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Self-interaction correction to the local-density approximation in the calculation
of the energy band gaps of semiconductors based on the
full-potential linearixed augmented-plane-wave method
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%e present a new procedure for the self-interaction correction, taking into account the contri-
bution from atomic regions. It much improves the calculated energy band gaps of diamond, Si,
AlAs, and GaAs and superlattices of (A1As)~(GaAs)i and (A1As)s(GaAs)2 compared with the
local-density approximation.

It is now of great importance to find an efficient way of
calculating the energy band gaps of semiconductors and
insulators by applying the Hohenberg-Kohn-Sham
density-functional theory. ' Since the local-density approx-
imation (LDA) to the exchange-correlation potential has
been recognized as not being an adequate approximation
for the direct calculation of the single-particle excitation
energy despite its success in describing ground-state prop-
erties, considerable efforts using various approaches have
been made to improve the method for solving the energy-
band-gap problem. Perdew and Levy and Sham and
Schluter pointed out the central problem in the energy-
band-gap calculation based on the density-functional
scheme: The energy gap given by the difference of one-
electron orbital energies of the valence and conduction
bands based on the LDA needs the correction term 5 relat-
ed to the electron self-energy operator, which originates
from the discontinuity in the derivative of the exchange-
correlation energy with respect to the occupation number.
There has been intensive discussion concerning the effects
of the electron self-energy on the energy gap with direct
application of the energy-dependent nonlocal-density-
functional schemes's and the self-interaction correction
(SIC) scheme. In both approaches, the energy gaps are
very much improved by taking into account the self-energy
potential which requires elaborate calculations. The SIC
scheme is found to be ver efficient for localized electron
systems like free atomss and ionic and rare-gas crys-
tals, 7's which, in fact, implies the importance of SIC for
the valence electrons in semiconductors, because a consid-
erable amount of charge is localized around the atomic re-
gion even in covalent bonding. However, the same pro-
cedure using Wannier functions as in the work by Heaton
and co-workers for LiC1 is not applicable to semiconduct-
ors with smaller energy gaps. Thus we attempt to intro-
duce a new procedure for applying SIC to energy band cal-
culations. In this paper, we focus on the "atomic" contri-
butions of SIC to the energy gap.

Our scheme for the energy band calculation is based on
the all-electron, full-potential, linearized, augmented-
plane-wave (FLAPW) method' with energy parameters
and corresponding radial wave functions for the basis
functions in the muffin-tin sphere. " The eigenfunction

with the wave number k and band index n is given by
r

gCf exp[i(k+6) rl in the interstitial region,

+Nb(r) ~t 6

g 8/J" 1';i(r) Yi (r) in the muffin-tin sphere,

where, in accordance with the augmentation of plane
waves, 8(J is a linear function of the expansion coefficient
Cg', and ~ ii is the basis function in the muffin-tin sphere
associated with the ith energy parameter for each angular
momentum l. Eigenstates are determined by the variation
with respect to Ct of the Hamiltonian, H HLDA
+dVs'c, with the self-interaction correction potential
hV ' . We investigate SIC effects on the energy band
structure by taking into account the atomic SIC in an ap-
proximate way as

0 in the interstitial region,
' g )il)viP (r)(il [ in the muffin-tin sphere,

where v/pc(r) represents the atomic self-interaction
corrected potential. Inside the muffin-tin sphere, we can
calculate SIC in the same way as in the free atom case~ ex-
cept that we allow a noninteger occupation number at each
quantum state. In this treatment, we consider two states,
i e,v, corresponding to the conduction and valence
bands, respectively. According to Takeda and Kubler, "
two radial wave functions, pg(r), are prepared for each
angular momentum l. They are solutions of the
Schrodinger equation corresponding to two energy param-
eters Eii with the spherical part of the potential given by
the LDA v(r) and its SIC vga(r) in the muffin-tin
sphere for each spin (spin index is omitted for brevity):

r +1 1 d 2d l(l+1) +v(r)+vg (r) y'i(r)IC
2 r2 dr dr

-Eiy'I(r) .

The SIC potential is defined by assigning an effective oc-
cupation number fI for each state to the atomic SIC po-
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tential as

where U„, is the exchange-correlation potential function-
al' and pii(r) i pii(r) /4'. f„i for the valence band is
given by the partial density of states Di(E) with angular
momentum I,

PEr
fbi „i Di(E )dE ~

Di(E) -(I/(21+1) j g g b(E a.—r)4'I~oiii&i',
n,k j,l,m

where 0;ii Jr2dr pii(r)pii(r). This fractional occupa-
tion number gives the effective weight of the SIC potential
for each electron of the quantum state l in the atomic re-
gion. '3 The energy parameter E„i for the valence band is

set as the center of gravity of the partial density of states
for the valence band

E„i (1/f„i) „EDi(E)dE .

As for the conduction band, f,i and E,i are set so as not to
change the LDA results f,i 0 and E,i, the energy of the
lowest unoccupied level, because the self-interaction ener-

gy of the extended electron is considered to be negligible.
This procedure is incorporated in the whole self-consistent
scheme of the LDA calculation. E;i and f i are determined
self-consistently.

Figure 1 shows the energy band structures of Si as a
typical case. We have found that the effect of the SIC on

the valence energy levels is to pull down the energy levels

globally. The large shift of the valence band is due to the
direct effect of the SIC potential. The small shift of the
conduction band is caused by a change in the charge distri-
bution due to the SIC, because the SIC potential does not

Diamond 4.07
Si 0.46
AlAs 1.32
GaAs 0.29
(A1As)1(GaAs)1 0.84
(AIAs)2(GaAs)q 0.93

5.17
0.73
2.08
0.83
1.56
1.61

5.98
1.26
2.27
1 ~ 30
1.92
1.95

5.48
1.17
2.23
1.52
2.05b

2.02b

'Reference 15. bReference 16.

affect the conduction band under the condition of f,i 0.
As a result, the energy gap becomes larger in the SIC-
LDA than in the LDA. Table I shows the fundamental
energy gaps for several semiconductors. The energy gapa
in our new SIC scheme, SIC-LDA, are from 57% to 95%
of experimental values, while those in the LDA are only
22% to 75%.'

The fractional occupation numbers f„i listed in Table II
indicate how many valence electrons are localized inside
the muffin-tin sphere, for example, 0.9 s electrons and 1.3
p electrons in Si, and 1.5 sp electrons in the Ga site and 3.0
in the As site in GaAs. More than one-half of the valence
electrons are localized in the muffin-tin region, and they
contribute to the SIC. The remaining effects of the SIC in

the interstitial region, which will be taken into account by
establishing additional atomic regions for the bond charges
with the atomic number 0, will be not so big but will im-

prove the results.
Shifts from the LDA values of the energy parameters

E„i due to the SIC are also listed in Table II. Among
them, the energy-parameter shift for I 1, AF.„|,is the
most important parameter for the band-gap problem be-
cause the state at the top of the valence band is comprised
almost entirely of the p state of the C, Si, and As atoms in

GaAs, A1As, and their superlattices, which means that the
top of the valence band is very sensitive to the SIC of the p

TABLE I. Fundamental energy band gaps of semiconductors

by the FLAPW method with self-interaction correction (in eV).

Theory
LDA SIC-LDA LDA+i~„|i Experiment'

~04

~ 0.5
Ld

Diamond 0.37
0.27

—2.22
—1.91

TABLE II. Effective occupation f„i and shifts of energy pa-
rameters Eg due to self-interaction correction in the muffin-tin

sphere.

FIG. 1. Energy band structures of Si along high symmetry
lines. Solid curves represent the SIC-LDA calculation, and
dashed curves the LDA. Fundamental energy band gap is given

by the difference between the conduction band minimum near X
point and the valence band top at I point. Note that the energy

gap in SIC-LDA is about t~o times of that in LDA.

Si

AlAs

GaAs

Si

Al

0.46
0.21

0.32
0.12

0.64
0.30

0.40
0.13

0.64
0.28

—1.67
—0.80

—1.27
—0.99
—2.61
—0.95

—1.55
—1.02

—2.71
—1.01
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state in the atomic region. The energy gap is corrected by
this energy parameter shift &&,t, which gives the rigid-
band-shift model. As shown in Table I, LDA+ ( AF.,|~—

corrected energy band gaps show remarkable agreement
with experimental results. Energy gaps at high-symmetry
points also agree very well with the experiments s 2.19 eV
(2.1 eV in experiment) at the L point in Si, 2.27 (2.23) at
X in A1As, and 1.86 (1.82) at L in GaAs. This good agree-
ment implies that the dominant contribution of the SIC to
the energy-band-gap problem comes from the "atomic"
part. It should be noted that the values of &8'„i in GaAs
and A1As at each atomic site are almost the same, —1 eV,
which is related to the homogeneity of the SIC potential.

The calculated energy band gaps of the superlattices
consisting of A1As and GaAs agree quite well with the ex-
perimental results' at the I point. The averaged As AF„~
is used for the correction. In both cases, averaged lattice
constants of GaAs and A1As are used. In the two-by-two-
layer superlattice, the energy gap at the L point is 2.29 eV
by the LDA+ ) AF.„t ( method, which clearly indicates a

direct gap. In the one-by-one-layer case, the energy gaps
are 1.92 and 1.94 eV at the I and L points, respectively.
The difference between them is very small.

We can conclude from our analysis of the energy band
gaps of semiconductors that the inclusion of the atomic
SIC to the energy band calculation improves the energy
gaps considerably. The effect of SIC on the energy gap
strongly depends on the bonding nature and charge density
at the state of the valence band top. Different from other
treatments of the direct nonlocal potential and the SIC
with the Wannier function, the present approach essential-
ly does not change the calculational effort and is flexible
enough to make it generally applicable and accurate.
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