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Solid solutions of alkali halide compounds: A new model
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A new model is presented for calculating the thermodynamic properties of concentrated alloys of
alkali halide compounds using ion-ion potentials. The model determines the mean pair-interaction

energy and the mean near-neighbor separation by performing an average on end-member pair poten-
tials over the ground state of the alloy at a given concentration. By using these, an ion-ion potential
is constructed to describe the interaction between "pseudoions" situated on a lattice. The free ener-

gy and its derivatives for the lattice of "pseudoions" are calculated using an average quasiharmonic
approximation. %'hen applied to KCll „NaC1„(0&x(1) alloy, the model successfully demon-
strates its potential to yield quantitative results.

Approximate schemes to obtain the thermodynamic
properties of concentrated alloys provide a convenient
framework for an understanding of these systems. Well-
established procedures exist to obtain, for instance, the
phase diagram in the case of metallic alloys. ' Usually, the
configurational free energy of an alloy is computed at
constant volume neglecting the vibrational free energy.
This approximation works very well for metals. ' Alloys
of alkali halides, however, differ from metallic alloys in
that the change in volume, upon alloying, has considerable
influence on the thermodynamic behavior. That is, a con-
stant pressure calculation allowing for the volume change
and accounting for the vibrational free energy has to be

performed.
It is shown here that a systematic scheme can be for-

mulated to include the volume effect and the vibrational
contribution in the determination of the free energy of
disordered alkali halide alloys.

It is assumed in the model that, for the calculation of
thermodynamic properties of an alloy at a given concen-
tration x, (i) the interactions in the ground state of the al-

loy can be described by suitably constructed average ion-
ion interaction potentials, (ii) an average volume can be
defined for the ground state taking into account the distri-
bution of equilibrium separations between the iona, and
(iii) the details of the vibrational spectrum are not impor-
tant permitting sums over phonon frequencies to be re-
placed by an average frequency.

The first two assumptions define the alloy as consisting
of "pseudoions" situated on a regular lattice, as will be
seen below. The last assumption is used to calculate also
the free energies of the end members. That (i} and (ii) are
related can be seen through the use of effective pair poten-
tials to describe the interactions in the alloy.

In what follows, we shall illustrate the model for near-
neighbor (NN} interactions with an additional assumption
that (iv) the ground state of the alloy is completely disor-
dered. The systems considered are those whose end
members have one ion in common and belong to NaCl-
type crystal structure, (e.g., KCli „-NaC1„). These sys-
tems display many essential features of concentrated al-

loys of alkali halides.

TABLE I. The input to determine end-member NN interionic potentials. The calculated potential
parameters and the lattice parameters at 300 K are also given along with room-temperature data taken
from Ref. 2. (The lattice parameters at 0 K were obtained from room-temperature values using thermal

expansion coefficient data in Ref. 8.)

KC1

Cohesive energy at 0 K (ergs)

Lattice parameter at 0 K (A)

Calculated potential parameters
A (ergs)
a(A )

Calculated lattice parameter
at 300 K (A)

Room-temperature lattice
0

parameter (A)

—1.1104& 10

3.113

3.7323 x 10-"
2.2914

3.1456

3.147

—1.2406' 10-"

4.4760)& 10
2.5884

2.8135
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The NN ion-ion potential in pure alkali halides is well

represented by the functional form

—%~8'
u (R)= +6Ae

R
(1)

where R—:
~
R ~, a~ is the Madelung constant, and e is

the electronic charge. %C determine the repulsive param-
ctcrs A and A of cnd members using thc cxpcnmcntal
cohesive energy [van der Waals contributions are subtract-
ed; zero-point energy is included within the average
quasiharmonic approximation (lf-AQH)] and the experi-
mental NN separation at T=O K (see Table I). The po-
tential can describe the interactions close to and including
a regular configuration. In the ground state of the alloy
each ion reacts to several environments due to many-body
interactions and will therefore have a distribution of
equilibrium separations from its neighbors. That is, even
though the near neighbors in the alloy are essentially the
same as in the corresponding end members, the nature of
interactions is not. We incorporate this feature, approxi-
mately as follows. The nth environment is defined as
containing n substitutional defects and 6-n host ions
(coordination number z=6 for NaC1-ty~e structure) si-
tuated at an equilibrium separation R„' from the com-
mon ion. R„' ' is determined by demanding that the in-
teraction energy of this environment, u'"'(R„), satisfy the
equilibrium condition:

2—EX~8u'"'(R„)= + V'"'(R„) n =0, 1, . . . , 6 . (2)
R„

The second term is the total short interaction energy per
pair written as

V'"'(R„)=(6—n) Vi(R„)+n V2(R„), 1,2: end members,

where

V~(R„)=V~(R;}+(R„—R;)VV;
~ ~

+ —,(R„—Rg) V' V;
~ g +, i =1,2 (4)

terms beyond second order in the Taylor expansion are
neglected; i.e., in each environment, the deviation from
the end-member equilibrium separation is taken to be
small. The equilibrium condition (du'"'/dR„)

~
~o~

——0

gives

(R(o))2(~) ~ +R„[(6—n)V Vi(R i )+n V V2(R2)]

=(6 n)[RiV —Vi(Ri) —VVi(Ri)]

+n[RqV V2(R2) —VVp(R2)] . (5)

R„' ' is determined iteratively. If p„(x) is the probability
of the occurrence of the nth environment at concentration
x, the average interaction energy and NN separation over
all environments is

u(R) =(u'"'(R„' ')) = gp„(x)u'"'(R„' '),

for complete disorder, p„(x)=6C„(1—x) "x". Here it is
assumed that all arrangements of n defects and 6—n host
ions are equivalent.

To construct the ion-ion potential for the alloy, we
write u(R } in the form given in Eq. (1). Knowing u(R)
and R and using the equilibrium condition, one can deter-
mine A and a (bar denotes that they are composition-
dependent average potential parameters). This potential
describes interactions between "pseudoions" in configura-
tions close to and including the regular lattice.

The use of the Madelung constant in Eq. (2) implies
that the Coulomb-interaction energy of each ion with all

the other ions in the entire system is defined by the NN
spacing with respect to this ion. This is an approxima-
tion. However, it can be seen that

and the Madelung energy appearing in Eq. (6a} is valid on
the average. Having determined the ion-ion potentials,
the Hamiltonian can be written down as

p; (N, v)I= g + —, g'v„(r(N, v;P, m)}, .
Pf ~ I 2m~

N, P

where X and I' are unit-cell indices, v and m are indices
labeling the type of ion in the unit cell, m„ is the mass of
an ion of type v, and i =x,y, z labels Cartesian coordi-
nates; p;(N, v) is the ith component of the momentum of
the vth ion in the ¹hunit cell and v~(r(N, v;P, m)) is the
potential energy of interaction between ions Nv and Pn,
which are separated by r

r(N, v;P, n ) =R(N, v) R(P, m. )+ri(—N, v) g(P, n ) . —

Here, R describes the equilibrium position of an ion,
while g is its dynamical displacement. The approach to
obtain the average quasiharmonic approximation is given

by Shukla et al. For a diatomic crystal there are 6%0 vi-
brational modes labeled by the wave vector k and branch
index A,. In lf-AQH a single frequency is obtained by
averaging over all these modes:

(co ) —= (6Np) 'gaPki, k= ik i

within 1f-AQH,

where ewe is the non-Coulombic potential. Explicitly,

where p ' is the reduced mass

—&~8
+6Ae +6k' T in[2 sinh( ,

' Pfico)]—
P=(keT)

R =(R„'")= gp„(x)R„'" (6b) F is the total free energy, No is the Avogadro number, kz
the Boltzmann constant, and fi the Planck's constant di-
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FIG. 1. Composition-dependent average ion-ion potential pa-
rameters. Determination required six-digit accuracy.
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vided by 2m. F must satisfy the relation P = —(BE/B V)r
(P the external pressure). P=O in our calculations. For
the alloy, the configuration entropy is, for complete disor-

der,
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FIG. 3. Excess enthalpy (AH) calculated at 700 K and zero

pressure. Measurements performed at 298 K and atmospheric

pressure on a sample frozen in from 900 K.
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FIG. 2. Excess free energy (hI') at various temperatures.
For T)700 K, the alloy is in solid solution over the entire com-
position range.

P~7ioz=(I x)pi +xp2—, 1,2: end members .

~e choose KCli „NaC1„ to test the model. This sys-
tem is one of the high-temperature alloys ( T —7'73 K.)
(Ref. 4) in the alkali halide family and the volume differ-
ence between the end members at room temperature is
close to the limits of solubility. The results are contained
in Figs. 1—4 along with the experimental data. The locus
of the points defined by (MF/Bx)=0 yields the phase
separation curve in the x- T plane. The present scheme at-
tempts to describe the alloy in equilibrium by determining
the phase separation curve approximately. In Fig. 2, the
convex portions of the excess free energy as a function of
x, at a given temperature, indicate that the alloy is meta-
stable or unstable for the corresponding values of x. It is
seen that at T & 700 K the excess-free-energy curve begins
to develop a single minimum between x=0.6 and x=0.7.
The temperature ( T, ) and concentration (x, ) at which a
single minimum appears indicate the critical point for the
alloy. From experiment, T, -773 K and x, =0.69. For
T & T„ the alloy is in thermodynamic equilibrium at all
compositions. Accordingly, the excess enthalpy is ob-
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FIG. 4. Excess vibrational free energy (hE„;b) calculated at
700 K.
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tained at 700 K (Fig. 3), close to T, determined from the
model. Available experimental data have been taken at
room temperature on a sample frozen from T & 900 K.6 7

The sample frozen from T=773 K yielded —15 cal/mole

less. 7 The calculated ~ differs from experiment by a

factor of 0.&. It, may be noted that the present, calculation
is at zero pressure while the experimental results pertain
to atmospheric pressure. The effect on btI due to this

pressure difference could be significant. It is found that
the vibrational contribution to S,H (EFI„;b) is negative and

accounts for about —12% of b,H. The excess vibrational

entropy M„;b has been determined and is 10% of M„~s.
From Fig. 4, we see that the excess vibrational free energy

(ELF„;b) contributes nearly 35% to the total excess free en-

ergy. Furthermore, the composition dependence of EI'„;b
and M„;b influences the shape of the excess-free-energy
curve at a given T, thus affecting the determination of the
phase separation curve. In Fig. 1, the composition depen-
dence of a and A is shown. The behavior reflects the
many-body effects implicit in the functional form given in
Eq. (1). (a and A are also correlated for the same reason. )

From the present calculation, it is clear that for the sys-
tems under consideration the vibrational contribution to
enthalpy and free energy are important. Earlier estimates
of 4H, neglecting thermal contributions, were close to or
higher than the experimental values.

It is to be noted that the required quantities of end
members and the alloy are calculated within 1f-AQH.
The advantages of the present scheme are that (i) it is
based on ion-ion potential determined comp1etely by the
end-member potentials, (ii) the vibrational entropy as well
as configurational entropy is taken into account, and (iii)
the model can be improved, systematically enabling the
calculation of other point-defect related properties. Fur-
ther work on the model is in progress and we hope to
present the results in the near future,
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