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Quantum oscillations in the magnetotransport of a finite two-dimensional Anderson model
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A formulation of the Hall effect in a strongly disordered system is presented, employing a
Landauer-type picture. With use of this expression, the Hall effect and the magnetoconductance of
a small, strongly disordered system of the type used by Nguyen, Spivak, and Shklovskii are
analyzed, and a condition is derived for quantized values of the former.

I. INTRODUCTION

The modification of electronic phase relationships and
the associated interference effects by magnetic fields is by
now known to play an important role in the electronic
transport in disordered conductors. These effects are
quantitatively understood in the weakly disordered or
weak localization regime (for recent reviews, see Berg-
mann' and Lee and Ramakrishnan?). However, there is
no such understanding of magnetotransport in the strong-
ly disordered regime where conduction occurs by hopping
among localized states or by tunneling through barriers.
In particular, one would like to have an understanding, in
the fully quantum regime, of exactly what corresponds to
the Lorentz force, which leads to the usual elementary
picture of the Hall effect. The only model which ad-
dresses this issue is the one by Holstein and collaborators®
for the Hall effect in the phonon-induced hopping regime.
It should be of interest to have a theory for the magneto-
conductance and the Hall effect employing a Landauer®
picture, as well as its multichannel generalization.” In
this picture (see Fig. 1), an arbitrary piece of a disordered
system forms a barrier between two ideally conducting
leads and the conductance is expressed in terms of the
transmission coefficient (matrix of such coefficients in the
multichannel case) through the system. In this represen-
tation all the scattering inside the sample is elastic (see,
however, Biittiker®) and the inelastic scattering and dissi-
pation occur in the outside electron reservoirs to which
the leads are connected. Thus, this picture is ideally suit-
ed for calculating the purely quantum transport in a seg-
ment of a system in which essentially no inelastic scatter-
ing occurs. A generalization of this formulation to ther-
moelectric transport has recently been presented by Sivan
and Imry.” The Landauer-type picture has been extremely
useful in order to obtain interesting quantum interference
effects such as the h /e periodic Aharonov-Bohm magne-
toresistance oscillations in a small ring,8 as well as the
aperiodic fluctuations of the magnetoconductance in
small wires.’
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In this paper the issue of magnetotransport in a strong-
ly disordered model is addressed. We present the formu-
lation of the Hall effect in the Landauer picture. We be-
lieve that this theory should be useful in the context of the
quantized Hall effect.!® We apply our expression for the
Hall effect to the model recently introduced by Nguyen,
Spivak, and Shklovskii.!! (Henceforth abbreviated by
NSS.) These authors studied the Anderson model on a
square lattice containing magnetic flux. They calculated
the transmission between two opposite corners of the
square and found that it oscillates with a period equal ei-
ther to the normal flux quantum, ¢y,=ch /e, or to the “su-
perconducting,” i, two-electron-flux  quantum,
¢o/2=ch /2e. NSS have assumed that the magnetic flux
is confined to a hole in the center of the square. Thus,
their model attempts to mimic, except for treating the
strongly localized regime, the Aharonov-Bohm cylindrical
or ring configuration.®!>!* However, one may also study
the behavior of the transmission and hence of the magne-
toconductance, and the Hall-type effect, when the mag-
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FIG. 1. Landauer-type geometry for calculating the chemical
potential at sites ¢ and b.
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netic field is applied uniformly to the whole sample, as
done in the following.

In Sec. II, we derive an expression for the Hall voltage
of a disordered system, in terms, as typically done in the
experiment, of the chemical potential difference perpen-
dicular to the current driven through the sample. In Sec.
IIT we study the NSS model in the presence of a uniform
magnetic field, when an external current is flowing
through the system. We focus on the smallest possible
structure that shows the magnetic field effects and solve it
analytically. The solution exhibits oscillations in the mag-
netoconductance and in the Hall-type resistance, with
period equal to the normal flux quantum ch/e. It also re-
veals a special condition under which the transmission of
the system is unity (namely, the resistance vamshes) and
at the same time the Hall conductance equals ne’/mh (n
being an integer). Finally, a combination of our solution
and an effective medium argument reproduces a result
resembling the main result of NSS—a transition in the
transmission oscillation period between a normal and su-
perconducting flux quantum. However, in our model the
latter period is obtained only at a single point. Section IV
includes a discussion and possible extensions of the model.

II. AN EXPRESSION FOR THE HALL VOLTAGE
IN A QUANTUM CONDUCTOR

Here we derive a general expression for the chemical
potential difference between two sites on a system through
which a current is flowing. This will be used to obtain the
Hall voltage, perpendicular to the current. We consider a
general Laudauer-type* geometry, depicted in Fig. 1,
where the arbitrarily complex system forms the barrier be-
tween two ideal single-channel wires that are along the x
direction. The assumption of single channel leads is done
only for definiteness. Our main result [Eq. (5)] is also
easily generalizable for an arbitrary configuration of
current feeding.

The wires in Fig. 1 are connected to electron reservoirs
with chemical potentials p; and u, on the left-hand side
(LHS) and the right-hand side (RHS), respectively.
Denoting by T the transmission coefficient through the
system (at energies around u, or u,—remembering that
for linear transport p;—pu, is very small) the net current
in the wires is

e
Ix=en0vp(u1—,u2)T=:T—gT(yl—/.t2) s (1)

where vy is the Fermi velocity and ny=1/mfivp is the
density of states in the wires, including spin. We recall
that (1) may be obtained by considering the scattering
states coming from the left. The current is due to those
states having energies between p, and p;, of which there
are ng(p,—p,), each carrying a current evpT, hence Eq.
(1). The well-known Landauer formula for the conduc-
tance

e? T

™™ 1-T"° @
is obtained by dividing (1) by the voltage difference V,p
between the LHS and the RHS wires, given by

K —HUR _—‘eVLR:(l—T)(,u]_/.Lz) . (3)

An instructive derivation of Eq. (3) was given by Engquist
and Anderson.!* They defined u; and ug (which they
denoted by p4 and up, respectively; note that here a and
b will be used for something else) by weakly connecting
measurement reservoirs to the wires and adjusting their
chemical potentials so that zero currents flow between
each measurement reservoir and the corresponding wire.
The values thus obtained for these chemical potentials are
defined as u; and pg. This definition is clearly valid for
equilibrium states; it is a natural extension for nonequili-
brium, current-carrying ones, and it mimics the four-
terminal experimental measurement in the latter case.

The usual derivations of the Landauer formula count
electrons in plane-wave states on the wires. It is also pos-
sible to use the exact scattering states. There are two
kinds of these: ¥ (") coming from the left (right) and
having amplitudes 1 in the moving to the right (left)
plane-wave states on the LHS (RHS),  (#') in the reflect-
ed, moving to the left (right), states on the LHS (RHS),
and ¢ (¢') in the transmitted, moving to the right (left),
states on the RHS (LHS). The ¢/ states are taken to be
filled up to p, and the ¢ states are filled up to p,. We
now choose two “sites,” a and b, on the system itself.
(These can be tight-binding sites or other objects such as
pieces of ideal wires, etc.) The isolated sites have wave
functions ¢, and ¢, respectively. We take the scattering
states ¥/ (') to have amplitudes ¢/, and Yh ) and ¥f)
around the sites. In other words, the wave function of the
state ¢ () is Y5 é, (YLd,) on the a site and ¥hd, (Vdp)
on the b site.

We now derive an expression for the chemical potential
difference between the sites a and b in terms of the
scattering states ¥»". As a check on the procedure, it is
straightforward to derive Eq. (2) using the ¢/, states.
The only precaution is, if the measurement reservoir
idea'® is used, that the coupling matrix element squared of
the measurement reservoir to ¢ is proportional to | ¢ |?
on the RHS and to 14 | 7 |2 on the LHS. The interfer-
ence term, proportional to 7, can be ignored if the mea-
surement is done over a segment of the wire much longer
than a wavelength. Similar precautions should be neces-
sary if a similar spatial averaging is employed in the Hall
case.

To define the chemical potential on site a, we connect
to it a measurement reservoir with density of states n,
chemical potential ,ua and with a small coupling matrix
elements squared € | ¢, |2 and €| ] |2 to the states com-
ing from the left and right, respectively. Assuming (as
will turn out to be the case) that u, <p, <p,, each full
reservoir state between u, and p, can decay into the emp-
ty states at a, coming from the right, with a rate, given by
the golden rule, of €| ¢} | *ny, where ng is the density of
states of each lead wire. Multiplying this rate by the
number of such reservoir states, n,(u,—pu,) gives the
current from the reservoir to a. Similarly, the current
from the full left states at a into the reservoir is given by
the rate €|, |2n,, multiplied by the number of such
states, no(t; —p,). The condition of zero current between
a and the measurement reservoir is obtained by equating
these two currents and yields
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Likewise, one can define u, and obtain an expression

analogous to (4) with a interchanged with b. We then
find,

4)

Ha—Hp=(p1—H2)
AR AR Ak
12+ 19 1005 1+ 19612

We note that this result is different from simple expres-
sions such as (An, —Any)/ng, which one might be tempt-
ed to introduce, invoking a naive Einstein-type formula.
To do that correctly, one has to find the dependence of u,
on a density increment An,. One way to do this'® is by
changing p=p,=pu, at equilibrium and finding An, /Ap.
This procedure leads, in fact, to Eq. (5). We emphasize
the generality and potential usefulness of the result (5)
(with appropriate averaging over a length of several elec-
tron wavelengths, if necessary) to calculate chemical po-
tential differences in various directions and along various
segments of any current-carrying system. In particular,
no assumptions of symmetry or homogeneity are called
for. In the following section, we employ Eq. (5) to derive
the Hall-type voltage for a specific model.

(5)

III. ANDERSON-NSS MODEL
FOR A TWO-DIMENSIONAL STRUCTURE

We consider a square lattice described by the Hamil-
tonian

yzinCifC,'-f‘z ‘/ijCiTCj s (6)
i Ly

where ¢ and ¢! are the destruction and creation operators
for the electrons and E; are randomly distributed site en-
ergies. We assume that V;; =V for nearest-neighbor sites
and zero otherwise. A constant magnetic field applied
normal to the lattice imposes phase factors upon the
transfer integrals Vj;

Vij—Viexp

. e
lZcﬁ(HXRi)Rj] ) )

where R; are the radius vectors to the lattice sites. The
total phase change due to H around any closed loop is
27/, times the flux enclosed in that loop.

To describe the external current driving the system we
adopt the configuration proposed by NSS,!! depicted in
Fig. 2(a). We assume that the current leads connected to
opposite corners of the system consist of tight-binding
chains with equal site energies and transfer integrals.

In principle, this structure can be solved exactly. We
study in this section the smallest possible system, consist-
ing of a square of four sites [see Fig. 2(b)].

Suppose a Bloch wave of wave vector g is incident upon
the structure of Fig. 2(b) from the left. Then the coeffi-
cient of the tight-binding wave function on the left chain
is

Yy=eP4re” " p=—1,-2-3,..., (8a)

® e 00 .-

(b) ¢,

1l = V/ | 2 3
..—L REST R
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%

FIG. 2. (a) NSS structure. (b) The smallest possible NSS
structure allowing for magnetic field effects.
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and that on the right chain is
Y, =te", n=1,23,.... (8b)

The wave-function amplitudes of the two central sites are
denoted by ¢, and ¢,. Using Hamiltonian (6), we obtain
the equations

Ve-i(¢/4)¢a+ Vei(¢/4)¢b=J(1+r) ,
Vei((p/4)¢a + Ve -—i(q?/4)¢b=Jt ,
Vei(¢/4)(e—iq+reiq)+ Ve —i(<p/4)teiq=(E _Ea )¢a ,

Ve =1 ®/ e~ peid) 4 Vel #/ et =(E —E, )¢, ,

9)

which determine r, t, ¢,, and ¢,. Here @p=27d/d,,
where ¢ is the magnetic flux through the square and
do=2mch/e is the elementary flux quantum. The
Schrodinger equation for the chain sites yields

E =2Jcosq , (10)

where J denotes the transfer integral along the chains, and
the site energies of the chains were chosen to be zero.

From the tight-binding model definition for the single-
particle current from site / to site j

£

Ij=-2
i #

Im(Vjele;) (11)

and the solutions of Egs. (9), we find for the single-

particle current along the chains, I,
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T=2—;-Jsinq(l—|rjz)
=2%Jsinq ik
2, 2
e . . 5 €1+€+2€€,c08Q
-8 12
ﬁJsmq M2 , (12a)

where

M=—1+2€,+€)e9—2¢6,(1—cosple@ .  (12b)

Here we have introduced dimensionless coupling con-
stants for the two arms of the square,

VZ
J(E—E,)’
VZ
J(E —E,) ’

€=
€=

The single-particle currents along the upper and lower
arms of the square, denoted I, and I,, respectively, are
[see Eq. (11)]

€1sing — €,6;,5in(@ — q) + €,€;(€; + €, )sing
IM |?

’

I, =8%J sin’q
(14a)

) ezsmq+e,ezsm(¢>+q)—e,ez(e,+ez)sm<p
M |?

I =8%J sin“g
(14b)

The sum of the two currents, 1 1 +1. , is of course equal
to the external current I [Eqgs. (12)]. However, even for an
ordered square in which €,=¢;, there is a circulating
current I =I,—1I,, imposed by the magnetic field. This
current may flow even when I=0 and is persistent'® for
small enough inelastic scattering.

We now use these results to find the magnetoconduc-

|

2 €1+€

tance of the structure and its Hall-type voltage. Let us as-
sume that the electrons incident upon the system from the
left-hand side are coming from a reservoir held at a chem-
ical potential u,. Similarly, electrons incident from the
right are coming from a reservoir with a chemical poten-
tial ;. For p;>u,, the total current traversing the sys-
tem from left to right is given by the single-state current 1
[Eq. (12a)], multiplied by the density of states times
(1 —py). With the density of states given by 1/27J sing
we find

I=— |t )

4 (i)
—ﬂ'ﬁ#l H2

 sin? €+ €2+ 2€6,c089
sin
M

(15)

The magnetoconductance G of the square is

I (16)

Vir

where V;p is the voltage difference across the square
along the direction of the external current I. As discussed
before, it is related to p;—u, by the reflection coefficient

|72

1
VLR=: [ | 2 —pa) - (17)
Thus,
2
=l
___ef__ .5 e%+e§+2ﬂezcos<p

sin
mh q[1—2(el-+-ez)cosq+2€1¢52(1—cos«p)]2
(18)

exhibiting oscillations with a periodic ch /e. In the small
@ limit, we obtain

2

et .
=—4sin’g 33

mh

1—2(€;+€;)cosqg

Hence the sign of the magnetoconductance at small mag-
netic fields depends, in a complicated way, upon the sign
of the coupling constants, i.e., upon the relationship be-
tween the site energies E,, E;, and the energy E (Egs. (10)
and (13)].

We next turn to the Hall-type effect. The expression
for the chemical potential difference between the sites a
and b was derived in the preceding section [Eq. (5)]. In-
serting there the values of ¢, and ¢; obtained from Egs.
(9), together with the analogous values for states coming
from the right, we find

1
(6,+€)?

(19)

1—2(€e;+€5)cosq

[
Ka —pp =1 — )4 sing sing

€]
1+2€(1—cosp)(€e; —cosq)

X

€2
+ 1+42€,(1—cosg)(e;—cosq)

(20)

Dividing this expression by the external current I [Eq.
(15)] times the electronic charge e we obtain the effective
Hall resistance R,
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h | M|* sing
2

Ryp= :
P e sing € +€k+2e6c059

€]

X 1+ 2€,(1—cosp)(€;—cosq)

€2
+ 142¢e(1—cosp)(€;—cosq) |

(21)

This, again, oscillates with a period ch/e. Note that for
small coupling €, ~¢€, ~¢, the conductance G is of the or-
der of €* while R, is of the order €.

Let us now consider the situation where the transmis-
sion of the square is exactly unity. In this case the resis-
tance of the sample vanishes. The condition under which
this happens, from Eqgs. (12) and (15) is

1—cosp=[2(€;+€;)cosqg —1]/2€:€, . (22)
|

1

Inserting Eq. (22) into expression (21) for R,, yields

€
1+2€,(1—cos@)(e;—cosq)

4t ..
Rgp=—7sing sing
e

€

’

+ 1+42€,(1 —cosp)(e; —cosq)
(23)

where 1 —cosg is given by Eq. (22). Expression (23) does
not reveal any special features of the Hall resistance.
However, by requiring that

R, = e—ﬂ?%, n —integer , (24)

we obtain from (23) an expression for sing. Combining
this with (22), we find

tangj— =2n sing[2(e;+€;)cosqg — 1]

€,+[2(€;+€;)cosq —1](€; —cosq)

* €,+[2(e;+€,)cosqg — 1](e;—cosq)

as the condition under which the resistance is zero while
the Hall resistance has the universal value 7#/e? divided
by an integer n. This condition depends in a complicated
way upon the sample parameters. But, when the model is
completely ordered, in the sense that the square arms are
made of the same tight-binding chains as those forming
the leads, it becomes very simple. We put V=J and
E,=E; =0 and obtain [see Eqs. (10) and (13)]

€=€,=1/2cosq . (26)
Then, using (26) in (25),

tan-qzl =4n cotq , (27)

independent of the coupling. Thus we find that when our
small structure is completely ordered, the Hall resistance
has a constant value for field values for which the magne-
toresistance vanishes. In the more general case, T =1
does not ensure quantized Hall conductance, possibly due
to finite-size corrections to the latter.

Finally, we apply our results to the situation considered
by NSS."! To this end we work, as they have done,
through lowest order in the coupling parameters €; and ¢,.
Then the magnetoconductance [Eq. (18)] takes the simple
form

g =sin’q(€] + €3+ 2€,€,c089) . (28)

__ G
4e’/mh
NSS have considered a large square with a double delta-
function distribution for the site energies and computed
the effective overlap integrals between the initial and final
sites, where the external current enters and leaves the sam-
ple. In terms of our model, they have computed the cou-
pling parameters €; for the various paths traversing the

, (25)

sample, when E —E; take the values =W, and corre-
spondingly found that the ¢; take the values t+e. They
found that when negative and positive values of € have the
same probability, the total transmission of the structure
exhibits oscillations with period ch /2e, i.e., the supercon-
ducting flux quantum.

We shall now invoke an effective medium argument for
the conductance to obtain their result from Eq. (28). To
this end we note that Eq. (28) yields

g, =sin’q2eX(1+cosp), €, =€,=€,
(29)
g, =sin’q2eX(1—cosp), €,=—€,=€ .

Now let us assume that in our system there are p conduc-
tors with the conductance g, and 1-p conductors having
g,. Then, the effective-medium approximation!’ gives,
for the effective conductance g,, of the system the follow-
ing equation:

2
&n—8m (P81 +(1—p)g2— ——=[pg2+(1-plg:]

-2 1g,=0, (0
z—2

where z is the coordination number. The considerations
of NSS as well as Egs. (29) and (30) hold to lowest order
in the coupling. This means that effectively, z =2, and
consequently,

2
—2ekinlg——SM Y 31
Em 6smq1+(1—2p)cosqo G
This shows oscillations with the normal quantum flux

period except for the case p =+. At this value of p, the
oscillations have the period of the superconducting flux
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quantum. Thus, to lowest order in the coupling, the
effective-medium approximation reproduces for this
model a feature resembling the numerical result of NSS,
that under certain conditions a halving of the period is ob-
tained except that here this is obtained only at a special
value of p. This is of the same nature as the by now
well-known property of Aharonov-Bohm oscillations in
disordered rings, namely that the ensemble-averaged con-
ductance exhibits ¢,/2 periodicity (Buttiker et al.’ and
Refs. 18). In this model, p =5 is needed to have enough
symmetry in order to average out the ¢y-periodic com-
ponent.

IV. DISCUSSION

We have presented the behavior of the magnetoconduc-
tance and the Hall-type resistance of a small, disordered
tight-binding model. There is no Lorentz force in the
usual sense in this model. Rather, the wave vector ¢ of
the scattered state, i.e., the space dependence of the wave
function, is crucial in order to obtain the Hall effect. In
the case of the phonon-assisted hopping treated by Hol-
stein and collaborators,® the inelastic scattering was cru-
cial to obtain the Hall effect. A comparison of these two
different cases is clearly called for, and we hope to be able
to pursue this in the future.

The model presented is unique in the sense that it in-
cludes the effect of the current leads and their couplings

to the system upon its transport properties. Usually, one
considers the conductance of a system without including
the leads in the Hamiltonian. Then, comparison with ex-
perimental data, especially for very small samples, invokes
questions concerning the possible influence of the leads.
It is extremely desirable to study this model for larger
structures than the one considered in Sec. III. In particu-
lar, one would like to investigate the situation where the
transmission is unity (i.e., the resistance vanishes) and ex-
plore the Hall resistance in those regions. Of particular
interest is the question of whether taking a large disor-
dered system will alter our result that the Hall conduc-
tance is quantized only at special values of the magnetic
field or in a completely ordered system. Questions associ-
ated with the effects of ensemble and temperature averag-
ing are also very relevant. Work on some of these aspects
is in progress.
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