the qualitative features of
the DOS. For example, the DOS at EF and the width of
the valley between the bonding and antibonding bands are
fairly accurately reproduced. The decomposed DOS, par-
ticularly in the d-like states, also shows reasonable agree-
ment. However, there are some important differences in
the decomposition, as reflected by the differences in the
DOS and integrated DOS at the Fermi level, shown in
Table I. In particular the direct fit calculation shows a
charge transfer from Fe to Ti, while the calculation that
originates from the elements shows charge transfer in the
opposite direction.

We conclude that such a method for producing a set of
SK parameters for a compound from those of the constit-
uent elements yields results in semiquantitative agreement
with those obtained from the direct calculations. There-
fore, provided that the constitutent atoms do not have
very different electronegativity, this approach appears
promising for performing band-structure calculations in
systems with many atoms per unit cell for which first-
principles calculations are not feasible with presently
available computers.

Recently, Allen et aI. presented an interesting study of
transferability of nonorthogonal tight-binding parameters
for Si. They found that an approximate transferability
exists at constant volume between simple cubic, fcc, and
bcc structures.
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FICx. 3. The panels on the left show the DOS of TiFe generated with the SK parameters determined by fits to APW calculations of
the elements. The panels on the right side show the DOS of TiFe using the SK parameters of the direct fit to the APW calculations
of TiFe in the CsCl structure.

TABLE I. DOS and integrated DOS at EF for TiFe. Calculations A are from parameters determined by fit to the APW calcula-
tions of TiFe compound; calculation B are from parameters determined by fit to the elements Ti and Fe at the TiFe lattice constant.

Calculation DOS (states/Ry)
t2g eg Total

Integrated DOS (electrons)

t2g eg Total

T1
Fe

0.06
0.01

1.03
0.29

0.45
0.81

2.60
1.03

6.29
0.81
0.22

1.05
0.29

1.89
4.36

0.81
2.55

4.57
7.43

T1
Fe

0.14
0.13

0.86
1.47

1.57
0.58

2.38
1.52

8.65
0.45
0.62

0.50
0.63

1.25
5.15

0.76
2.64

2.96
9.04
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FIG. 4. Total and decomposed DOS of Nb. On the left panel is the calculation that used the scaled SK parameters. On the right
panel is the calculation resulting from fitting directly to the APW calculation at the reduced lattice constant.

2.0
ENEMAS Y (eV)
6.0 10.0 4. 0 8.0

ENERGY (e V)

12.0

eo.o

TOTAL DOS TOTAL DOS
5.0

O. O 0.0

SO. O

K
M O. O

SD. O
e

29 2.0

Q

p p N
UJ

4. 0

V)

O. O0

3.0

N
O. o
0.3

0.0

2.0

0.0
0.2

O. O
p. 1 0.3 p. 5 p. 7

I

Q. a p. 4
1

p. s
0.0

ENERGY (Ry) ENERGY (Ry)
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right panel we have the DOS found from the fit to the direct calculation at the expanded lattice constant.
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TABLE II. Selected bandwidths in Ry.

Fe
EF-I )

N) -EF
EF-H)p
Ni-I i

I 25-I i

Hzs-I i

H25™12
r„-r„

Fit at normal
lattice constant

0.653
0.026
0.331
0.679
0.534
0.715
0.393
0.1 1 1

Fit at new
lattice constant

0.591
0.016
0.262
0.607
0.499
0.638
0.308
0.086

Scaled to new lattice
constant (Andersen scaling)

0.564
0.220
0.247
0.784
0.475
0.610
0.293
0.081

Nb
EF-1 j

N) -EF
EF-H )2

Ni-I i

Iz5-I i

H)5 -I )

Hzs -Hie
I iz-I 2s

0.433
0.156
0.286
0.589
0.464
0.840
0.694
0.185

0.451
0.219
0.362
0.670
0.475
0.939
0.850
0.216

0.395
0.114
0.327
0.509
0.447
0.934
0.866
0.270

IV. SCALING

To test the applicability of scaling the SK parameters
for a change in lattice constant, we applied the Andersen
et aI scalin. g law H~ I -(aola)'+'+' to all but the on-
site parameters, where I and I' are angular momentum
quantum numbers, ao is the original lattice constant, and
a is the new lattice constant. This law was tested on the
bcc metals, Fe and Nb, performing changes in the lattice
constant of + 6.1% and —5%, respectively. The shift in
the lattice constants of Fe was chosen such that it was
scaled to the lattice constant of TiFe. Thus, we could
compare results to our SK fit performed on the self-
consistent APW calculations made at this lattice constant.
For Nb, we also performed a self-consistent APW calcula-
tion and SK fit at the new lattice constant. For Nb, the
SK fit and scaling were done out to third-nearest-neighbor
interactions, using 44 SK parameters, while for Fe, we
considered only first- and second-nearest-neighbor in-
teractions, using 27 parameters.

Figures 4 and 5 show total and decomposed DOS for
Nb and Fe, comparing the results of scaling (on the left)
to the results of direct calculation (on the right) at the new
lattice constant. One can see the good agreement between
the two calculations. However, since the change in lattice
constant itself causes only small changes in the features of
the DOS, this evidence does not show conclusively that
the scaling has worked well. To do this, we must look
more closely at the results by comparing bandwidths.

Table II shows selected bandwidths for Nb and Fe,
comparing the results of scaling to the results of the direct
calculations at both the new and the original lattice con-
stant. Features such as narrowing of the d-band widths
for Fe, and broadening of the d-band widths for Nb, have
been successfully reproduced by the scaling. However,
there has been an artificial drop in Nb, and rise in Fe, of
the p-like states, such as N&, relative to EF and the other

bands. When one looks at the absolute energy shifts pro-
duced by the scaling, one finds that the problem is that
the p bands have shifted too much relative to the other
bands. This led us to do a calculation for Fe using the
scaling law suggested by Harrison, since this law shifts
the p parameters less. Harrison's bond-length depen-
dences are d for s-s, s-p, and p-p interactions, d
for s-d and p-d interactions, and d for d-d interac-
tions. This did improve the p bands somewhat, but they
were still too high. However, it worsened s-like states, in
particular, the s-like I &, which increased in energy. This
is due to the fact that the Harrison scheme shifts the s-
interaction parameters more than the Andersen scheme
does. Thus, neither scheme seems totally satisfactory in
its treatment of parameters involving s and p interactions.

At any rate, we conclude that starting with our very ac-
curate SK parameters and using either the Andersen or
Harrison scaling laws, we can reproduce the basic features
in the band structure and DOS, for changes as large as
5—6% in the lattice constant. We expect that for smaller
changes in the lattice constant, of the order of a 1—2%,
the results of scaling should be significantly better than
those for the 5—6% changes which we have studied here.

V. CONCLUSIONS

We generated the energy bands and DOS of Fe and Nb
using the solid-state table of Harrison and compared
them with our band structure found by an elaborate fit to
APW calculations. We conclude that Harrison's theory
can only give a qualitative description of the band struc-
ture of the transition metals and should be used with cau-
tion. Regarding the scaling laws of Andersen et al. and
of Harrison we found that they are fairly reliable for
moderate (up to S%%uo) changes of the lattice constant. In
the case of the TiFe intermetallic compound, we have
shown that the SK parameters of the elements Ti and Fe
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are capable of reproducing a semiquantitatively accurate
picture of the TiFe band structure. This property of
transferability of the SK parameters coupled with the reli-
ability of the scaling laws provides interesting possibilities
for calculating the band structure of polyatomic systems
where first principles calculations are not feasible.

In such cases where the electronegativities of the con-
stituent atoms are very different, intermediate first-
principles calculations for diatomic compounds can be
used in order to determine the hopping integrals between
dissimilar atoms. Finally, we wish to point out that SK

parametrizations of the type discussed here may be partic-
ularly useful in the study of crystal stability of transition-
metal compounds in a way that parallels the recent work
of Majewski and Vogl for sp-bonded solids.
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