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Dielectric function and plasmon structure of stage-1 intercalated graphite
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In this paper, we carefully study the dielectric function of stage-1, acceptor-type graphite inter-

calated compounds (GIC's), %'e model the system by a superlattice of an infinite number of
graphite layers, each of which has the band structure described by the two-dimensional calculation
of Blinowski et al. Tunneling between graphite layers is neglected, and so are effects due to inter-

calants except that of determining the Fermi level. However, we have retained a Coulomb term that
describes the interaction between electrons on different layers. With this model, we are able to ex-

press the result in analytical form, and our treatment is essentially exact. Because of the Coulomb

interaction along the c axis, the excitation spectrum has a plasmon band in the (q, co) plane, where q
is the in-plane momentum transfer and co the energy transfer. This plasmon band is typical for the
superlattice structure and contains a three-dimensional mode. We find that, despite the presence of
a complicated band structure in GIC s, the three-dimensional characteristics of the plasmons still

dominate. A quantitative comparison of plasmon structure between our theory and electron scatter-

ing experiments is made in this work. We obtain reasonable agreements between our theory and the
measurement, concerning the plasmon energy, the plasmon width, and the plasmon intensity. The
agreement suggests that our dielectric function is reliable in describing the dynamic screening mech-

anism for GIC's.

I. INTRODUCTION

For pure graphite, the conductivity is highly anisotro-
pic: That parallel to the graphite planes is several orders
of magnitude higher than that along the c axis. For
graphite intercalated compounds (GIC's), the in-plane
conductivity is further enhanced. These facts can be un-
derstood on the grounds that graphite layers have high
in-plane mobility for charge carriers (electrons or holes)
and the carrier concentration is increased upon intercala-
tion. As for the conductivity along the c axis, it generally
decreases for acceptor-type GIC's—which is the system
we shall study in this paper. (For a general review on
GIC's, see Ref. 1.) This anisotropic property suggests
that the charge transport is mainly two dimensional for
GIC's, since the transport along the c axis is negligible
compared with the in-plane part. But on the other hand,
it was found experimentally that plasmons of GIC's ex-
hibit three-dimensional characteristics; that is, the
plasmon energy is finite at small momentum transfer.
Therefore, electron correlation between graphite layers is
still important, even though the charge tunneling is not.
Clearly, a detailed study of electronic properties is neces-
sary in order to understand the somewhat intricate
behavior of GIC's.

One major step toward the understanding of electronic
properties of GIC s, via microscopic calculation, was
made by Blinowski and co-workers, who considered low-
stage ( n (4) GIC's as a set of independent graphite slabs,
each containing n graphite layers sandwiched between two
layers of intercalants. One should notice that, if the inter-
calant layers are not present, GIC's become pure graphite
and the two-dimensional (2D) model above reverts to the

one originally employed by Slonczewski and Weiss for
pure graphite. By applying a tight-binding calculation for
the graphite part, Blinowski et al. obtained the band
structure, as well as analytic expressions for the Bloch
states, at energies close to the Fermi energy. This result
provides us with the basis for a quantitative comparison
with the measured optical transitions for acceptor-type
GIC's. s's However, this quasi-two-dimensional model of
Blinowski et al. could not explain the three-dimensional
character of the plasmons —understandably, because the
graphite slabs are not correlated at all in this model.

In this paper, we would like to extend the model of Bli-
nowski and co-workers so that electron correlations in the
c-axis direction can be taken into account. In favor of an
analytic final result, and also for the sake of simplicity,
we shall only consider the case of stage-l, acceptor-type
GIC's. In this system, there is only one graphite layer be-
tween two adjacent intercalant layers. %e use the results
from the calculation of Blinowski et al. to describe the
electron structure of each such graphite layer. But instead
of keeping graphite layers independent of each other, we
consider these layers as forming a superlattice with an in-
terlayer distance I,. %e will neglect the interlayer tunnel-
ing effects altogether, but will retain the Coulomb-
interaction term for electrons in different layers. There-
fore, electrons can "feel" the excitations in other layers.
The hope is that, by keeping this correlation due to
Coulomb interaction, we will be able to appropriately
describe the three-dimensional nature of the plasmons.

With the construction of such a superlattice, we will
calculate for the system the dielectric function within a
self-consistent-field approach. Our results are expressed
in analytic forms as functions of q (the in-plane momen-
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turn transfer) and ai (the energy transfer} and are basically
exact according to the wave functions and the band struc-
ture of Blinowski et a/. This dielectric function is then
used for examining the plasmon structure by comparing
the measurement of Ritsko and Rice. This quantitative
comparison shows reasonable agreement between the cal-
culation and the measurement for the plasmon energy, the
width, and the strength (as functions of q). Meanwhile,
there are some interesting features about plasmons (e.g., a
bipeak structure, see Sec. IV), which are direct conse-
quences of a superlattice structure and are not yet ob-
served. Further investigation of these aspects should re-
veal more about the superlattice structure of GIC's.

Although it has been used mainly for examining the
plasmon structure in this work, it should be emphasized
that the dielectric function we calculated has prospects of
much wider application. This is because dynamic screen-
ing effects are very basic to the understanding of systems
like GIC's, where the concentration of free charge carriers
is high. One demonstration of such an application is
given in a separate paper, where we calculated the life-
time of conduction electrons and used it for the interpre-
tation of broadening effects found in optical spectra of
GIC's. 3 ~

In the next section„we shall study the model of Bli-
nowski et al. for stage-1 GIC's. We will begin by briefiy
describing their results, and then go on to calculate the
dielectric function for the system with only one graphite
layer. This calculation is clearly a two-dimensional one,
but its results are useful in Sec. III, where we take the c-
axis correlation into account by forming a superlattice
structure for GIC's. In Sec. IV, we examine the plasmon
structure according to our theory, and make quantitative
comparison with experimental results. Finally, some con-
cluding remarks are given in Sec. V.

II. 2D MODEL AND e (q, co }

In this section, we will first summarize the important
results from the 2D model of Blinowski et al. , and then

apply them for the calculation of the dielectric function
for a single graphite layer, e (q, co). We will use a nota-
tion as close as possible to that of Ref. 3, so that easy
reference is possible.

In the 2D model for stage-1 GIC's, Blinowski et al.
calculated the structure of n bands by a simple tight-
binding method. In this method, only resonance integrals
of nearest neighbors are kept when diagonalizing the
Hamiltonian in the subspace spanned by the two tight-
binding functions built from atomic 2p orbitals, P,(r), of
carbon atoms:

U„(r)=C+e " 'P, (r p„r;), i =1,2.——
~n

C is the normalization factor and a is the 2D wave vector.

p„ is the lattice vector. ri and ri define the positions of
atoms in a unit ce11; e.g., me can choose

v& ——0 and v2 ——be„,
0

where b=1.42 A is the nearest-neighbor distance and e„
the unit vector along the x axis. The energies and wave

functions for both valence band and conduction band
were found to be (denoted by the superscripts c and U,

respectively)

e„'"=+yang(a) ~,

c,u 1 g*(ir)
Ui. + Uzv2, ig(ac) [

(2)

(3)

yo is the resonance integral due to the nearest-neighbor in-
teraction and has the value yo ——2.4 eV; the function g(z)
is defined by

sF —yo(n ~3fI—I)'~', (6)

where fll gives the number of holes per carbon atom for
the GIC's under consideration.

We are going to use Eqs. (1)—(6} for the evaluation of
the e (q, ro} in the following. To this end, two approxi-
mations are applied: (i) We will always use Eq. (5) instead
of Eq. (2) for energies. Generally speaking, this approxi-
mation is valid as long as the excitation energy is not too
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FIG. 1. On the left of this figure is the first Brillouin zone of
a graphite layer. T~o alternative choices are sho~n, by the
solid and the dashed curves, respectively. The linear band struc-
ture found in the vicinity of the symmetric point U (or U') is
shown on the right. For acceptor-type GIC*s, the Fermi energy
is lowered from the degenerate point to a level within the
valence band, as indicated in the figure.

lK T2 l'K D3T2 l'K.D3 T2g(~) =e +e +e

where D3 is the operator of the 2m/3 rotation around the
c axis. In the vicinity of either U or U' points (see the
Brillouin zone plotted in Fig. 1), where the Fermi level

passes through, energy state of Eq. (2) can be simplified
by

s', "=+-',yy (k
~

=+U~k .

k is the 2D momentum measured from the U point (or
the U' point) and k =

~

k
~

. The linear band structure is
given in Fig. 1. For pure graphite the Fermi level passes
through the degenerate U point. After intercalation (for
acceptor-type GIC's}, some electrons are transferred from
the graphite layer to the intercalant layer, and therefore
the Fermi energy is lowered to the level shown in the fig-
ure. The Fermi energy sz is determined by the relation
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"(q, )="-4,g X I«; I
-"'Ik+q;»I'

k h =vs

f(e~+, ) —f (si)
X

Eg+q —E,g
—N + l'g

(7)

eu is the background dielectric constant contributed from
high-energy excitations —-other than those excitations
within the m bands. Note that the second term now con-
tains both the intraband transitions (u~u) and the inter-
band transitions (u~c). The factor of 4 accounts for the

large compared with eF. More specific arguments con-
cerning the validity of Eq. (5) can be found in Ref. 2. (ii)
Concerning ourselves with states in the vicinity of U and
U' points, we further regard the two valleys, each around
one degenerate point, to be identical and well separated;
i.e., we will neglect small effects due to intervalley transi-
tions. This approximation greatly simplifies our formal-
ism and can be easily relaxed.

We can directly apply the result from the self-
consistent-field method of Ehrenreich and Cohen, and
express the dielectric function in the following form (put
fi= 1, here and henceforth):

spin degeneracy and the presence of two identical valleys.

f(e) is the usual Fermi distribution function. At T=O K,
a state is occupied only if the state lies below the Fermi
level. For a single graphite layer, the problem is two-
dimensional. Actually, Eq (7) involves an approximation
about the Fourier transform of the Coulomb potential,
which has the well-known form for 2D systems,

ue(z) =ueexp( —q I
z

I ), ue =2me /q,
and

I
z

I
is the distance from the plane. This z-dependent

part is neglected here due to the consideration that wave-
function extension along the c axis is small ( —1 A), while

q -0.1 A ' for low-energy excitations, i.e.,
exp( —q I

z
I

) =1. The z dependence of the Coulomb po-
tential will have important effects in the next section
where interaction between layers is taken into considera-
tion. Here, for the one-layer system, the calculation of
e (q, e2) comes down to two integrations: one for the cal-
culation of matrix elements (k;u

I
e 'q'I k+q;u, c) and

another for summing over all k states. We will calculate
the matrix elements first.

By substituting the wave functions of Eq. (3) for the
Bloch states

I k;u), we find that the matrix elements for
intraband excitations have the simple form

C2 2 k 'k
(k;u Ie '&'Ik+q;u) = g g ((I},(r—p„r;) Ie — " '

I P, (r—p„r;)) —+
I=1 p~

(9)

where P,(r) is the normalized 2p wave function of carbon
atoms. In order to get Eq. (9), we have neglected all over-
lapping integrals between neighboring atoms —an approxi-
mation made originally in the 2D model by Blinowski
et a/. The integration of the matrix element can be done
analytically if we use a generalized hydrogenic wave func-
tion for P, (r), i.e., putting

((,(r) =Ar cos(8)e (10)

A is a normalization factor, 8 is the angle from the c axis,
and ao is the Bohr radius. Z is an effective core charge
chosen to be Z=3.18 according to Zener. Note that the
wave function in this form has the correct symmetry (for
n bands) under reflection about the layer plane. With this
hydrogenic wave function, the matrix elements of Eq. (9)
can be calculated straightforwardly, and the result is

r

( k;u
I
e 'q'

I
k+q;u) = —,

' I(q) 1+
Ig(k+q)g(k) I

g(k)= 2 b(b i')= 2
bke— (12)

where 8& defines the direction of the 2D vector k. Since it
is the absolute value of these matrix elements that we need
for calculating e (q, co), we can rewrite Eq. (11) accord-
ingly:

'q'Ik+ ' ) I'= —,'I'( ) 1+
Ik+q I

(13)

where g is the angle between k and q.
By applying a similar method, we can evaluate the ma-

trix elements for interband transitions. After neglecting
the overlapping terms between neighboring atoms and
taking the absolute value of the matrix elements, we find

(4) and could be well approximated in the vicinity of U
by

'2 —3

I(k.
I

—
Ik . }I2 I2( ) 1

I k+q I

(14)
QQoI(q)= 1+ z (1 la)

I(q) is very close to 1 for small q (0.1 A '), but becomes
much smaller, and hence important, when the momentum
transfer is large, e.g., in intervalley transitions. The
angle-dependent quantity g (k) was defined earlier by Eq.

where I(q) and the angle g have been define previously.
We have thus far exactly evaluated the matrix elements

of the Coulomb interaction for Bloch states found in the
2D model and expressed the results by Eqs. (11) and (14).
Substituting them back into Eq. (7), we can reformulate
e (qco) by
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e (q, co) =co u—qX'(q, ru) u—qX (q, ro),

where

(15)

Xg( ) 21'( ) y 1
k +q cos(tp)

I
k+q I

f(si,+q) —f(sk)
X

Eg+ q
—Eg —Q7 + l'g

(isa)

defines the response function due to intraband transitions,
and

Xb( ) 21'( ) ~ 1
k+qcos(p)

I
k+q I

f (&i+q) —f(&i )
X

E,k+q —Eg —CO+ l 'g
(15b)

defines that due to interband transitions. The evaluation
of the response functions is lengthy and is carried out in
Appendix A. The imaginary parts of X'(q, co) and X (q, co)

are calculated exactly. The calculation for the real parts,
however, involves expansion for small q and an approxi-
mation concermng the band size [i.e., the determination of
eo in Eq. (A10)]. Details of these approximating pro-
cedures can be found in Appendix A. What we would
like to emphasize is the following: The region where the
approximation is good overlaps with that where the 2D
model is applicable; in other words, as long as the 2D
model is valid for describing the band structure of GIC's,
so is our calculated dielectric function for describing the
screening mechanism.

Figure 2 demonstrates the result from our calculation:

the excitation energy spectrum as a function of ev

(&~=ufq} . Because of the special band structure ex-
pressed by Eq. (5), intraband excitations are confined to
the region where co ~ s~, above which both interband exci-
tations and collective-mode excitations (plasmons, shown

by the dashed curve) are possible. Excitations correspond-

ing to the cross-hatched region in Fig. 2 are consequences
of c-axis correlations and will not be discussed until Sec.
III. For a single graphite layer, plasmons are determined

by the zeros of e (q, co}, i.e., by the relation (X=X,+ iX2)

e'u =e'0 —uqXi(q, co )
i b

= u&Xi(q, co) . (16)

The first equation above defines the background dielectric
eoilstailt Eo that includes the contribution from interband
transitions. The fact that the part from interband transi-
tion is small ( —10 ) compared with eo can be checked
easily by directly applying the results from Appendix A.
For small q, Eq. (16) leads to a simple dispersion relation
for the plasmon energy

2

(17)
7TEpUf

where us=2me /q from Eq. (8). This result shows that
the plasmon energy for a graphite layer indeed has the
proper two-dimensional character, i.e., roz(q)aq' . The
plasmon curve in Fig. 2 is determined numerically by
solving Eq. (16) without assuming constant contribution
from interband excitations, and it agrees closely with Eq.
(17). The parameters used in this numerical calculation
are the same as those to be used in Sec. IV, where we com-
pare our theory with experiments.

To check our calculation, we examined the f-sum rule'
which, for a 2D system, has the form [e D(q, co)
=ei (q)co)+iEi (q, co)]

7T' e Pl2DQ
2 2

leo co@2(q,co)='
0

for independent-particle excitations, and

2 2
m e n20q

2
EOP7l

(18a)

(18b)

C)

0.0 2.0 3.0

FIG. 2. This is the excitation spectrum calculated from the
superlattice model of GIC's. Dotted regions are e-h excitations,
as indicated. The cross-hatched region is the plasmon band
formed because of the layered structure. The dashed curve is
the 2D plasmon curve for a single graphite layer. This spec-
trum is calculated according to the parameters given in Table I.
It should be noted, however„ that the spectrum would remain
mostly unchanged if other parameters had been used. In that
case only the position of the plasmon band needs to be modified.

after screening is taken into account. m is the bare elec-
tron mass and n2D is the density of electrons in the n.

band. The expressions above differ slightly from their
three-dimensional (3D) counterparts, mainly because the
matrix element of the Coulomb interaction is proportional
to q

' now, instead of to q in 3D. Note that the f-
sum rule is a direct consequence of particle conservation
in the system, and therefore Eq. (18) must be exactly satis-
fied if we have included all possible excitations of m elec-
trons in e (q, co). Numerically, the integrals of Eqs. (18a)
and (18b) give values that are 60—70% of the exact ones,
for q &2.5kf in systems of different EF and co. Part of
the discrepancy might be explained by the approximations
made in our calculation, such as extending the linear band
structure (sk ~ ~k

~
) throughout the m. bands [see Eq.

(A10)], and only including excitations within n. bands (i.e.,
high-energy exeitations are neglected). However, these
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factors seem too small to explain the large discrepancy
found. There are indications that the discrepancy is em-

bedded in the band-structure calculation. %e notice that
the optical interband transition evaluated by using this
band structure [see Ref. 3 and Eq. (33} in the next sec-
tion], if compared with actual measurements (Refs. 5 and
8), gives the right spectrum profile but is smaller in mag-
nitude by a factor similar to the one we have found above.
The nature of this discrepancy is yet to be explained.

In the next section, we will continue our study of
GIC's. The assumption made in the 20 model3 that there
is no correlation between layers is relaxed in our treat-
ment. As a result, three-dimensional behavior emerges.

III. THE SUPERLATTICE MODEL OF GIC's

A stage-1 GIC is composed of many evenly spaced
graphite layers with one intercalant layer sandwiched be-
tween every two adjacent graphite layers. As noted in the
Introduction, electron transport between layers is not im-
portant for the system. Nevertheless, excitations in one
layer can affect electrons on other layers via the Coulomb
potential, see Eq. (8). Therefore, it is important to proper-
ly take into account both the three-dimensional lattice
structure and the Coulomb interaction when modeling the
system. One natural extension in this direction from the

2D model of GIC's is to construct a superlattice. This su-

perlattice is composed of infinite identical graphite layers
(hence surface effects are neglected) and each has the band
structure described by the 2D model, i.e., by Eqs. (1)—(6).
Effects of intercalants are restricted to the determination
of eF by Eq. (6) and are otherwise neglected. Because of
low charge-particle mobility in the z direction, we neglect
the interlayer tunneling altogether. The Coulomb interac-
tion for electrons on different layer is certainly retained,
since this is the very reason why we construct a superlat-
tice for GIC's. As will be shown below, one can easily
calculate the dielectric function for this superlattice sys-
tem and express the function in terms of X' (q, co) of Eq.
(15). Using the dielectric function, we then proceed to ex-
amine the dimensionality of plasmons for this superlattice
system. The results will be compared with experiments
later in Sec. IV,

The superlattice model of GIC's introduced above is
very similar in structure to the one composed of infinite
layers of 2D electron gas (2DEG). The latter has been ex-
tensively studied "and the results from these treatments
can be applied to our system with only minor modifica-
tion. The necessary modification arises from the differ-
ence in band structure of the two systems. For the
graphite layers, there are both the valence band and the
conduction band; hence the q-component electron-density
operator has the form

p(q) = g pi(q) = g g g ~
k+qh i ) (k+qh i ~

e'q'
~ khan & &khan ~,

hl h& ——u, e

(19)

where. 1 is the layer index and q is the two-dimensional
momentum transfer. It is important to keep the matrix
element

( k+q;h & i

e'q'
i k;h2 )

in the expression, since its value differs from 1, as has
been demonstrated in the calculation of Eqs. (11) and (12).
Another problem concerning the z-direction extension of
the Bloch states

~
k;u, e }on the other hand —see Eqs. (1),

(3), and (10)=-an be solved easily. This is because the ex-
tension is small compared with other length scales in the
system, e.g., I, and q

' [see the argument following Eq.
(8}]. Thus we can apply Eq. (8) and put the z-component
Coulomb interaction between layers l& and l2 by

I'i, ,i,(q)= Vi(q)
I i=i, i, =ueexp( q-I ~

l
~.)—

%ith this approximation, we have erased the problem re-
garding the thickness of graphite layers. The remaining
difficulty due to the band structure of GIC's is simplified
by the assumptions generally made for superlattices that
interlayer tunneling is neglected and that layers are identi-
cal to each other. " One important consequence of these
assumptions is that the dielectric function of a superlat-
tice can be constructed by the response functions that
describe the 20 system, and hence only depends indirectly
on the band structure of each layer. In other words, we
can apply the results of Refs. 7 and 11 for GIC's by mere-
ly substituting the response functions contained therein,

I

using instead those of a graphite layer, which we have
evaluated in Sec. II. To demonstrate this relation, we out-
line below the derivation of a dielectric function for GIC's
which has the charge density defined by Eq. (19). De-
tailed derivation parallels that of Refs. 7 or 11.

Let us suppose that there is an external charge with the
frequency co interacting with the system. The time-
dependent potential from this external charge perturbs
electrons on the layer l with the strength

1"i '{q co)= ui {q ~)pi{q)e
Eo

(21)

u i (q, co) =u i (q, co)+u i (q, co)

=ui' (q, cu)pi(q)e

A standard calculation of the linear response to the effec-
tive potential gives the relation '

pi"(q, ~)= ui' (q, ~)[X'(q,~)+X"(q,~)], (23)

where the operator Pi(q} is defined by Eq. (19) and eo is
the background screening constant. There is no cross
term for different layers because interlayer tunneling is
neglected. This external field can induce charge fluctua-
tion of magnitude p'i"(q, co), which, in turn, builds up its
own field ui"(q, co). Effectively, electrons on the layer l
are affected by a screened perturbing potential that is the
combination of the two, i.e.,
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where X' (q, cd) are the response functions of a graphite
layer and are defined by Eq. (15). It should be noted that
the response functions do not depend on the index l since
all layers are identical to each other. In order to get Eq.
(23), we have applied the so-called random-phase approxi-
mation (RPA), by which we can neglect interaction be-
tween particles after we have determined the effective po-
tential. This effective potential ought to be self-
consistently determined from Eqs. (22) and (23), together
with a third equation that relates the induced charge and
the induced potential:

"I (9 ~) g Vr l (9—)p'l'('$~)pl(q)e
0

This last equation states the simple fact that the induced
potential occurring on layer l is contributed by all induced
charges, including those on other layers. By substituting
Eqs. (23) and (24) back into Eq. (22), we find

epuf' (q, cd) =u['"(q, cd)+ y Vj r (q)uf' ( 9, cd)

1'

X [X'(q,cd)+X (q, cd)], (25)

As we have expected, e(q, k„cd) is indeed constructed
from the 2D response functions. In fact, e(q, k„cd) differs
from e (q, cd) merely by an extra structure factor S(q,k, )

that describes the layered structure. It should be noted
that k, has nothing to do with z-direction momentum
transfer, since there is no interlayer tunneling allowed in
our formalism. The actual meaning of k, is contained in

Eq. (26). In the following, we are going to discuss the
property of e(q, k„cd).

It is obvious from Eq. (29) that the spectrum of
electron-hole excitations overlaps with that of a graphite
layer in the q, cd space, as is shown in Fig. 2. On the other
hand, the plasmon spectrum of a superlattice is very dif-
ferent from its 2D counterpart. It forms a band in the

q, cd space, as is also shown in Fig. 2. The presence of this
plasmon band can be understood by the fact that, for a
given q, each k, determines one particular plasrnon ener-

gy. We found that the plasmon energy increases as k, de-
creases, and that the high-energy edge of the plasmon
band corresponds to k, =O and the low-energy edge to
k, =rr/I, . At the above two limits, the structure factor
has the following value for small q:

which is the self-consistent relation we are looking for.
One simple application of this result is for a single
graphite layer. In that case the summation over I' con-
tains only one term (1=l'=0). With the definition that
the dielectric function is the ratio between the external po-
tential and the effective potential, we readily recover
e (q, cd) of Eq. (15).

For a superlattice that has infinite graphite layers, it is
more convenient to apply Eq. (25) in its Fourier-
transformed expression. Due to the periodic structure of
the superlattice, we can define

g uf'"(q, cd)e ' '=u'"(q, k„cd)
I

2

qI,
'

S(q,k, )= '

qI,
2

'

if k, =O, as 9~0

if k, =—,as 9~0.I, '

(30)

2

cd&(q, k, ) =uqS(q, k, ) r + —„' sq .
VE'OUI

(31)

Considering the similarity between e(q, k„cd ) and
e (q, cd), it is easy to infer from Eq. (17) that the k, -

dependent plasmon energy of the superlattiee system is
(for small q)

0

gur' (q, cd)e ' '=v' (q, k„cd),
E

(26) Therefore, the upper edge of the plasrnon band behaves as
do 3D plasmons; i.e., we can approximate the plasmon en-

ergy by the expression

where k, is confmed to the first Brillouin zone, i.e.,
~
k, j (n./I, . We can rewrite Eq. (25) accordingly

(uq=2fre /q),

euv'f (q, k,cd)=u "(q,k,cd)+u' (q, k„co)uqS(q, k )

x [X'(9,~)+X'(9,~)], (27)

' 1/2
E,F 3 Uf

2

and u=-
COp

cd'(q, k, =0)=cd~+aq

where

(32a)

where

S(q,k, )= g Vr(q)e * '
Uq I

sinh(qI, )

cosh(qI, ) —cos(k, I, )
(28)

As for the lower edge, the plasmon energy is linear in q:

cd&(q, k, =n/I, )-a'q,
where

2 1/2
e I,eZ, 2+ 4UI

E'O

Defining the dielectric function as usual, we finally get '"
u'"(9,k„cd )

e( qp kg/cd) ffu' (q, k„cd)

=eo—uqS(q, k, )[X'(q,cd)+X (q, cd)] .

The expressions above need some explanation concerning
eo, which, as a rnatter of fact, is not a constant. As was
defined in Eq. (16) for a graphite layer, eo is the back-
ground screening factor that includes the contribution
from interband excitations. Note that the latter now
varies strongly for different k, since S(q, k, ) does also;
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e.g., see Eq. (30). Thus one needs to numerically deter-

mine eo as a function of q, k„and ni in actual calcula-
tions. The calculation of the excitation spectrum of Fig.
2, as well as all other calculations, is done in this way. A
specific example of determining eo can be found in Sec.
IV.

Before going on with our investigation of plasmons of
GIC's, it is interesting to compare our results with those
of Blinowski er al. , since we have applied the band struc-
ture froin their calculation. We note that the plasmon en-

ergy co~ found in Eq. (32a) agrees with the value derived

by them from a different approach [see Eq. (20) therein].
The difference is that they used the 3D Coulomb potential
(4n.e /q ) from the very beginning, and therefore they
only found one plasmon energy at q=0. Another in-

teresting comparison between the two theories is for inter-
band transitions at q=O, corresponding to optical transi-
tions. It is easy to show, by using Eq. (All}, that

lim lim [ UqS(q, k—)gz(q, oi)]= e(co —2sF),
q-ok, -o ' ' ' I,~

(33)
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FIG. 3. The calculation of P(q) [to be weighted by P(0)]
shows that the plasmon strength is consistent for q & q, (q, is
the critical momentum, beyond which plasmons are damped).
A1so shown is the plasmon ratio P {q)/PH(q), see Eq. (36). This
ratio demonstrates that the k, =O plasmon modes, and hence
the 30 characteristics, prevail at small q.

Im
—S(q,k, )

=P(q, k,', co)5(k, —k,'),
c q, k, co

(34a)

where k,
' satisfies co=nil(q, k,'), or equivalently,

Bei(q, k„ni }
P(q, k„co)=nS(q, k, )

Bk,

n. sinh(qI, )

rosin(k, I, )

~=~ &q, k ]

The last equation above follows directly from the defmi-
tion of e(q, k„co}. One readily finds that p(q, k„co) is
singular on both edges of the plasmon band (where
k,I, =0 and n, respectively) and forms a deep valley be-
tween the two edges, see also Figs. 4 and 5 in Sec. IV. A
quantity that measures the total plasmon strength at given

q is calculated:
Iq, k =0}

P(q)= I, „,P(q, k„cu}dao . (3&)

The ratio p(q)/p(0) is plotted in Fig. 3, which shows p(q)

and this is exactly the optical transition spectrum found
in Ref. 3, see Eq. (27) and put T=O K therein. This
agreement is expected, since longitudinal dielectric func-

tions should reduce to transverse ones in the long-
wavelength limit (q =0). ' What one might like to know
is whether or not it is valid for us to explain the optical
transition by using one particular mode [k, =O in Eq.
(33)] out of many possible choices, or, equivalently, for
81inoski et aI. to directly use the 30 Coulomb potential
to start with. In order to answer this question more study
is needed, and we do not make such an attempt in this
work.

%e could gain some knowledge about the plasmon
properties from examining the plasmon strength as a
function of q and k, . For this purpose, let us define a
quantity P(q, k„co) by the following relation:

to be nearly constant for q=0 up to q„ the critical
momentum transfer at which plasmons begin to decay
into interband electron-hole pairs [i.e., where Xz(q, ni)&0].
The distribution of the plasmon strength for given q is
also of interest. Let us divide the plasmon band into the
high-energy region (I) and the low-energy region (L) and

study the relative strength of the two. We choose the di-

viding point of the two regions to be at k,I, =m/2, which
is the minimuin of p(q, k„co). Plasmon strength in both
regions is calculated:

a) (q, k =m'/2I )

P~(q) = f, „,P(q, k„oi)des,

{q,k, =O)

p (q) = I i k —ns i
p(q'"" (36)

The ratio pL(q)/pH(q), also shown in Fig. 3, demonstrates
an important result. We notice that for small q, p (q) is
the dominating part and p (q) is negligible. Since high-

energy plasmons exhibit 3D character, as was shown by
Eq. (32a), we can conclude that for small q, plasmons of
GIC's are basically three dimensional in character —a fact
found experimentally. ' This rather conclusive statement
ought to be checked with experimental results on a quan-
titative basis, and that will be done in the next section.
There, we examine the plasmon structure from electron
scattering experiments. In a separate paper, we have ap-
plied our theory to explain the edge structure in optical
interband transitions.

IV. THE PLASMON STRUCTURE OF GIC'S

In this section, we proceed to compare the plasmon
structure between our theory and the measurement by
Ritsko and Rice. We note that measured plasmon
dispersion has been studied by Mele and Ritsko based on a
modified superlattice model. ' Compared with that work,
the present theory has more extended scope and also pro-
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vides more details. Experimentally, one measures the
energy-loss spectnun as a function of the 2D momentum
transfer q. From the spectrum, one can then determine
the plasmon energy, the plasmon width, and the plasmon
intensity. To second-order (Born) approximation, the
electron-loss spectrum can be theoretically formulated in
terms of the dielectric function, ' which we have evaluat-

ed for GIC's in the preceding sections. Therefore, a close
comparison between our theory and the measurement is

possible. In the process, however, we need to be careful in

determining the external potential U~'"(q, m), as is discussed
below.

In the problem, we want to evaluate the electron energy
loss due to electronic excitations in GIC's. These excita-
tions are created because electrons on a layer (denoted by
l) are perturbed by a potential Ui' (q, co)—the screened po-
tential arising from the probing electron. According to
the Fermi golden rule, the probability per unit time

P(q, ro) that the probing electron transfers momentum q
and energy r0 to electrons in a GIC sample is given by

P(q, co) =2 g [Ui' (q, ro)]21m[X'(q, r0)+X~(q, co}], (37a)
1

where we have applied the definition of X' (q, r0), Eq.
(15). By using Parseval's theorem, we can express P(q, ap)

in k, space where the linear screening relation, i.e., Eq.
(29), is applicable; thus we get

I, «I, U'"(q, k„c0)
P (qru) =—,J dk,

m/I —1
P(q, ro) =2U, f dk, S(q, k, )Im

= 2m(uq) D'(q, co)= 2uqIm—
—1

e'(q, co }
(38)

This last equation defines D'(q, co) and also, for notational
convenience, a dimensionless quantity Im[ —I/e'(q, co)],
where the superscript s indicates the superlattice struc-
ture. Note that D'(q, co) can be interpreted to be the
dynamic form factor of the superlattice system. D'(q, co),
or Im[ —1/e'(q, ro)], can be analytically calculated. Actu-
ally, we have already done this for plasmons; from Eq.
(34), we get

mation for a finite-size wave packet (see Appendix B), (ii)
an analytical result for the energy-loss spectrum is possi-
ble for both plasmons and electron-hole excitations (see
Appendix B also), (iii) this is a case in which all the modes
in the plasmon band can be excited and it is interesting to
examine the plasmon behavior in this instance, and lastly
(iv} the formalism so obtained is useful in dealing with
dynamic screening effects for processes that are taking
place on graphite layers, for example, in the calculation of
a conduction electron's lifetime.

With this approximation, then, the electronic excita-
tions are due to a narrow wave packet at the layer lo. The
unscreened potential on the layer l, ul'"(q, co), is simply
Vl(q) according to Eq. (20). From Eqs. (26) and (28), we
immediately get U'"(q, k„co)=u&S(q,k, ). Thus, P(q, co)
can be reformulated:

X 1m[X'(q, ~)+X (q, r0)] . (37b)
Im[ —1/e'(q, co)]=P(q, k„cu) . (39)

This last expression is very similar to the result for a
3DEG, where P(q, co) is proportional to the dynamic form
factor. '0 In the case of layered systems like GIC's, we
need to appropriately determine U'"(q, k„co) and after-
wards do the integration. For this purpose, we will con-
sider two limiting cases below: in one case the probing
electron has well-defined momentum, in the other case it
has well-defined position.

A state with well-defined momentum is represented by
a plane wave, which has a uniform density in space. This
means the potential Ui'"(q, co) is independent of I, and
hence only the k, =O mode is activated [see Eq. (26)].
From Eq. (30) and the argument that follows, we can con-
clude that the plasmon detected is strictly three dimen-
sional. This result agrees with the finding of 3D
plasmons, but the validity of the assumption that the
external particle in the experiment is uniformly distribut-
ed in space is arguable, since GIC's have large interlayer
distance (I,=9.42 A). In the measurement, the 20
momentum transfer has a resolution of 0.055 A
Suppose the momentum uncertainty along the c axis has a
comparable magnitude; we would then expect the probing
electron to be better described by a wave packet of size

In our treatment below, we would approximate this
case by a zero-width wave packet located on the layer
Io ——0. %e choose to work with this limiting case for the
following reasons: (i) It turns out to be a good approxi-

eo e0 U~S (q, k, )Xi(q,——ro)'—

e 1—ln
I& cd 2EF +N

1+
CiP =CtP

IP

(40a)

if q~0 and k, =0, (40b)

The calculation of D'(q, co) for electron-hole excitations is
straightforward but lengthy, and is detailed in Appendix
B.

Before we can calculate P(q, c0) and make comparison
with experiments, we need to determine two parameters,
namely, the Fermi energy eF and the background screen-
ing factor eo. These two quantities are related to each
other through the plasmon energy roz, Eq. (32a). Hence,
all three need to be determined consistently. We are most
certain about co~ from Ref. 2, which puts co&

——1 eV. The
Fermi energy is not accurately known and lies between 0.5
and 1.0 eV. We take its mean value at 0.75 eV, which
corresponds to a charge transfer per carbon atom
f/1=0.018, according to Eq. (16). For a reference, we
note that Mele and Ritsko' put f/1=0.015 and found
their best agreement with the measurement. Having
determined co~ and ez, we find eo ——4.58 from Eq. (32a).
As noted in Sec. III, eo varies according to q, k„and co.
The chosen value of eo is thus only valid at the plasmon
mode aP. (The corresponding dielectric constant in Ref.
12 is 5.) By definition, eo contains the part due to inter-
n.-band transitions, cf. Eq. (16); i.e.,
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TABLE I. Parameters used in our calculation.

Lattice parameters
iz I b

(eV) (A)
ba

(A)

Electronic parameters
c

F Q)P

(eV) (eV)

1.42 2.4 9.42

'Reference 3.
"Reference 5, also I,=9.4 from Ref. 2.
'Reference 2.
~This work.
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FIG. 4. &e plot on the left of this figure the unbroadened
energy-loss spectra at selected momentum transfers. Note that
1m[ —1/e'(q, co)] is a dimensionless quantity, and that a con-
stant weight (0.25) has been added to each successive spectrum
to separate the curves. After we include the broadening, the
spectra are modified, as sho~n on the right. The most drastic
change due to broadening is that the bipeak plasmon structure

o
of the q=0. 1 A spectrum becomes a single-peak one. The
shaded peaks show the plasrnon structure and are used later on
for direct comparison with measurements.

which follows directly from Eqs. (A12') and (A13). en is
a measure of the band size and is defined and evaluated in
Eq. (A10). This result means that eo, the screening con-
stant due to all excitations outside of tr bands, is 2A. It is
interesting to note that Taft and Philipp found, 's for pure
graphite, the same screening constant due to high-energy
excitations. %hether or not this close agreement implies
anything of significance is not clear at the moment.

Now we have obtained all the parameters necessary for
our calculation. These parameters are summarized in
Table I. We would like to emphasize that all these pa-
rameters are not "adjustable" in our theory; however, the
determination of e~, to&„and eo depends heavily on accu-
rate measurements.

I.et us examine the spectra shape first. We calculate
Im[ —I/e'(q, co)] as functions of r0 at selected q, and plot
the result on the left of Fig. 4. The calculation is restrict-
ed to the region co ~ 3 eV, where our theory is valid. We

choose to calculate Im[ —1/e (q,ni)] because we can
demonstrate the spectra more clearly this way, and yet
can easily convert it to P(q, co) by multiplying it by a fac-
tor a: (1/q). A very distinctive bipeak structure is found
for the (q=0.1)-A ' curve, obviously due to the two
plasmon modes at k, =0 and n /I, . At higher q (0.21 and
0.28 A '), the bipeak structure disappears and the
plasmon becomes a broad peak in shape. The disappear-
ance of the bipeak structure is due to two effects: first,
the plasmon band becomes narrower at larger q; and
second, damping due to interband transitions becomes ac-
tive (see Fig. 2 and note that as=0.51 eV for q=0. 1

A '). At still higher q (0.35 A '), one can no longer find
a well-defined plasmon structure —understandably, be-
cause the damping is too strong now. Measured spectra at
the corresponding momentum transfers can be found in
Fig. 1 of Ref. 2. Before we can actually compare the
spectra, we need to include in our calculation the broaden-
ing effects that are inherent in the measurement. Ritsko
and Rice reported an energy resolution of 0.11 eV full
width at half maximum (FWHM) and a momentum reso-
lution of 0.055 A ' FWHM. Taking into account these
broadening effects by convoluting our spectrum with a
pair of Gaussians of the reported FWHM, we get the
broadened spectra which are shown on the right of Fig. 4.
All theoretical curves are now in good agreement with the
measured spectra, especially for the plasm on peaks
[remembering that the calculated curves should be multi-
plied by a factor ~ (1/q) before comparing, see Eq. (38)].
Note that the bipeak plasmon structure found previously
has disappeared by now, because of the broadening.

The disappearance of the bipeak structure due to
broadening was further studied. Two facts about the
plasmon band are important to this effect: (i) the lower-

energy plasmon peak is weaker in strength, see Fig. 3, and
(ii) the energy of k, =m/I, plasmons strongly depends on

q but that of k, =0 plasmons does not, see Fig. 3 and Eqs.
(32a) and (32b). It is due to the second fact that the weak-
er plasmon peak becomes smeared out when broadening in

q is taken into account; this is because we are then sam-
pling the k, =n/I, plasmons at very different energies.
In order to observe the bipeak plasmon structure predicted
by our theory, we ought to look at a region where the
k, =m/I, plasmons are not too weak (this means that q
should not be too small) while the damping is not too
strong (q not too large), and most importantly, we must
keep the moinentum resolution high. Figure 5 shows our
calculated spectrum for q=0. 11 A ' at different momen-
tum resolutions. The dashed curve is the unbroadened
spectrum, which shows two strong plasmon peaks (note
that the k, =0 plasmon is slightly damped but the
k, =m/I, is not). The n= 1 curve has been broadened as
before and shows no trace of a second peak. We double
the momentum resolution (reducing FWHM by half) each
time for the subsequent three curves. A broad shoulder is
observed to develop at the low-energy side of the 3D
plasmon peak. And finally, in curve 4, the weak second
peak appears. According to this calculation, we need to
improve the momentum resolution at least by a factor of
10 in order to experimentally observe the bipeak plasmon
structure of GIC's.
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After broadening is applied, plasmons are determined
to be the shaded peaks in Fig. 4. This procedure of map-
ping out the plasmon structure is similar to what is done
experimentally. %ith these plasmon peaks, we can easily
determine the position, the width, and the intensity of the
plasmons, and can directly compare our results with the
IQeasul eHlents.

First, we compare the plasmon energies, shown by Fig.
6. The straight line, as a reference, is plotted according to
Eq. (32a), i.e., the small-q approximation for k, =0
plasmons. The slope of this curve is a=1.28m (m is the
electron mass), which is close to the measured value
(1.62m). In fact, if the two experimental data points
(solid squares) at large q were discarded, the agreement
would be much closer. The calculated peak positions are
shown by solid circles; the curve which they define has a
slope which is well described by the small-q approxima-
tion, although the plasmon energies are somewhat lower
at all q. Also plotted in this figure are the actual energies
of the k, =O plasmons (crosses). It is seen that, for
q ~0.02 A, broadening does not affect the plasmon
energy very much. At smaller q, however, broadening
causes the plasmon energy to red shift, and this is because
the plasmon band there is wide and extends one-sidedly to
the lower-energy region from the k, =O modes (see Fig.
2). Two points could be drawn from our argument above:
first, that our theory satisfactorily explains the quadratic
dispersion relation of the plasmon energy, and second„
that due to broadening effects, measured plasmon energy
at q=O would be red shifted from co& (i.e., the system
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FIG. 6. Experimentally measured p)asmon energies are
shown by the solid squares, which should be compared with our
calculated results denoted by the solid circles. Also shown are
the plasmon energies of k, =0 modes denoted by crosses. The
small-q approximation from the k, =0 modes is shown by the
straight line. It should be noted that the slope of this line agrees
with that of either the measured results or the calculated ones.

Ritsko and Rice used for measurement probably has ruz

higher than 1 eV).
Calculated plasmon widths (solid circles) and the mea-

sured widths (solid squares) are plotted in Fig. 7. There is
a difference in FWHM of about 0.04 eV, which in the
present theory could not be accounted for. The difference
is probably due to the fact that our theory does not in-
clude all possible decay channels for plasmons, e.g., pho-
nons, multi-electron-hole-pair excitations, etc. Besides
this small difference, however, the agreement is very
good, especially for the overall shape. In the small-q re-
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FIG. 5. %e examine the broadening effects on the plasmon
structure in this figure. The dashed curve is the unbroadened
spectrum which shows a very distinctive bipeak structure. The
four solid curves are broadened, respectively, by a Gaussian in q
of 0.055 A /t'2}" ' F%'HM, as well as one in ~ |'0.11 eV
F%HM}. One can clearly see that, as the resolution improves,
the weaker peak becomes Inore and more visible and becomes
well-defined in the curve n =4.

0.02 0.04

q(A)
0.08 0.08

FIG. 7. Measured and calculated plasmon widths are plotted
in this figure. Despite a shght difference in magnitude (-0.03
eV}, the two results agree well with each other. The two lines
shown are fitted to the data points in order to demonstrate the
quadratic q dependence at small q. The slope of the lines is 6.4
eVA
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gion, both the calculated and the measured widths could
be approximated by a relation quadratic in q, with a slope
of 6.4 eV A (the straight lines}.

The plasmon intensity is measured by both the peak
height (solid squares) and the peak area (open squares).
Correspondingly, we have calculated the peak height
(solid circles) and the peak area (open circles) and show
the results in Fig. 8. The intensity is normalized about
the value at q=0. 1 A ' and plotted logarithmically as a
function of q. There are no reported experimental data
for q&0.1 A ', so only the theoretical results are given
there. In the region where comparison is possible, we find
a large discrepancy: the calculated intensity is larger than
the measured one by a factor of 2—4. Actual causes for
this disagreement are not known. In our opinion, it would
be difficult to tell whether or not there is a real disagree-
ment with our theory before accurate measurements for
q&0. 1 A ' are available. This is because the q depen-
dence at small q is very different from that at large q, ac-
cording to our theory. In fact, we fmd that the q depen-
dence varies constantly as q changes (see Fig. 8): the
plasmon intensity falls ~q ' for q&0.1 A ' where
plasmons are undamped; it falls off faster and faster as q
increases, due to damping effects, and becomes propor-
tional to q for q&0.15 A '. Experimentally, the re-
ported peak height follows the q pattern in the whole

region where the measurement is taken (0.1
A &q &0.25 A '}. This result, according to our
theory, suggests that plasmons at q=0. 1 A ' are already
heavily damped. One possible explanation for this is, for
example, that the actual Fermi energy is smaller than 0.75
eV—the value we used in our calculation. In other words,
we need the accurate eF, as well as co~ and eo, for our cal-0

culation so that the results can be closely compared with
experiments.

In this section, we have shown that our theory quite
successfully explains the quadratic q dependence of both
the plasmon energy dispersion and the plasmon width.
We have also found that damping basically explains the
reported q dependence of the plasmon peak intensity,
but the region where this relation holds differs between
our calculation and the measurement. We argued that the
difference might be due to the inaccurate Fermi energy we
used for our calculation —an argument that needs experi-
mental justification. It was further suggested that careful
measurements at small q could provide us with a valuable
testing ground to examine our theory. Experimentally, at-
tempts should also be made to increase the measurement
resolution, so that the bipeak plasmon structure predicted
by our theory could possibly be observed.

V. CONCLUDING REMARKS
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0.05 0.1

q(A )
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FIG. 8. Plasmon intensities are measured, and also calculat-
ed, by the peak height and the peak area, as shown in this fig-
ure. Note that the plotted intensities have been weighted by their

o
corresponding plasmon intensity at q=o. l A . The most in-
teresting feature about the plasmon intensities found in our cal-
culation is that the q dependence of the intensities varies as q
varies, as is indicated in the figure. This feature is not con-
firmed by the measurement, possibly because of insufficient

o —1

data in the q g0. 1 A region. There also appears to be quite a
large difference between the measured and the calculated inten-
sities, but the discrepancy might be due to the inaccurate param-
eters employed in our calculation. More discussion on this point
can be found in the main text.

In this paper, we have done a detailed calculation of the
dielectric function for stage-1 GIC's, based on a superlat-
tice model that contains an infinite array of graphite
layers. Each graphite layer is described by the 2D model
of Blinowski et al. The Coulomb interaction between
layers is considered in our calculation, although interlayer
tunneling is neglected. One major achievement of this
work is that the calculation has been done nearly exactly
and the results expressed analytically, so that the dielec-
tric function could be easily employed in different calcula-
tions. One should be cautioned, however, that our dielec-
tric function is calculated according to a linear-response
theory, and there are calculations'4 showing that the non-
linear screening is important in graphite, especially when
sF is small.

One application of the dielectric function is given in
this paper in the form of a study of the plasmon structure
of GIC's. Owing to the introduction of a layered super-
lattice, there exists a plasmon band in the excitation spec-
trum. Nevertheless, we have shown that plasmons are
mainly three dimensional in behavior. By a close compar-
ison with measurements, we have also shown that our
theory could quantitatively explain the quadratic q depen-
dence of both the plasmon energy and the plasmon width.
However, the comparison of plasmon intensities has not
been equally successful so far. On the one hand, we
demonstrated that damping, due to the interband e-h ex-
citations, causes the plasmon peak height to be propor-
tional to -q at large q, which has been found experi-
mentally. On the other hand, our calculated plasmon in-
tensities seem too large compared with measurements.
There are indications that the discrepancy might be due to
inaccurate parameters used in our calculation, and this is
because accurate measurements of these parameters are
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not available. Obviously, more experimental investigatIon
is needed, both to examine our theory and to accurately
measure the parameters cF, ~~, and eo.

The presence of a plasmon band also predicts bipeak
plasmon structure in the electron energy-loss spectra.
However, this bipeak structure is not observed experimen-
tally, because of poor resolution in q. But by increasing
the resolution by a factor of 10, we expect that this very
distinctive plasmon structure will be measurable (see Fig
5).

Generally speaking, our theory quite successfully ex-

plains the plasmon structure of the graphite system. This
suggests that the superlattice model we used is a plausible
one for GIC's. Some of the plasmon properties (e.g., the
presence of a plasmon band} that we have obtained are
quite general in systems with superlattice structure (e.g.,
semiconductor superlattices). In recent years, there has
been rapid progress in the study of semiconductor super-
lattices. " ' These studies should be helpful when we ex-
tend our theory of GIC's to include effects that have been

neglected thus far, for example, surface effects. '6'
We have employed many approximate methods in our

calculation; for example, we have neglected the interlayer
tunneling, we have applied the RPA in our calculation, we
have restricted the effects of intercalants to the determina-
tion of ez (and also of ez), etc. But in return, we have the
advantage of applying a dielectric function which is ex-

pressed analytically and is independent of details of inter-
calants as long as sF is known. This not only means we
could apply our theory to various stage-1 GIC's of dif-
ferent intercalants, but also means that the theory could
be employed for other low-stage (n &4} GIC's—since the
band structure of low-stage GIC's is not very different for
differing values of n We h.ave tested our theory for
stage-2 GIC's in the calculation of lifetime effects on the
edge structure of optically induced interband transitions,
and we have found satisfactory results there. The rela-
tion between our dielectric function and low-stage GIC's
is similar to that between Lindhard's dielectric function
and simple metals, in the sense that in both cases the
dielectric function only depends on the density of free
charge carriers in the system (or equivalently, sF). There-
fore, despite shortcomings relating to the approximations
we have made, we expect our dielectric function —in
much the same way as Lindhard's RPA result does for
siinple metals to explain basic dielectric properties for
low-state GIC's.
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tron at the k state in the valence band is excited to the k'
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(Al)

X'(q, cu)

It is more convenient to evaluate Xz(q, (u) in terms of
hole states, i.e., considering that we annihilate a hole at
the k state and meanwhile create a hole at the k' state.
Noting that the hole at the k state has the energy ek ——

ufo'

and that holes occupy all the states with k &kf, we can
readily write down (k'=k+q)

Xi(q,~)=
—I2(q)

)(B(k' kF)5(cu u—fk'+ uf k—),
(A2)

where i}) is the angle between the initial state k and the
momentum transfer q. Note that the spin degeneracy and
the existence of two identical valleys in the band structure
have already been accounted for in this expression. Equa-
tion (A2) is actually only valid for ru & 0, but since X2(q, (u)
is antisymmetric under co~ —co [i.e., X2(q, —co)
= —Xz(q, co)], it is sufficient to study Eq. (A2). After ex-
pressing k' in terms of k, q, and the angle P, the integra-
tion of this equation is elementary, although due attention
should be paid to keep k'& kf and the angle p real (i.e.,

~
cosp

~

& 1). The result is ( e~ =uf q)

X (qi, )(u= s [F(co) I' ( —co)]B(e ——
~

co
~
),

—q I (q)
2~(es' —~') '"

(A3}

The author thanks G. D. Mahan and B. Sernelius for
stimulating and helpful discussions. He also thanks D.
Meltzer for a critical reading of the manuscript. This
research was sponsored jointly by the National Science
Foundation through Grant No. DMR-85-01101, and by
the Division of Materials Sciences, U.S. Department of
Energy under Contract No. DE-AC05-84OR21400 vvith

Martin Marietta Energy Systems, Inc.

+(~)=B(T(ru) —1) (T'(co) —1)'~
2

——,
' ln[T((u)+(T (co) 1)'~]—

(A4}

APPENDIX A

In this appendix, we evaluate for the 2D model of
GIC's the response functions X' (q, co) which were de-



DIEI ECTRIC FUNCTION AND PI.ASMON STRUCTURE OF. . .

Siiice X2(g, co) 111 Eq. (A3) has already Required R form
that is valid for all co, it can therefore be applied directly
in Eq. (Al} to evaluate Xi(q, co). Equivalently, we can
evaluate

X', (X,y)=
2 2 .~2

(b ~y ~+d ~y ~')26(iy i

—1)

2'irUf (p —1 )
'

He()g I (g)gd 1 F(co')1
2H 'e (R& —co )

~ ~+~
where

—[2b+(2y +1)d] (A8)

Xi(q, ro) = [H'(co)+H'( —Ri)] . (A6)

1 1 1 1 1 1 1 1b=x ———+—,d= ——
8 x'' 6 x' 4 x'

But in practice, the complexity of F(co) prevents us from
calculating H'(ro} exactly. In order to proceed, we ex-
pand F(co) into a power series of (co/e~), which is less
than 1 according to Eq. (A3}. In doing the expansion, we
also made the assumption that ev/2RF &1, and found
(denoting 2RF/Rq by x and co/e& by y)

F(y)=a+by+cy +dy +ey (A7)

where the coefficients a,b, . . . are functions of x. From
symmetry considerations [see Eq. (A6}],we only need odd
terms of Eq. (A7) to calculate Xt(q, co), and we get

This approximation is found to have an error within a few
percent for R~ &2RF and produces responsible results
[compared with the numerical calculation of Eq. (A5)],
even if eq is slightly larger than 2RF (e.g., for ez-2. 5RF).
Therefore, Eq. (AS), together with Eqs. (A3) and (A4),
suits our needs for describing the low-energy intraband
transitions, for which only small q is involved.

2. g (q, co)

Considerations similar to those which led to Eq. (A2)
enable us to express

X2(e,~)= f dk k J d& )—, e)k' kf)6(01 Vfk— llfk)
I2( )

k k +q cos(f)
0 k'

The only change has been that the "k hole" is now in the
conduction band, and consequently this hole has the ener-

gy —vf k and can be at any state in the conduction band.
The cutoff kD is an artificially determined quantity that
measures the size of the conduction band. We could esti-
mate this kii by extending the region where Rk ~

~

k
~

and
require that the number of states included match the
number of the lattice sites; i.e., we demand that

2EF —N
cos

m if co 2RF ) s~ (—region II) .

if co —2RF & sz (region I),

(A 1 1')

To calculate the real part of Xi(q, co), it is convenient to
first evaluate

1 kD 12X
2~ 0 A' (A10)

H (ro) =—f X2(q, ~')P
m'

(A12)

where A is equal to the area of a primitive cell. The fac-
tor of 2 here accounts for both U and U' points; hence,
we get

and then use the relation

Xi(q, co)=H (co)+H ( —co) . (A 12')

Ei) —Ufkp —2.33&o=5.5 eV (A 10'}

Since RD lies far outside of the range of energy transfer in
which we are interested, the estimation of kD is not ex-
pected to severely affect our results derived from it.

Without further approximation, the integration of Eq.
(A9) could be executed straightforwardly, and the result is
(for co) 0)

H (co) has contributions from regions I and II [Eq.
(Al 1'}],i.e., Hs(a)) =H' '(co)+H" '(cu) For H'"'(co) the
integration is elementary and the result is

H'"'( )
(~) ~ F 8

4'fl Uf Eq

(~2 ~2 )1/2 F(y, 8)=I (A 13')

2E,p —QP

X6(co—e )6 1— 6(2RU —co),

(A 1 1)

and the angles are 81——cos '(cF /2cF +E~ ) and
82——cos '(e~/2ED). The integration of Eq. (A13') can be
done analytically; see, for example, Ref. 18. Thus, we
have evaluated H' '(co) exactly. In order to evaluate
H'"(co) we need to expand 8, and sin(28, ) of Eq. (All)
into a power series, but afterwards the integration is ele-
mentary. %'e found, with y =co/e&,
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—I (q)
4w

b'+ —+d'y ln tan
8

2 4 2

dc'+ tan(e}

+ (c2'+ b'y + c'y'+d'y')F (y, 8) (A14)

where the integration limits are determined by By applying the Fourier transformation according to Eq.
(26), we get

cos
3

Fq if Fp) eq
2EF —E,

U'"(q, k„Cd )

0, if eF ps~, 2 Uq gI~,
sinh

qI,

qI,
S(q,k, )+ 1 —cosh

Hg =cos
Eq

2&+ +E'q

and the coefficients have the following values
(x =2sF/e~):

0=——2x+3x, b=2 —x, c=x, d= —7/ 7T 3 g

In Eq. (A14), terms that are an odd function of cd have
been dropped because of Eq. (A 12'). Using Eqs.
(All) —(A16), we have therefore determined Xs(q, cd), the
response function due to interband transitions.

APPENDIX 8

%hen we discussed the electron-energy-loss spectra in
Sec. V, we made the approximation that the probing elec-
tron was described by a wave packet of zero width at the
layer lo ——0. Relating to this approximation, two discus-
sions are given in this appendix. In Sec. 1, the approxi-
mation that the wave packet is completely localized on a
given layer is relaxed, and a finite width wave packet is
considered. In Sec. 2, we analytically carry out the calcu-
lation of Im[ —1/z'(q, cd )] for the part due to electron-hole
excitations. It should be noted that the application of this
result is not restricted to the study of energy-loss spectra,
but is also valid in cases when the perturbing potential is
exerted from one of the graphite layers, e.g., in the study
of deexcitations of conduction (or valence) electrons.

1. Finite width wave packet

For a probing electron located on the layer Io, the un-
screened potential affecting the layer l, Ui'"(q, cd), is simply
Vi(q) of Eq. (20)—as discussed in the main text. If in-
stead, we approximate the probing electron by a wave
packet of a finite size I, and a uniform density distributed
between I, /2 and I,/2, we—find a different potential

The k, -independent second term above [1—cosh(qI, /2)]
could be neglected for small q, where the plasmon
behavior is interesting. In this case, the correction due to
the introduction of a finite-size wave packet is merely an
extra factor of [(2/qI), sinh(qI, /2)]. This fact is very
close to one in the small-q region. Therefore, P(q, cd) of
Eq. (38) is a good description for the plasmon spectrum
even when the probing electron has finite extension in
space.

The expression in Eq. (Bl) could be interpreted dif-
ferently, so that v~'"(q, cd ) is the averaged potential due to a
narrow (compared with I, ) wave packet that passes
through the layer lo. This is a more realistic model than
the previous one in describing the electron scattering ex-
periment since, in fact, the "fast" probing electron does
travel mostly in the interstices between graphite layers.
The reason that we only took the potential average be-
tween lo I, /2 and lo—+I,/2 [see Eq. (Bl)] follows from
the fact that all graphite layers are identical to each other
in an infinite system. Applying arguments similar to
those following Eq. (B2), we can conclude that P (q, cd ) of
Eq. {38}is valid in this case as well.

We have considered two cases in which the probing
electron is not confined to a given graphite layer: in the
first, the electron has finite extension in space, and in the
ather, its movement is considered. In both cases, we
found that Eq. (38) is a good description of the energy-
lass spectra. One important assertion which follows from
the discussians is that all plasmon modes in the plasrnan
band could be excited, and this finding is important in in-

terpreting the spectra.

2. Im[ —1/d(q, cd}]

The electron-hole contribution to Im[ —1/e'(q, cd)], de-
fined by Eq. (38), is calculated in this part. By putting
x =I,k„we ma reformulate:

jl l
I —I /2

cx —i~le
Ui {q,Cd)=

~
I (~ e dZ,

C

(Bl)

e'(q, Cd )

2

=A (B3)
cos x + cosx +p

Uq lI lI q . q~c
e ' sinh

qI, 2
if i~la .

»q —qI, n(1—e '
) if I =la,

qI,
(B1')

where [X(q,cd }=X'(q, cd)+X (q, cd) =X,(q cd)+l'X2(q )]cd

UqX2(q, cd)sinh (qI, )

2&EO
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u Xi(q, to)
P= —2p = —2 cosh(qI~ )+ s111h(qI~ )

6'0

Im
—1

e'(q, co)

Am 1 1

(s 2 —1)1/2 (s ~ —1 )1/2

ueXz(q, to)y=p'+v, v= sinh(qI, ) .
Ep

(84)

Im
1

e'(q, to)

2n'

2lV 0

1

cos(x) +s
1

cos(x ) +s '
(85)

The integration in Eq. (83) can be performed exactly.
First, let us rewrite:

X[8(i—Iz+ I
) —e(1—Iz I )] . (87)

The presence of the step functions above are due to the
fact that only the root (or roots) enclosed by the unit cir-
cle contributes to the integration. Since

~
z+

~
~z

~

=1,
only one of those step functions is nonvanishing. We
found that

~
z+

~
&1, hence the step functions in Eq.

(87) could be simply replaced by the factor —1. With a
few more steps of elementary algebra, we can express Eq.
(87) by the following formalism, which readily shows
Im[ —lie'(q, to)] to be both real and positive: i.e.,

s = —,(P—2iv) .
e'(q, to)

Is —1~ —p, +v+1
vis —1

f
2

(88)
$ince s is complex, it is easier to perform the integration
in the complex z plane, i.e., evaluate a contour integral
along the unit circle. With the change of variable, z =e",
the denominator of each of the two integrands is quadra-
tic in z and hence has two roots. The roots of the first in-
tegrand in Eq. (85) are

z~ ——s+(s —1)'/',

and those of the second integrand are z+. It is easy to
show from the discussion above that

)s2 —1
~
=[(y—1)'+4v ]'/z .

This last expression, together with Eq. (84), could be easi-
ly employed in the calculation of the electron-energy-loss
spectra. By using the relation y g&p —v «& 1 in the
weak-coupling limit (i.e., qI, »1), one can show easily
that Eq. (88) reduces to the 2D expression
Im[ —I/e (q, to)]—as may have been expected.
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