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The distribution of the electric-field-gradient tensor parameters is evaluated for a randomly
disordered structure displaying an intrinsic local symmetry. The second-order symmetries of the
nonperturbed system are defined by the two central parameters Ag and 7o; then the corresponding
distribution in the disordered modification is governed by one order parameter A =Ao/c where o2
is the variance in the components of the perturbing tensor. An approximate analytical expression
is proposed with the purpose of interpreting experimental data in terms of relevant structural pa-
rameters for compounds where the local symmetry is randomly disturbed, e.g., quasicrystals,
amorphous alloys, or disordered rare-earth compounds with a symmetry lower than cubic. It
should be emphasized that the intrinsic parameters characterizing the underlying symmetry
(Ao,m0) are significantly different from the corresponding mean values of the distribution, as soon

as the disorder becomes finite.

The modeling of disordered structures without long-
range periodicity like amorphous and quasicrystalline ma-
terials, implies the knowledge of not only pair correlation
functions (as deduced from scattering experiments) but
also of the correlation functions that involve more than
two atomic positions. Therefore, the local symmetry prop-
erties provide an important insight into the puzzle of these
high-order correlations. These symmetries are reflected
by multipolar fields (crystalline electric fields).! In partic-
ular, the second-order crystal fields (BY,B#) acting at
rare-earth atoms? or the electric-field-gradient tensor
(EFGT) at the nucleus of S-state ions are direct probes of
the second-order symmetries, i.e., of the three- and four-
atom correlation functions.!s3

There is an increasing amount of evidence that the
amorphous order possesses the characteristics of some
underlying crystal phase.*"% On the other hand, in order
to test models of decoration for quasicrystalline lattices, it
is crucial to determine whether these phases have an in-
trinsic point symmetry lower than cubic (and in turn lower
than icosahedral) phases or whether the measured EFGT
only arises from fluctuations due to the lack of periodici-
ty.”® Hence, it is of primary importance to predict the
EFGT distribution for a randomly perturbed structure
showing an intrinsic second-order symmetry, i.e., Ag=O0.
With the help of numerical simulations, an approximate
analytical expression is derived which should be very use-
ful to analyze quadrupolar interaction data.

Let Vy be the components of the 3x3 EFG tensor [V].
[V'] being symmetric and traceless is fully determined by
five independent quantities, e.g., three Euler angles
(a,B,7) and two components of the trace in the eigen-
frame, i.e., the principal component V,, and the asym-
metry parameter n=|Vy, —V,,|/| V;,|. In the presence
of a distribution of the eigenvalues of [V'], a polar coordi-
nate representation (A,¢) is more convenient since it
avoids the unphysical discontinuities that are introduced
by the definition of ¥, and 7.° The following results can
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also be straightforwardly applied to rare-earth compounds,
recalling that B «V,, and |B%/B?| =n.2 By defining
the two real invariants .S and D (Ref. 3) as

3
S=%+ Y Vi=via+n¥/3) ,

im=]

1)
D =4detlV]1=v3U—1n%) ,
then one has
A=S2
)

¢=-+sin"1(D/A%) .

In a disordered macroscopic sample, an overall isotropy is
expected, i.e., a distribution P (A,¢) that is invariant under
any rotation. This assumption implies drastic constraints
on the distributions of the components of [V'] as well as on
the correlations between them.'%! Independent Vj; vari-
ables imply that each of the Vj; is normally distributed.!?
This particular situation is found in randomly disordered
structures, where there is a priori no intrinsic second-order
symmetry like, e.g., the dense random packing of spheres>
or a cubic lattice with random point defects.!* A noncubic
symmetry implies quadratic and cubic correlations be-
tween the Vj’s resulting from restrictions over the varia-
tions of S and D, as well as non-normal distributions. No-
tice that linear correlations between normally distributed
Vi'’s do not fulfill rotational invariance.!>!> In this work,
the distribution of the Vs is generated by assuming that

V1=[T1+le] , 3)

where [T] is a fixed strength tensor!? that describes the
nonperturbed structure. The distribution of the real in-
variants of [T] are Dirac & functions corresponding to
A=Aq and ¢ =¢y.

The randomly perturbing tensor [e] is assumed to have

8996 © 1986 The American Physical Society



34 ELECTRIC FIELD GRADIENTS OF RANDOMLY DISORDERED. ..

independent normally distributed components:

P(S,‘j)=

1 Eij
——cxp| ——5| . 4)
V2ro P }
These two tensors as well as their sum [Eq. (3)] obviously
satisfy rotational invariance.!? It is natural to define the
noncentrality parameter A (or order parameter) by

r=A¢/c . (5)

The reduced quadrupole splitting of the tensor [V] is de-
fined by 6 =A/o; then the distribution Po(8,¢) for A =0 is
given by>?

2

Po(8,0) =M6”exp
2no 2

o

where n+1 =5 is the number of degrees of freedom. No
simple analytical expression can be found for P (8,¢) when
A#0. However, the marginal distribution of 4, i.e., @ (5)
has still an analytical form, being derived from a noncen-
tral 22 distribution with five degrees of freedom:*!316

) (6)

0(8) =g (8\)expl—F(6—2)1 , @)

where g(x) =(x —1)+(x+1)exp(—2x). One can easi-
ly deduce that when x =0, i.e., when AA¢/c*<, the
preexponential factor 8g(8A) is proportional to A*
whereas in the limits of AAg/a?>> 1, it is equivalent to AL
It is worth noticing that an effective power n* of § in Eq.
(6) verifying 2 <n* <4 (Ref. 7) is a signature of A0,
i.e., of a noncubic intrinsic symmetry.

With the aim to study the marginal distribution of ¢,
i.e., R(¢) and the possible correlations between § and ¢,
numerical simulations were undertaken, using Egs.
(1)-(5) for various values of A and no. The tensor [T]
was rotated in all directions with proper weighting factors.
Independent normal distributions were generated by a
Monte Carlo method!” over ~2'? iterations. The accura-
cy of the simulated distributions was successfully checked
against the above given analytical expressions for A =0
[Eq. (6)] and A=0 [Eq. (7)].

A first series of simulations was done for no=1 (¢ =0);
indeed, owing to parity arguments, no linear correlation is
then expected between 6 and ¢. At small values of A,
R (¢) is largely dominated by the cos(3¢) term of Eq. (6),
which is the consequence of the Jacobian of the transfor-
mation from the ¥V components to & and ¢.> To illustrate
this behavior, the simulated marginal distribution R (¢)
divided by cos(3¢) is shown in Fig. 1 for various values of
A. By fitting of the simulated curves, it has been found
that, to a very good accuracy, R(¢), = can be approxi-
mated by

— 4 )2
R (¢)p,=1=cos(3¢) expl - —(-?———@)—] for

20}
—nl6<¢=<n/6, (8)

with ¢o=0 and o, a function of A, as shown in Fig. 2. Itis
remarkable that, for values of A larger than =7,
o=1.18/A (¢ and o, being expressed in radians). On the
other hand, for A <5, i.e., 6,=0.26, the departure of R (¢)
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FIG. 1. Plot of the marginal distribution R (¢) divided by
cos(3¢) for no=1 (po=0) and for several values of A =A¢/c.
Values of n are reported in the upper scale, including also the
sign of V;;.

from a pure cos(3¢) curve is negligible and is expected to
escape to experimental investigations by Mdssbauer or
NMR spectroscopies.

The situation becomes more complicated when no#1,
i.e., ¢o=0. A very remarkable feature is that, whatever the
values of A and ¢o, R(¢) is always linearly vanishing at
¢= 1 /6. This means that an axial symmetry is unstable
with respect to any finite random perturbation, similarly to
the cubic symmetry. This behavior, can be directly de-
duced by adapting a result of Rozenzweig'® in the limit
A>1. Let d6; be the small difference between the three
respective eigenvalues (i =1,2,3) of [V'] and [T']; one has

3 3
I1d6no(1 —nd/9) V2, =k .kl'Il ik )
=l E.’ <k)
where k =0.66.
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FIG. 2. Plot of o4/A vs A.
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An examination of the computed P (8,4),, distribution
functions leads to the conclusion that the correlation be-
tween & and ¢ remains negligible (less than 0.04) when
10=0.75. Then R(¢)y,, is still well approximated by Eq.
(8), where the central value ¢¢ is deduced from ny and
from the sign of ¥, through Eqgs. (1) and (2). Similarly,
to the case np=1, a modified marginal distribution
R (¢)/cos(3¢) has been numerically calculated for various
values of A and ny. This modified distribution has still a
nearly Gaussian shape centered at ¢o; the value of o, is the
same function of A as for no=1.

When the underlying symmetry approaches axial sym-
metry, then a significant correlation appears between §
and ¢ (Figs. 3 and 4). With the aim to simplify the final
analytical expression for P(8,4), a correlation coefficient
is included in the Gaussian part of P(8,¢). p is evaluated
numerically from the transformed distribution P'(8,9) =
P(8,0)/cos(3¢)g (8))& which is approximately a 2D nor-
mal distribution. Values of p are reported for various
values of 79 and A in Fig. 5. Then, for any value of A and
no it is possible to approximate the distribution function of
é and ¢ with the following formula:

P(5,¢)=6g(8l)cos(3¢)exp{— 5 1

— L l(s=2)2
et

where g (x) is given by Eq. (7), ¢ and ¢y are related with 7
and no, respectively, by Eqgs. (1) and (2), o, and p are
given in Figs. 2 and 5.

In summary, an approximated analytical formula is pro-
posed with the aim of constructing the combined distribu-
tion of the two real parameters A and ¢ (or n) that
describe the electric field gradient in a randomly perturbed
structure, showing an intrinsic symmetry given by A¢ and
¢o (o). With help of a seminumerical approach, it has
been found that the marginal distribution of ¢ always
linearly vanishes when ¢ = %+ /6 (i.e., n=0). This result
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FIG. 3. Plot of P(6,4) at several constant values of &, and for
A =5 and no=0.
[

is particularly important with respect to disordered rare-
earth compounds. Indeed, the wuniaxial anisotropy
(B2 =0), i.e., ¢= % 7/6, is fully destroyed by any finite
random perturbation of the crystal field. The restriction of
the crystal-field Hamiltonian to the second-order uniaxial
term (B0, all other terms =0) in random anisotropy
models'® could fail in describing disordered compound
(amorphous, dilute Y-base alloys, etc.). A significant
correlation is found between ¢ and A, especially when the
underlying symmetry is close to axial (7p=0). The pro-
posed formula should permit one to analyze experimental
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FIG. 4. Distribution function P (8,¢) numerically computed for
cases correspond to ¥z, > 0.

A =5 and (a) ¢o=0.281 (170=0.5) or (b) ¢o=+ /6 (170=0). Both
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T I T T data of the electric-field-gradient distribution or of

0 m.= °‘°: second-order crystal-field distributions with help of only

- Z g;:O one order parameter A =A¢/c. Additionally, it will help to

o ors determine whether the intrinsic symmetry of probe atoms
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FIG. 5. Plot of the correlation coefficient p as a function of A
and for several values of 70(¢o> 0). The opposite value of p is
found when ¢ is changed into — ¢o.

in Al-Mn or Pd-U-Si quasicrystals is lower than ico-
sahedral (A¢#=0). This point is crucial for testing decora-
tion models of the quasilattice. Extensive analysis of in-
field Mossbauer data of amorphous alloys is now in pro-
gress using the above formalism.?®
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