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Nature of the electronic spectrum in positionally disordered systems
with weak electron-ion potential
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The question of the existence of a cutoff in the density of electronic states (DOS) in a disordered

system is investigated with the use of the path-integral formulation of Edwards and Gulyaev.
Working within the first-cumulant approximation for the average electron propagator, we have gen-

eralized the results of a recent paper to a wide class of autocorrelation functions describing the ef-
fective random potential. It is shown that, in general, there is a cutoff in the DOS for three-

dimensional systems and no cutoff in one-dimensional disordered systems.

Recently, Khandekar et a/. ' have investigated the
Gaussian model of a disordered system in the framework
of the path-integral formulation of Edwards and
Gulyaev. It was found that the electronic spectrum of a
three-dimensional (3D) disordered system described by a
Gaussian autocorrelation function (ACF) shows a cutoff
and the density of states (DOS) has a power-law behavior
near the cutoff energy. For the corresponding 1D system,
however, these features were missing and the DOS showed
an exponentially decaying tail extending up to large nega-
tive energy values. Prior to this work one was led to be-
lieve that irrespective of the dimensionality of the system
the DOS near the band tail behaves as exp( —

~

E
~

").
Thus the behavior of the DOS for 3D systems obtained in
Ref. 1 happens to be in contrast with the earlier belief. It
appears from this that the existence or otherwise of a cut-
off in the DOS depends both on the nature of the ACF
and the dimensionality of the system. Therefore, it would
be of some interest to examine whether the features of the
DOS obtained in Ref. 1 are characteristic of the Gaussian
ACF alone or if they can be derived from certain general
considerations. In the present paper we have investigated
this aspect of the problem. We work within the same ap-
proximations as in Ref. 1; however, the functional form of
the ACF is kept completely arbitrary. The result of our
analysis yields the following revealing conclusions. We
find that, in general, the DOS for a 3D disordered system
has a cutoff. However, there is no cutoff in the DOS for
a 1D disordered system. In other words, the DOS is zero
below a certain threshold energy for a 3D system but it
extends to E~—ao in a 1D system.

Following the same notation as in Ref. 1, we express
the average electron propagator 6(x",T

~

x', 0) as a path
integral of an effective two-time action functional S

6(x",T
~

x', 0)= f D[x(t)]exp[iS/iri],

where

the ionic coordinate. The ACF W(x(i) —x(s)) is defined
by

W'(x(t) —x(s))= f dXu(x(t) —X)u(x(s) —X) .

In Ref. 1 the ACF W was assumed to be a Gaussian.
However, in the present paper we allow the functional
form of W to be completely arbitrary. The DOS n (E) is
obtained from the average electron propagator 6 by tak-
ing the Fourier transform of the trace of 6

n(E)=(2irii) ' f exp(iET/A)Tr[G(x", T
~

x', 0)] .

(4)

As in Ref. 1 we evaluate the average electron propaga-
tor of Eq. (1) within the first-cumulant approximation
with a free-particle trial propagator. We may emphasize
that this choice of the trial propagator is reasonable for
very weak scattering potentials (pi) i &~1, I representing
some characteristic length of the system). Physical impli-
cation of such a choice is that our formulation would cer-
tainly be relevant to discuss the behavior of disordered
systems involving nearly free electrons [for example,
disordered systems containing elements like Na (group I)
or Al (group III)]. Within this approximation the expres-
sion for 6 takes the form

6(x",T
~

x0)= 6(0"x, T~x', 0)exp[(i/R)(S —So)s ],
(5)

where So and Go represent, respectively, the action and
the propagator for a free particle of mass m. Further-
more, in Eq. (5) the symbol (f )s has its usual meaning. '

Using the above definitions it is easy to obtain the average
electron propagator within the first-cumulant approxima-
tion. Consequently, the expression (4) for the DOS can be
written as

S= f dt —,mx + f ds f dt W(x(t) —x(s)) . (2)

Here p is the density of ions and q Ineasures the strength
of the electron-ion potential i)u(x —X), X representing

n(E)= dT
2vrR —~ 2mi AT

' d/2
/ET Pn g(T)exp
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where d is the dimensionality of the problem and

T
W(T) f di f ds diag( W(x(t) —x(s)))s, .

Here the notation diag' stands for the diagonal element
of A.

The nature of the electronic spectrum n(E) depends
critically on the analytical properties of W( T) and specifi-
cally on its behavior as

I
T

I
~ oo and it may be relevant

here to make some qualitative remarks. Firstly it is clear
that if we set rl =0 in (6) the expression for n (E) reduces
to that for a free-particle DOS which is known to have a
cutoff at E=0. For a proper treatment of a possible
branch cut in the integrand in Eq. (6), it is necessary that
the line of integration in Eq. (6) be taken slightly below
the real axis. Furthermore, W( T) can be analytically con-
tinued in the complex T plane and can be shown to have
no singularities in the lower half of the plane. Now, if as

I
T

I
~ao, W(T}-T[iap+0(1/T)], then a cutoff will

be obtained at E =Ep~pr} ap/2A. This is so because for

E &Ep (compare this with the condition E &0 for the
free-particle DOS), the integral on the right-hand side of
(6) vanishes, the line of integration being deformable into
a large semicircular arc in the lower half plane and of ra-
dius r~oo. This argument will however fail if the lead-
ing term in W( T} is not linear in T but is of a higher or-
der as

I
T

I
~ao. It is shown below that in general for

1D systems most of the correlation functions indeed lead
to such a behavior of W(T) Co. nsequently, a nonzero
DOS as E~—00 is obtained. On the other hand, in the
case of 3D systems, W(T) depends linearly on T for most
of the correlation functions. However, for certain correla-
tion functions, e.g., the Coulomb correlation function,
W(T)-T as

I
T

I
~oo and we have a nonzero DOS

up to E~ m—, even for 3D systems. We now proceed to
examine the behavior of W( T) by its explicit evaluation in
3D and 1D eases.

Using the customary definition' of the average of any
physical quantity and the expression for the free-particle
propagator, we can show that

diag( W(x(t) —x(s ) ) )s ——
ppl T

2n.iR s t T——s —t
(8)

I

From Eq. (8) it is clear the integrand of Eq. (7) is symmetric with respect to the interchange of s and t and also with

respect to the interchange of
I
s t

I
to—T —

I
s i

I
.—We exploit these facts to simplify the expression of W(T):

d/2

W(T)=2T f dr f dx W(x)exp
™~~

(9)

By a change of variable from r to u by the transformation, x T /4v(T —i)=x +u, we can transform the expression

(9}for W(T) into the following form:
' d/2

W( T) 2dT2 —d/2

2miA
xwx u

2 2 3 d exp x2+u2
(x z+ + 2 )(3—d)/z

(10)

In order to study the nature of n (E) we shall now analyze
the behavior of W( T) in 3D and 1D separately.

A. System in three chmensions

Setting d =3 in Eq. (10) and carrying out the integra-
tions over u and the angular coordinates of x, we obtain

W( T)= f dx x Wp(x)expih

where Wp(x) denotes the angular average of W(x). It is
clear from the above expression that for reasonably well-
behaved W(x), such as when it is bounded everywhere,
the function W(T) will have no singularity when the
Im T &0. W(T) will be holomorphic in the lower half of
the complex plane. To be more precise, it is clear from
(11) that

I
W(T)

I
&4m

I
T

I

)& f dxxWp(x)exp[ —2mgzx /iriI T
I ],

(12)

where T=g, igz, with—gi real and gz&0. Since the in-
tegral in Eq, (11) is assumed to exist for real T, the one in

Eq. (12) must also exist for gz&0. Consequently, W(T)
is finite for all T with Im T &0 and therefore will have no
singularity in the lower half of the complex T plane.
Furthermore, it is clear from Eq. (11) that as
T~ ap, W(T) behaves as

W(T)=(4mT/i')[M(+0(1/T)], Mi ——f dxxWp(x),

(13}

where M
&

is the first moment of Wp(x).
Returning to the expression (6) for n (E) with d =3, the

integral on the right-hand side can be evaluated by the
method of contour integration. We close the contour by
adding a semicircle of radius r~ao, in the lower half
plane if E &Ep= (2mprl /fi )M&. S—ince the closed
contour includes no singularities of the integrand and the
integral over the semicircle vanishes, the integral on the
right-hand side of (6) also vanishes. Consequently, the
DOS n(E) also vanishes for E &Ep, implying thereby
that the DOS has a cutoff at E =Ep. As a first example,
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we consider the case of the case of Gaussian ACF already
studied in Ref. 1. In this case,

W( x)= (nL )
i exp( x—/L ) .

The first moment Mi ——1/2Lir leads to an expression
for the cutoff energy Eo ——m—pg /LA m ~, in agreement
with the previous result. ' lt is interesting to note here
that in the limit of L ~0 the Gaussian ACF tends to a 5
function employed by Edwards and Zittartz and
Langer. ' Indeed, in this limit, Eo~ —00 and conse-
quently, the DOS persists to E~—00 and has therefore
no cutoff, in agreement with Refs. 6 and 10.

As a second example, let us consider the electron-ion
potential to be of the screened Coulomb type" relevant
for disordered systems involving nearly free electrons.
The resulting ACF is given by

W( x) =(2n C'/k)exp( —A,
i
x

i
),

where C and A, are parameters with suitable dimensions.
Evaluating the relevant moment M, we find that the cut-
off energy Eo is given by Eo= 4rrpri C—m /A' A, .

Finally, we consider a counterexample where the above
i

W(T)= v'2mmli AT
~ (16)

The resulting integral for n (E) is identical to the one en-
countered in Ref. 1 for the case of a 1D Gaussian model
with zero correlation length. It has been shown there that
W(T)-T leads to an exponential tail in the DOS as
E~—ao. We conclude therefore that for the ACF of the
Coulomb type there will be no cutoff in the DOS and it
will decay exponentially as E~—00.

B. System in one dimension

Setting d = 1 in expression (10) for W(T), we have

considerations do not apply. Consider the case when the
ACF itself is of the Coulomb type, i.e., W(x)=C/

i
x

i
.

In this case, the first moment Mi diverges. Very naively
this suggests that the cutoff energy Ep woilld be at —co,
thereby pointing towards the possibihty of a tail in the
DOS. We therefore have to return to the expression (11)
for W(T) and carry out its exact evaluation. The integral
on the right-hand side of (11) can be easily performed for
Coulombic ACF and we obtain

W(T)=2T i
27Kl A

1 /2

f dxW(x) f du
2 2 exp ™(x+u )

00 0 (X +Q )

2@i

iAT

Using the integral representation for (x +u )
' in terms of the exponential function, the second integral can be simpli-

fied. Also introducing the "angular average" Wo(x) —= ( W(x)+ W( —x))/2, we further obtain
* ' 1/2 ' 1/2

W(T) =2T ~ f dx xWO(x) +— f du exp
iA 2x 0 AT

(18)

by the first two terms in the Taylor expansion and
Samathiyakanit used an approximation which in effect
replaced the Gaussian by a constant. Such approxima-
tions lead to a divergent Mi and a direct evaluation of
W(T) [cf. Eq. (11)] reveals a behavior of W(T)-aT
+ bT „where a and b are constants, leading to a tail in
the DOS. A general inference that can be drawn for 3D
disordered systems is that if M, is finite the DOS will
have a cutoff, and may have a tail otherwise. However,
the 1D disordered systems generally have W(T)-T ~ as
T~oo, and are therefore prone to display a tail in the
DOS.

Lastly, we may remark that the fact that in 1D disor-
dered systems there is no cut off and in 3D systems there
is one might perhaps be related to the fact that in 1D
disordered systems all electronic states are localized. ' %e
might also mention in passing that for 2D disordered sys-
tems our analysis predicts W(T) —T ln T as T~ oo, and
one expects that DOS may display a tail as in the 10 case.
Curiously enough it is also known that in 2D disordered
systems all electronic states are localized' just as in the
1D case.

It is clear that as T~ oo the leading term in W(T) is no
longer linear in T but

' 1/2

W(T)= . T i f dx Wo(x)+0(T) . (19)
lA

This behavior is in contrast with the situation in the 3D
ease. However, it is in complete agreement with the ear-
lier treatment' of the Gaussian model. We therefore ex-
pect a tail for the DOS as E~—oo.

In conclusion, we find that the existence of a cutoff in
the DOS critically depends on the analytical behavior of
the function W(T), in particular, its behavior as T +ao. —
In the 3D systems the behavior of W(T) is seen to be
linear in T if M, [cf. Eq. (13)j is finite, implying thereby
a cutoff in the DOS. An explicit demonstration of this is
provided by a Gaussian or a decaying exponential ACF.
On the other hand, when MI diverges as in the case of
Coulomb ACF, the DOS may display a tail as E~—ao.
These results are in contrast with some of the earlier
path-integral treatments which manage to predict a tail
using approximated forms of the Gaussian ACF. In par-
ticular, Bezak' approximated the unnormalized Gaussian
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