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We present universal plots from exact numerical calculations for the energy level and the reso-
nance width of quasibound states in a quantum well with an applied electric field (quantum-well
Stark resonance) by solving the Schrédinger equation directly. This calculation gives both the
resonance positions and widths for the complex eigenvalue Eq—iT/2 of the system. Our theory
also shows that the energy shifts of the ground states for the electrons and holes have the same
behaviors in high fields without any turnaround phenomenon, contrary to the results of Austin and

Jaros.

Electronic and optical properties of quantum wells with
applied external electric fields are of increasing interest.
Studies of these areas are important both from a funda-
mental and a practical point of view. Optical modulators!
and optical switching devices? based on the quantum con-
fined Stark effect have been suggested. Possible device ap-
plications of the field-induced tunneling in quantum-well
and quantum-barrier heterostructures include high-speed
resonant tunneling devices.?>~¢

More recent theoretical studies’~® of the effects of exter-
nal electric fields on the quantum-well systems have
predicted both the field-induced level shifts and the field
dependence of the carrier lifetime. In this paper, we report
exact numerical calculations on quasibound states of a
quantum well in an external electric field (quantum-well
Stark resonance) by solving the Schrodinger equation for
Stark resonance directly. It is found that the previous re-
sults based on phase-shift analysis”® and the stabilization
method® agree very well with our results over a wide range

Potential Energy

v(z)
/{MF
Vo
-L/2 .
0 L/2 z

FIG. 1. Potential-energy profile ¥ (z) for a single quantum
well with depth Vo and width L subject to an external electric
field F.
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of the electric field. At an extremely high electric field,
there is no turnaround behavior in the energy shift for both
the electrons and the holes, contrary to the results in Ref.
7, where no explanation can be provided for that
phenomenon. We believe that our direct numerical ap-
proach is very reliable even at a very high electric field,
while the results using the phase-shift analysis may have
drawbacks in the high-field limit. Qur approach has an
advantage over the previous results’~® in that both the
Stark resonance position (quasibound-state level) and the
width can be obtained from the single complex energy
eigenvalue of the quantum-well Stark resonance problem.
The disadvantage is that numerical subroutines of the Airy
functions with complex arguments are required.

Consider an electron with charge — |e| and effective
mass m*, in a finite quantum well of width L and depth ¥V
in the presence of a constant electric field F along the posi-
tive direction of the well z (Fig. 1). We choose the origin
to be at the center of the well. The Schrodinger equation
of ;l;e system in the effective-mass approximation is given
by”

h? d?

—2 *Fl]/(z)+|e|le/I(z)=Eul(z), lz|<L/2 ,
m z
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lz|>L/2.

Since the potential energy term in Eq. (1) tends to — o as
z goes to — oo, the system does not, strictly speaking, have
true bound states.”!® In other words, the particle initially
confined in a well can always lower its potential energy by
tunneling out of the well when the field is not zero. It may
happen, however, that the tunneling probability is very
small. In such a case, we can regard the system as having
quasibound states, in which the particles move “inside the
well” for a considerable period of time and leave through
tunneling only when a fairly long time interval 7 has
elapsed. In discussing the quasibound states, we may use
the following formal method. Instead of considering the
solutions of the Schrodinger equation with a boundary
condition requiring the finiteness of the wave function at
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infinity, we shall look for solutions which represent outgo-
ing waves at infinity;'° this implies that the particle finally
leaves the well by tunneling. Since such a boundary condi-
tion is complex, we cannot assert that the eigenvalues (en-
ergy) must be real. By solving the Schrodinger equation,
we obtain a set of complex eigenvalues, which we write in
the form

E=E,—il/2, (2)

where T is found to be positive. E¢ and I' correspond to
the quasibound-state energy level and the resonance width,
respectively. The tunneling probability per unit time is de-
fined by
o=I/h . 3)
The solutions to Eq. (1) with the outgoing-wave condition

are linear combinations of two independent Airy func-
I

Ai(ni) Bi(pi") —Ai(ns 0
Ai'(nt) Bi(nt) —Ai'(ns 0
tAit7) Bip) 0
Ai'(n;) Bi'(n{") 0

d

where mi and n;~ are the values of 7, and 7, evaluated at
z=L/2 and —L/2, respectively. If we introduce a new
parameter E © gefined by
2
E(O) = ..!i.
2m*

13

I @)

(which happens to be the ground-state energy of an infi-
nite quantum well with width L), and define the normal-
ized energy E =E/E © the normalized electric field
F=|e|FL/E®, and the normalized well depth ¥,
=V E (0), we may express mi' and nzi by these three
normalized quantities: E, F, and V.

1/3

= |G| EFLR), (8a)
1/3

n;—*--—[—FZ-‘;] (E—VoF TF) . (8b)

TABLE I. Comparison of the numerical results for Eo—iT/2
using the exact numerical method of this paper, the phase-shift
analysis (Refs. 7 and 9), and the stabilization method (Ref. 8).

This paper Phase-shift Stabilization
F(kV/cm) (eV) analysis (eV) method (eV)
75 Eo 0.025167 0.025167 0.025167
r 1.86x107% 1.9x107¢ 8.6x107¢
100 Eo 0.0242107 0.0242105 0.0242106
r 3.64x107°%  3.6x107° 4.1x107%
150 Eo 0.0213716 0.0213816 0.021170
I 6.41x107* 6.4x1074 6.5%1074

—[Bi(ps ) +i Ai(n )]
—[Bi'(ny ) +i Ai'(n; )]
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tions!!
a,[Bi(ny)+i Ai(ny)], z < —L/2,
v(z) ={aoAi(n)+boBil(ny), |z|<L/2, 4)
aAi(ny), z> —L/2
with
1/3
2m*
=—|—=——1" (E—|el|Fz), (5a)
m (ehF)? le|Fz :
and ,
13
2m*
=—|—=——| (E—-Vo—lel|Fz). (5b)
n (ehF)? o= lelFz)

The wave function for z < —L/2 represents an electron
traveling to z = — oo after tunneling. The complex energy
E can be found by solving the secular equation obtained by
matching the value of y and its first derivative at the

points, z = 1 L/2. The resulting determinantal equation
is

=0, (6)

I
This means that the solution of E from Eq. (6) is universal
and can be used for both electrons and holes with the re-
placement of the parameter E © with their corresponding
effective masses.'? (Here the effective masses inside and
outside the well are assumed to be equal.) The normalized
energy E can be expressed in terms of only two normalized
parameters, Vo and F. Thus it is clear that both electrons
and holes should have the same behaviors in their energy
shift and the resonance width. To obtain the results of Eg
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FIG. 2. Comparison of the ground-state energy of the varia-
tional calculation (Refs. 13 and 15) for infinite-well with ap-
propriate effective-well width (dashed line) and the real part of
the energy eigenvalue Eo from exact calculation (solid line) of
this paper.
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NORMALIZED ENERGY Eq=Eq/E()

NORMALIZED FIELD = lelFL/g(@

FIG. 3. The real part of the normalized energy Eo=Eo/E©
for various normalized well depths Vo=Vo/E® is plotted vs the
normalized electric field F = |e | FL/E®.

and T for holes, one need only multiply £ by Eg using the
effective mass of the hole. We have solved Eq. (6) numer-
ically to the desired accuracy using the series and asymp-
totic expansions of the Airy functions with complex argu-
ments.!! To check the validity of our approach, we com-
pared our results with those of the previous methods”® in
Table I. The values of Vo, L, and m* for the heavy holes
used in the calculations are, respectively,

Vo=100 meV, L =37 A, m* =0.45my , )

where my is the free-electron mass. It is readily seen that
our results agree very well with those of the phase-shift
analysis”® and the stabilization method.®

In Fig. 2, the real part of the energy Eo (resonance
position-solid line) for the ground-state energy with the
values of Vg, L, and m* for electrons given by V=340
meV, L =100 A, and m* =0.0665m is compared with the
results of infinite-well variational calculations'3-!3 (dashed
lines), where we have used an effective well width
Ler=126.5 A, chosen to give the same E at zero field for
the variational calculations. It can be easily noticed that
both calculations gave very similar results even up to
2x10° V/cm. However, the variational calculation for the
infinite-well model cannot give the resonance width since
no tunneling exists for the infinite well. The results of the
normalized resonance energy Eo=Ey/E® for various V,
are plotted versus F in Fig. 3. In contrast to the previous
results’ which are still controversial, the resonance position
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FIQ. 4. The normalized resonance width_f‘-I‘/E © for vari-
ous Vy is plotted vs normalized elecric field F = | e | FL/E©.

is found to be in the well even at very high field. The
behaviors of the resonant position are the same for both
electrons and holes with proper E © ysed together with
Fig. 3 as discussed before. Thus the turnaround behavior
for the holes and electrons in the energy shift shown in
Ref. 7 is probably a drawback of that method itself. Using
the same numerical values for holes as those in Ref. 7,
L=30 A, Vo=70 meV, m*=0.45mg, we obtain E©
=92.26 meV, ¥V =0.76. We do not have any turnaround
behavior even up to F =10, or the electric field F =3075
kV/cm, which covers a much wider range of electric field
than that of Ref. 7. In Fig. 4, we plot the normalized reso-
nance width T'=T/E @ for various V¢ vs F. Since the life-
time 7 is defined by r=~#/T, the results plotted in Fig. 4
predict a rapid decrease of the carrier lifetime with in-
creasing applied field by field enhanced tunneling.

In conclusion, we have solved the Schriédinger equation
for a quantum well with uniform electric field directly.
Complex eigenvalues for quantum-well Stark resonance
are obtained. Our approach has an advantage over previ-
ous analyses’~? in that both the resonance position and
width can be obtained from a single complex eigenvalue of
the problem.
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