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Structure factor of a single linear chain of finite size
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We derive an exact expression for the structure factor S(Q), at all wave numbers Q, for a single

linear chain of X atoms fixed at both ends. The effect of finite size for given X on the peaks in

S (Q) is most pronounced for the lowest values of the quantity n 'T where n = 1,2, 3, . . . is the order

of the peak and T the absolute temperature. For X pp1, the average over the center-of-mass posi-
tions of pairs of scattering atoms is shown to be equivalent to the usual method of periodic boundary
conditions with lower cutoff in wave number for the calculation of S(Q). In contrast to the expres-

sion derived here for the finite system with fixed ends, the periodic-boundary-condition expression
in the literature for the mean-square displacement of a single atom in the infinite chain is indepen-

dent of the position of the atom in the chain. The fitted half-widths of the Lorentzian-type peaks
for given X as a function of n2T all fall on a single dipper-shaped curve which drops below the
infinite-chain flat line, then approaches it from below. This dipper shape is due to the nonlinear

character of the fluctuations and is understandably absent in a linearized analytic theory. A quanti-
tative discussion is given which lends some insight into the physical mechanism responsible for the
liuewidths in S(Q).

I. INTRODUCTION

Very few compounds exist in the solid state completely
free from defects or impurities. In systems composed of
linear chains of atoms, defects, impurities, or irradiation
damage may cause a description of the properties of the
system in terms of a finite-size theory to be more ap-
propriate. In this paper, a study of the fluctuations and
relative order between atoms on a single chain of finite
size is presented, together with a physical picture of the
scattering process. This is motivated in part by an x-ray
scattering study due to Spal, Chen, Egami, Nigrey, and
Heeger' of the compound Hgi &AsFs. This unusual com-
pound possesses linear chains of Hg ions in channels
created by the host AsF6 background. At temperatures
above T,=120 K, the chains are independent of each oth-
er as well as of the host lattice. Spal et al. ,

' in an
analysis of their experimental data on the one-dimensional
diffraction sheets, found that for some values of n T, the
linewidths lay below the values expected for infinitely
long chains while for others it lay above. They concluded,
however, that the experimental data were in agreement
with the theory of independent, infinitely long chains. It
has been suggested, however, that "shortening" of the Hg
chains occurs by Hg iona from the chains occupying
anion vacancies present in about 6 at. %. One conse-
quence of this might be an alteration of the phonon spec-
trum and the infinite-chain dynamics. ' We have con-
sidered here another possibility in which the system might
behave as one which consists of one-dimensional (1D) "is-
lands" of finite-length chains which are, however, long
enough that surface effects are unimportant.

We present a systematic theory of X atoms free to vi-
brate in a chain of finite length, using both fixed and
periodic boundary conditions. These two boundary condi-
tions might, for example, approximate different physical

mechanisms causing finite-size effects. In both cases, it is
shown that the nth peak in the structure factor is broader
or narrower than the infinite chain, depending for a given
chain length, only on the quantity n T. This result ap-
pears to be within the reach of experimental observation
even for chains as long as =1500 A.

In addition to its application to Hgs ~sF&, the theory
of finite chains might also be useful for systems such as

Hg atoms introduced under pressure into mordenite or
iodine atoms in (SN)„. It should also act as a guideline
to future experimental x-ray or neutron scattering studies
done on linear-chain compounds. The remainder of the
paper is divided into three parts. Sections II and III give
a derivation of the fluctuations in the finite chain and
structure factor together with a discussion of the effects
of the boundary conditions. The results are discussed in
terms of the scattering from correlated regions, in Sec. IV.

II. FLUCTUATIONS IN THE FINITE CHAIN

The static structure factor for the single chain is de-
fined as follows:

S(Q)= (p(Q)p( —Q) ),
where

p(Q) =

is the normalized longitudinal density fluctuation induced
by an external probe. Q is the wave vector parallel to the
chain. The angular brackets denote a thermal average.
The position of the Ith atom on the chain is given by

where d is the equilibrium interatomic distance and uI the
displacement of the 1th atom from its equilibrium posi-
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tion. Hence Eq. (1) becomes

g (Q) g iQ (I—I')d( e
'~l '~l'

)

ig[1—I')d (1/2)Q ((u& —u&. ) )
8

for the harmonic crystal. We proceed by expanding the
lattice displacements in terms of the phonons of the 1D
lattice with fixed ends. In terms of the quantized lattice
modes, the mean-square deviation of two atoms 1 and 1'

from their equilibrium separation is given by

2A' 2&k+ &

((ut —ut )') = sin [—,
' k (1 —1')d]

XM k 0 cok

X [1+cosk (1+1')d] (5)

of mass of the pair along the chain. The latter is expected
to be of importance only for 1 or 1' close to either end of
the chain. In the limit of N ~&1, we neglect the contribu-
tion of this term to Eq. (5) and also neglect the influence
of the boundaries on the phonon dispersion relation

cok =
~

sin(kd/2)
~

2c
(7)

where c is the phonon velocity. Alternatively, averaging
over the center-of-mass coordinate 1, —:(1+1')/2 for given
relative coordinate 1,=(1—1')/2, we have

%+1f dl, cos(2kl, d) =0 .
N+1

Thus, within the assumption of fixed boundary conditions
with center-of-mass average,

2R 2nk+1
((ui —ur) ) = sin [ —,

' k(1 —1')d] .
NM k

mm

(N+1)d
Here, nk is the Bose distribution function and M is the
atomic mass. The lower cutoff, k;„=m/[(N+1)d], ap-
pears naturally in this theory. Equation (5) shows the
dependence of the fluctuations in the finite system on
both the relative position of the two atoms and the center

For ke T ~y(Reek), „(Ref. 8) this becomes

o + sin [(1—1')mx]
((ui —ui ) g=

sin'(mx)
(10)

where o =(k&T)d /(Mc ), ke is Boltzmann's constant
and x —=m/[2(N+ I)]. This sum can be done exactly us-

ing the Euler-Maclaurin integration formula9 to give

sin [(1 1')m—x]
~1 1,

~
(N+1) 1

(1 —1')i ' q m(l —1')

sin (mx)

with (1 —1')=mod(2[N + 1]). This is a new result. Hence

((u& —ut) )=o ~l —l'~ 1 — ~1 —I'~+sin1 m(1 1')—
2N 2

(12)

=o fl —1'i 1—z

2N

We now show that the averaging, Eq. (8), over the pair
center-of-mass coordinate is completely equivalent for
N~~l, to the usual model of periodic boundary condi-
tions with lower k cutoff. If the lattice displacements are
given the form of plane waves, then the allowed values of
k are

k=0, +, m =1,2, 3, . . . , N .

Equation (5) is replaced by

2nk+ 1
((ut —up) ) = g sin [ ,'k(1 —1')d], —

XM k cok

(15)

with k restricted to the first Brillouin zone. Excluding
the k =0 mode we calculate the sum in Eq. (15) to give

r

sin [2(l —1')mx] ~,
~

N 1,i . q ~(1 —1')

with (1 —1')=mod(2N) so that
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2cr y siil [2(/ —1 )rtLx]
(ui —up) ) =

sill (2rrix}

(17}

which is exact within the assumption of periodic boun-

dary conditions. For N~~ 1, Eq. (17) reduces to leading
order, to

pf 2

(ui')=(uo)= lim
N~ao

(21)

(18)

This expression' is identical to Eq. (13), as expected,
since in this limit the boundary conditions should be of
little importance. In the limit N~no, the infinite-chain
relative fluctuations are given by the exact expression

(( u, —u, )') „=(u,', ) =cr'
~

1 —1' ~,
which is easily recovered from Eq. (18).

The result in Eq. (18) can be physically interpreted as
follows: From Eq. (5) we can show exactly that for the
chain with fixed ends and 1'=0,

((u, —u, ) )=(u, )=~ ~/~
2 — 2 —2

which has the physically reasonable behavior that the
fluctuation of the lth atom about its equilibrium position,
the origin, is zero at the ends of the chain. This in turn
forces a maximum degree of disorder near the center of
the chain. In Eq. (20) we impose the physical limitations
0& 1 (N corresponding to the number of atoms free to
move. The factor of 2 in Eq. (18) can then be interpreted
as a result of averaging over the center-of-mass coordinate
of the atoms at / and /'&0. If both atoms are allowed to
move, one would expect the fluctuation in their relative
deviations from equilibrium to be greater than if one of
them were fixed.

Another result worth pointing out is that for periodic
boundary conditions with the lower wave number cutoff,
the infinite-chain expression usually seen in the litera-
ture:

represents the fluctuations as being independent of the
atomic positions. In contrast, the N~ 00 limit of Eq. (20)
g1VCS

(ur)= li i/i 1—2 2

N~ eo %+1
=cr2~1

~

. (22)

III. STATIC STRUCTURE FACTOR

The effect of having boundaries not at infinity means
that one must be careful not to include spurious correla-
tions, or rather to count those real correlations present
carefully. We then have

+N/2

f (1,1')=f(0,0)
I,I'= —N/2

—N + l I N —l
1

+2+ g +g
I) ——1 I~ ———1

(23)

where li ——21, and 12 ——21, . In the present case, Eq. (23)
simplifies considerably since

—(Q /2)((ul ul') ) iQljd
ef(1„12)=e (24)

(25)

and the static structure factor is, using Eq. (17),

is independent of /2 and further, f ( —1 i ) =f'(1, ). Hence
Eq. (23) becomes

+N/2 N

f(l, l')=N+1+2Re g (N+1 /, )f(/i)—
I, I'= —N/2 I) ——1

S(Q)=1+—+—g (N+1 —/&)exp} (Q cr li—/2)[1 —(/i —sin /in/2)/(2N)]}cos(Q/id) . (26)

In the limit N~ co, Eq. (26) reduces to the infinite-chain
expression as expected:

Close to the sheets at Q„d =2m.n, the line shapes given in
Eq. (27) can be approximated by Lorentzians in the limit
Q„cr && 1, since in this limit

2 2

S„=D(Q)sinh, Q&0,

where

D(Q)=
cosh(Q cr /2) —cos(Qd)

(27)

(28)

2K~ d
S (Q)=D(Q)rc„d = 2, qd ~~ 1

(~„d) +(qd)2

21T cr

Gf

(29)

(30}
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are the half-widths of the Lorentzians in Eq. (29) and

Q=Q. +q
For the finite chain, S(g) in Eq. (26) is plotted versus

Q in Fig. 1 for N =100 using the following experimental
parameters for the Hg chains in Hg3 sA.sF6, d=2. 67 A,
c =(4.4+0.8) X10 m/s, and (rr/d) =6 4X. 10 at
T 300 K. The different sheets at Q„=2mnl. d are closer
together in height as compared to the infinite chain. This
behavior is most marked for the first two sheets primarily
as a result of a reduction in height of the first peak to
=48% of the infinite-chain value. Figure 2 shows the
first peak for N =100 and T =300 K. The line shape is
quite evidently flatter and broader than the infinite chain.

The slight structure which is seen, another finite-size ef-
fect, is one of a series of oscillations lying further out in
the tail of the line shape where they attain a periodicity of
b,q =2m /Nd. These oscillations in the tail become weaker
in intensity the further one gets from q =0 and are prob-
ably too weak to observe experimentally. The third peak
shown at T =300 K in Fig. 3(a) is =6%%uo narrower than
its infinite-chain counterpart but again is broader at
T = 135 K as shown in Fig. 3(b).

To proceed further in the analytic evaluation of Eq.
(26), one can proceed by neglecting the nonlinear term in
the fluctuations, i.e., by linearizing. The result is

S'"(Q)=1+—+—g (N+1 —l)e '~ '/ 'cos(gld) (31)

=D(Q) sinh(g cr /2){1—D(Q)[cos(gd) —e '~ '+B(g)]/NI

+ e
—(Q n /2~[1 —e I+~ a /2~ cos(QNd)]

N
(32)

B(Q)=e ' 2 'Ie '~ "cos(gNd)

—cos[g (N + 1)d] ] . (33)

pression in Eq. (31) reduces to

2a„d C„(q)~(i)(g) II

(a„d) +(qd) [(a.„d) +(qd) ]
(34)

with
In the limit a„d «1 and for qd «1, the linearized ex-

C„(q)—:—I [1—cos(qNd)e " ]—2 —(a.„Xd)

and

X [a'„(1+E„)—q'(1 —E„)]d'

+4(a.„d)(qd)sin(qNd)e (35)

0.8 1.4 2.0

II /(

2.6 3.2 3 8
gd/2~

/'.

4.4 5.0 5.6
O0

FIG. 1. The dotted line shows the infinite-chain structure
factor at T =300 K with the first peak normalized at 100. The
solid line is the structure factor for X =100 on the same scale.
The intensity of the first peak is dramatically reduced causing a
more solidlike appearance to $(g).

0.99 1.00
Qd/277

1.02

FIG. 2. The line shape for T =300 K at the first sheet is
shown by the solid line compared to the infinite chain (dotted
line) (X =100),
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Na„d
g~ =K~6f

1/2

1+2K~lf +
(Nsc„d)

2

(Nz„d)

1/2

(37)
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/
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The linewidths q„ in Eq. (37) are broader than for the in-
finite chain, approaching a„monotonically from above
with increasing n T Th.e linewidths are broadest com-
pared to the infinite chain, for the lowest order sheets.
This is, however, a good indication of the trend in the
linewidth only for the smaller values of n 2T.

One can see clearly the effect of the nonlinear term in
the fiuctuations if the exact S(Q) in Eq. (26) is least-
squares fitted to a Lorentzian line shape plus a constant.
We have done this in order to facilitate comparison to ex-
periments where similar fits are made. ' It should be not-
ed here that the higher-order peaks become increasingly
infrared shifted with a magnitude of approximately less
than a few parts per thousand. The linewidths ri (normal-
ized to ~„) for all n 1, fall on a single dipper-shaped
curve for given N, as shown in Fig. 4. This is in marked
contrast to the predictions of previous theory for N~ ao

where riln 'ris a constant. A test of our prediction for
finite N would be of interest. For higher n 'r the line
shape becomes less well described by a Lorentzian but an
argument that the linewidth approaches that of the infin-
ite chain from below is given in the next section, together
with a discussion of the dipper shape.

FIG. 3. (a) The line shape at the third sheet (n =3) for
N =100 and T =135 K (solid line) is visibly broader than its
infinite-chain counterpart. (b) At T =300 K, the situation is re-
versed, although the visible effect is not as obvious.

a

V

V0e oeo ~ Q ~ ~

go ~ g E3

8a& Jl
P' Q)

. 0(t

E„=(a„d)(1—Nx„d) . (36) 80.0 45.0

10 'O'T

To leading order in 1/N this is just again the infinite-
chain Lorentzian line shape. The appearance of terms
such as cos(qNd)exp( ~„Nd)~0 as N~ao —in Eq. (35)
helps to explain the existence of finite-size oscillations in
S(Q) and demonstrates their decreasing importance for
a„Nd ~~1. The linevgidths in this linearized theory are
given for exp( Na„d) && 1 by—

FIG. 4. The half-widths of the line shapes in Eq. (26) (nor-
malized to ~„) fitted to a Lorentzian plus a constant for X =50,
100, and 500, as depicted by the open circles, triangles, and
squares. The actual half-widths of the infinite chain are depict-
ed by the solid circles (same normalization). The characteristic
dipper shape is a signature of finite-size effects.



MINETTE M. MOHAN

IV. DISCUSSION

%'e first examine the behavior of the structure factor of
the infinite chain,

2

l„=
0 2

Ke"
K lf

e —1

1
K~A (Q 1

K~ Cg

(44)

$„(Q)=1+2 lim g e

where

(38) 2
1 8 1

2m. 0 n
L

(45)

& ut'p & „=& (ui —ut )'
& =

& ut' i p ) =
& ut'p & . (39)

The expression Eq. (38) is like a "partition function" in
that it counts the total number of "states" characterized
by a given (utp) for given n. Each of these states contri-
butes to the coherent peak in intensity at the reciprocal-
lattice points of the 1D lattice. In this picture,
exp( —Q„(utp)/2) is the "probability" for which two
atoms separated by equilibrium distance ld and with rela-
tive mean-square fluctuation of (uip ) scatter coherently.
This probability depends on the separation of the two
atoms (since the degree of disorder represented in (uip )
depends on l) and on the wave number Q„of the external
probe (since each pair of atoms in the scattering "state"
represented by a given (utp) will experience a mismatch
in coherence which depends on Q„}.

In the ideal case of the perfect, static 1D lattice,
(uip ) =0 independent of I and the coherent scattering is
proportional to ¹

i(( 2 ) 2)2]1/2 ((g(u 2 ) )2]1/2

K„d/20. e"
K„de" —1

(46)

0'
K~8 g( 1

K~A
(47)

where l„d is the separation of two atoms on the infinite
chain corresponding to the degree of disorder s„. If each
atom were displaced by an amount s„, however, this
would merely correspond to a to a translation of the
whole chain and the linewidths would again be perfectly
sharp. In order to understand the mechanism contribut-
ing to the linewidths therefore, we must turn to an exam-
ination of the distribution of the mean-square displace-
rnents about the average value s„. The dispersion in
(uip ) is given by the quantity

S(Q„)=%+2+—,(uip) =0.1
(40)

Thus (h(uip ) ) ~„or equivalently

The height of the peaks is independent of Q„.
We turn to a calculation of s„ the mean value of (u~p )

set up in response to a perturbation of wave number Q„
and averaged over all the states of the 1D chain:

—(g /2)( $ } 211In e ufo

& ui'p& =
-&g„'r2) t,'~,', }

11In e

= 2=Sn (41)

The overbar denotes the average over the states (or pairs
of scatterers) of the system. Thus

0'
sn=

( 1
n )1/2

(42)

=0.2d (43)

for n = 1, independent of T to leading order.
If one can ascribe a total degree of disorder (at given

wave number Q„) to the correlated regions, the system
would behave on average, like one in which each atom
had been assigned a degree of disorder s„with respect to
an arbitrary origin. Equation (43} can be written in more
transparent form as

51=l„. (48)

The picture which emerges is one in which coherent
scattering occurs from regions of correlated displacements
centered, at given temperature T, with a broad dispersion
around some "mean" position l„d a:lfn on the chain.
At this position, fluctuations have some "mean" value
over the sheet of s„eel„, again with a broad dispersion

(b( ip)) b/.
The relevant scattering regions are thus roughly of

length 2l„d. As one goes to higher-order sheets (increas-
ing n}, the size of the correlated regions decreases corre-
sponding to increasing mismatch in coherence. This is re-
fiected by both the decrease in peak height and the in-
crease in linewidth with' n as verified analytically for the
infinite chain by Eq. (47).

For the finite chain, the size of the correlated regions as
compared to the infinite chain is expected to be greater
owing to the reduced disorder in the system, but for small
n's is restricted by the system size. As n increases, how-
ever, the reduced fluctuations pull the linewidth below
that of the infinite chain. At still larger n's, the large
mismatch in coherence should cause little difference be-
tween the finite- and infinite-chain theories and i) should
approach the infinite-chain linewidth from below.

%e calculate the root-mean-square relative deviationsth

[(b,(ui i'p&) ] corresponding to Eq. (46) using Eqs.
(41) and (12) for X = 100. The resulting curves, which the
preceding discussion has argued are related to the
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