
PHYSICAL REVIE%' B VOLUME 34, NUMBER 12 15 DECEMBER 1986

Nonlinear phonon generation via localized modes
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A theoretical study of parametric excitation of phonons involving impurities in cubic crystals with

NaCl structures is presented. The proposed excitation mechanism which takes place via nonlinear

processes involving localized modes is analogous to the first-order Suhl instability in ferromagnetic

insulators. Sufficient excitation of impurity lattice vibration by infrared absorption can result in a
sudden avalanche of optical and acoustic phonons due to anharmonic interaction. It is shown that
the critical power of the laser source necessary to attain the instability threshold is experimentally

feasible.

I. INTRODUCTION

Orbach' was the first one to draw attention to the fact
that the decay of a long-wave optical phonon into two
short-wave acoustic phonons is a parametric process, and
therefore the generation of optical phonons using light
might produce an instability in the system of acoustic
phonons. The instability threshold should be especially
low for the decay into transverse acoustic phonons whose
lifetime is anomalously long.

With the development of highly intense radiation
sources in the microwave, infrared, and optical regions,
the study of the nonlinear interaction of electromagnetic
radiation with semiconductors and plasmas has stimu-
lated considerable theoretical and experimental interest.
One important area is the amplification of optical pho-
nons and ultrasound in semiconductors under intense
laser radiation. This amplification can be attributed to
the absorption of the laser radiation by conduction elec-
trons, which is accompanied by either emission or absorp-
tion of phonons. The effect of a strong magnetic field has
been also considered in these parametric processes. '

It is well known that when a substitutional impurity
atom is introduced in a crystal, it gives rise to certain
changes in the vibrational spectrum of the system. 9 In
particular, if the impurity is lighter and/or the force con-
stant is greater than that of the host crystal atoms, then a
so-called localized mode appears above the quasicontinu-
um of phonons. The characteristics of this localized
mode are that when it is excited, only the atoms near the
impurity participate in the motion (the attenuation length
decreases as the frequency increases); and that its frequen-
cy is higher than the maximum phonon frequency. The
latter may be looked upon as the reason why the mode is
localized; its frequency is too high to propagate in the lat-
tice. The localized mode is a single mode of the system
with a sharp frequency.

It is the purpose of this paper to present a simple
theoretical study of nonlinear phonon generation involv-

ing localized modes associated with impurities in cubic
crystals with NaC1 structures. Here we are concerned

with first-order nonlinear processes due to anharmonic in-

teraction, i.e., three interacting phonon modes such that
one is a localized mode. Physically, the proposed excita-
tion mechanism is the following: The anharmonic in-
teraction in cubic crystals containing impurities can in-

duce transitions between localized modes and the host
phonon wave modes. So, in analogy to the well-known
Suhl instability which occurs at high power levels in fer-
romagnetic resonances, if a localized mode is pumped by
a strong electromagnetic field, one finds that beyond a
critical value of the field, the phonon wave modes, direct-
ly coupled to the pumped localized mode, grow parame-
trically, causing instabilities. When this condition is satis-
fied, the growth rate from pumping exceeds the decay rate
froin the various relaxation processes.

II. THEORETICAL APPROACH

In this section we shall derive an asymptotic expression
for the phonon wave amplitudes associated with the s-like
localized modes which will be used to treat the anharmon-
ic effects.

We first consider a simple NaC1-type cubic lattice com-
posed of E ions in which each ion in the crystal interacts
only with its nearest neighbors. This nearest-neighbor in-
teraction model is greatly oversimplified because it has
the physically unrealistic feature that the components of
the displacement vector in the direction of the three prin-
cipal components are not coupled. However, this model
has the advantage that it is simple enough for many of its
properties to be studied analytically rather than numeri-
cally. ' Let us suppose that a point imperfection is locat-
ed at the origin (0,0,0), and for the other sites, host atoms
are arranged such that M =M i for m even and
M~ =M2 for m odd where m =m &+mq+m3 and
(m&, mz, m3) is a set of three integers denoting the posi-
tion of the ions. Within this approach Takeno" has
found that there exist three types of vibrational modes as-
sociated with the motion of the impurity. Among these
modes, we are particularly interested in the solutions of
the following equation:
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D(co, )= 1+(—((+@)M&e,)Lc, G (co„'0,0,0)

+g(1 e—)M is, G(co„1,0,0)=0, (2.1)
u(n}=

1/2

2 g A(s, n)co,
' (a, +a, ), (2.5a)

which are directly associated with the motion of the im-

purity atom characterized by a large amplitude (localized
s mode) predominantly located at the impurity and thus
excitable by an external radiation. The remaining, the p-
like (threefold degenerate) and the d-like (twofold degen-
erate} modes have a node at the site of the impurity, and
therefore they are infrared inactive modes. In Eq. (2.1)
the impurity parameters are defined as g=(P'/P) —1 and
@=1 —(M ~/Mt ), where P and M, are the force constant
and the ion mass, respectively, of the pure crystal and M'&

is the mass of the substitutional impurity atom which in-
teracts with its nearest-neighbors with the force constant
P', and G (cog, m ),m2, m3) is the Green function which is

given by

exp[i (q ~
m ~+q2mq+q3m3 )]

G(cos}m )m2m3 }=—
2 4 2

q
M'co, —M "coq

(2.2)

where M'cos determines the eigenfrequencies of the un-

perturbed crystal and M'co, is defined by

(2.5b)p(n)=i — g A (s, n)co M„(a —g )
2

where a, ( a, ) is the creation (annihilation) boson operator
associated with the s mode, and the phonon mode ampli-
tudes A(s, n) satisfy the following orthonormality condi-
tions:

g M„A ~ (s, n)A p(s, m) =5~p5„~, (2.6a)

g M„A ~ (s,n)A ~(s', n) =5~ . (2.6b)

From Eqs. (2.5) we can note that in the harmonic approxi-
mation, with interaction between nearest neighbors, the
amplitudes A(s, n) satisfy the time-independent equation
of motion which describes the atomic vibration of our de-
fective diatomic crystal model. In terms of the Green
function these new A(s, n) can be written in the foHowing
orm:

A(s, l) =g (M~co, 6P)' —T(n, m)C(n, m)

M'co, 6$=(M)—co, 6$)pg—
ln which

1/2
(co, /co2) —1

(co,'/co
~ ) —1

(2.3)

(2.4)

Xg (co„l—n) A(s, m ),

with

g(co„'I n)=(—Mlco, 6P) —' G(co„l n)—

(2.7)

(2.8)

with co, =6//M„ for r =1,2. In the above equations,
q=(q„qz, q3) is the wave vector and the sum over q ex-
tends over the first Brillouin zone. In order to obtain the
amplitude of the s-like localized mode we follow closely
the approach introduced by Varrna' to discuss the corre-
sponding problem for defects in quantum crystals.

In the presence of a defect, the new normal modes for
the perturbed lattice are introduced by the following
canonical transformation:

1, for n+m =odd
T(n, m)= . )Lc„ for n„m even

I/p„ for n, m odd

(2.9)

the effect of the point imperfection is included in the C 's

which for an impurity atom located at the origin are given
by10

C(0,0)=EM~co +6@,
C (+ 100;+100)= —C(000;+ 100)= —C(+ 100;000)= C (0+ 10;0+10)=C(00+ I;00+ 1)

(2.10}

= —C(000;0+10)= —C(0+10;000}= —C(000;00+1)= —C(00+1;000)=gP .

Now, we address ourselves to the task of obtaining the vi-

brational mode amplitudes associated with s-like localized
modes at the impurity and at its neighboring sites, as well
as deriving an asymptotic expression for A~(s, n) with
large

~
R„~. Using Eqs. (2.7)—(2.10) we can rewrite Eq.

(2.7) as fo11ows:

(a+$)M leo, G (co, ;1,0,0)

1+2$(Marco, —3$)G(co, ;1,0,0)
(2.13)

In arriving at these equations, we have used the following
identity satisfied by the Green functions:"

A (s,n)=[P, G(co„n) (1—2a, g'5„0]—A (s,0),
for n =even

(2.11a) PQ G(co„l —5)+6PU, =5(0,

with

(2.14)

A (s,n)=p, 'P, G(co„n)A (s,0),
for n =odd where

(2.11b) 2

2
—1

2

-2 —1
672

1t2

(2.15)

p, =p, M)co, (e+g) —2p, g(M(co, —3$}a, , (2.12) and 6 means summation over all the nearest neighbors.
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i
A(s, 0)

i

Using the orthonormality condition given in Eqs. (2.6),
the coefficients A(s, n) at the impurity site are found to be

(Mi)u, , +M2) u
—i[6(U 1)]ij2 (2.20)

some quantities on the energy v„we will write the inverse
range parameter p, as an approximate solution of Eq.
(2.19), i.e.,

XE(U, ) —eM,

where

F(U, ) =—g (U, +y~)

(2.16)

(2.17)

which is valid for qa &~ l. In this limit the function
h (p, ) is of the order of one. ' As we expected, in the case
of states with frequencies above the band of the ideal lat-
tice, the vibrational mode amplitudes of the atoms [Eqs.
(2.11)] decrease exponentially with increasing distance
from the defect.

III. PARAMETRIC EXCITATION OF PHONONS
VIA LOCALIZED MODES

g cosq Rg .

Rn ggO

where a denotes the lattice constant and p, is determined
by the equation

(2.19)Vs Pq=ip & Vs+ l .

With the aim of studying explicitly the dependence of
I

In the region of U, ~ 1 (localized s mode) an approximate
expression for F(u, ) has been evaluated by expanding the
denominator in powers of y~/U, . ' To determine the
asymptotic form of A (s,n), we note, from the form of
the Green function in Eq. (2.2), that for large values of

~
R„~ the integrand oscillates rapidly as a function of q

and so, throughout most of the Brillouin zone, the contri-
butions from different q values tend to cancel. The excep-
tion to this comes from the region of q values for which
the denominator is as small as possible. Therefore, fol-
lowing Callaway' and considering only s-like localized
modes (u, ~1), we can express the Green function for
sites away from the impurity in the form

ps~n

G(co„n)= h (p, ) (2.18)
4m(t

' R„
Hl ———,', g P p„(n, m)u (n, m)up(n, m)ur(n, m),

n, m
a,P, y

(3.1)

where u(n, m) =u(n) —u(m) and P p„(n, m) is the anhar-
monic coupling which for any central force potential is
given explicitly by

Sparks and Chow' were the first to study, from a
theoretical point of view, the phonon instabilities in ionic
crystals such as NaCl caused by the anharmonic interac-
tion. In particular, they considered the effect of
parametric instabilities of phonons on the optical absorp-
tion which is of considerable interest in nonlinear optical
effects. From the theoretical analysis, it has been possible
to obtain the threshold for the parametric instability as a
function of the amplitude and lifetime of the fundamental
phonons. In this section we present the derivation of the
anharmonic interaction between a localized s mode and
two-phonon waves of the perfect lattice, which will be
used to deduce the critical number of pumped impurity
modes at the threshold of the nonlinear process.

The whole Hamiltonian of the system under study is
now assumed to include, in addition to the harmonic part,
the anharmonic interaction

0apy(n~m) = 4(r)
I r=R(n, m)

P"'(r) P"(r)+ —,—P—'(r) + 5~p, +5p„—,+5r~ —, P"(r) P'(r)——
T

. . r=R(n, m)

(3.2)

Leibfried' has pointed out, in connection with a discus-
sion of a cubic anharmonic term for central force models,
that

~

aP'"(a)lg"(a)
~

—10; (3.3)

thus, it is a good approximation to retain only the
highest-order derivative in Eq. (3.2), i.e.,

R (n, m)Rp(n, m)Rr(n, m)
P~pr(n, m ) =

/
R(n, m)

/

u(n) = g
g QPg

A(Q, n)(a~+a ~)

ions at the equilibrium position and (I)"'(r) represents the
third derivative of the interaction potential between two
atoms separated by a distance r. The Harniltonian Hl
can now be expressed in terms of the creation and annihi-
lation operators through the canonical transformation
(2.5) which can conveniently be rewritten in such a way as
to separate out the elementary excitations of the systems

' 1/2

~P"'(
~
R(n, m)

~
), (3.4)

where R(n, m) =R„—R is the relative distance between

1/2

A(s, n)(a, +a '', ) .
s

(3.5)
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Here A(Q, n) is the phonon wave amplitude for the pure
crystal which is given by U (Q;)—R ei(g;)—

A(Q, n)=, e„(g)e (3.6) Xe,(g; )e (3.10)

HI —— g [V(s,gi, gi)a, a g, a g, +H.c.], (3.7)
SQI Q~

where

V(s, g„g, ) = ~(s, g~, g2)
P"'(a)

2

6 2

y g P U (Q;)R A(0)
m=1 i=1

X
2XO)g M1

(3.8)

with

P,h (p, )(1+p, )
cr(s, Qi, Qp ) =

%Ps tus

-2
X 2

p, + lqi+q2I
(3.9)

and Q =(q,j) specifies the phonon mode with wave vector

q on branch j of the host lattice, with —Q =( —q,j). In
the following, for the sake of simplicity, we assume a sub-

stitutional isotopic impurity atom, i.e., /=0, and retaining
only terms which can destroy the localized modes, we ob-

tain

In Eq. (3.7) the position of nearest-neighbor atoms mea-

sured from the lighter ion (Mi &M~) are R, R is the
unit vector in the same direction, and e„(g) represents the
polarization vector of the nth ion. In writing the above
results we have used the asymptotic form of the Green
function given in Eq. (2.18) which is a good approxima-
tion for treating the atomic motion around the impurity.

Equation (3.7) represents the decay of a localized pho-
non in a pair of phonons of the host lattice and, as expect-
ed, the wave vector is not necessarily conserved in this
process. However, it can be seen that the maximum am-
plitude in V(s, g, ,g2) occurs for qi ———q2, meaning that
this is the most probable process and therefore it produces
the lowest threshold for the parametric instability of pho-
nons. This threshold condition can be obtained from the
instability criterion' which can be applied to any boson-
boson process, i.e., instability occurs when the number of
quanta in the q mode required to maintain equilibrium be-
comes very large. In what follows we shall deduce the
critical number of localized modes, N„pumped by a
strong electromagnetic field at the parametric instability
threshold.

First consider the power flow from the localized s
mode to the potentially unstable host phonon waves. Us-
ing the standard first-order perturbation theory, the rate
of change of the number of localized modes N, resulting
from the coupling to a single pair of phonons Q, and Q2
is given by

I l
(N, + 1,Ng, —1,Ng, —1

l HI l N„Ng, ,Ng, ) l

—
l
(N, —1,Ng, +1,Ng +1 lHJ lN„Ng, ,Ng, ) l J5(co, e)g cog, )—— (3.11)

(3.12)

Now, in equilibrium, the net rate of change of Ng must
be zero. Thus, the rate of increase of the host phonon sys-
tern is added to the rate of decrease by relaxation

~'

de = —rig(Ng Ng)—
rcpt~

(3.13)

and the result is set equal to zero to obtain two equations

CNO ——i)g, (Ng, Ng, ), —

CNO ——i)g, (Ng, —Ng, ),
(3.14a)

(3.14b)

and the rate of change of Ng from the coupling to the lo-
calized mode is

dNg,
+Ace,

dt

where

&o =&.+N.&g, +&.&g, —Xg,Xg,
(3.15)

C =2~
l
2y(s, q,j„J,) l

'S(~, ~g, ~g, ),—
and rig is the relaxation frequency of an output phonon
produced by the decaying process of the impurity mode,
and the coupling coefficient is given by

4(s ei J2)=& V(s,ei e». —

Here we have considered only the processes in which

q1 ———q2 ——q since it produces the lowest threshold. N&
is the Bose-Einstein distribution function. The coupled
algebraic equations (3.14) can easily be solved by substitu-
tion, which gives

Ng ——A IsgnA [1+(rig Ng —ilg Ng +qg N,

+gg i)g Ng C ')/i)g, A ]' —l l,
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QQ

(Ng, —Ng, )+Ng, ,
1

NQ ——

gQ
(3.16)

A =[—N, (i)g, +i/g, )+i/g, N'g, g—g, Ng,

+i/g i/g, C ']/2i/g, (3.17)

Ng-Ng, for N, ((N,

Ng ——[N, (2Ng+1)]'~, for N, =N,

Ng =2(N, N, ), —for N, )&N,

and (ii) if i/g, )&i/g, then

(3.18a)

(3.18b)

(3.18c)

and sgnx represents the sign function of x. Equation
(3.16) has the following limiting values.

(i) If r/g
—

i/g,
——r/g, then

N, =i/g, gg, /(gg, +gg )C .

The approximations (i) and (ii) represent a process in
which the localized mode pumped by the external elec-
tromagnetic radiation decays into two phonons of equal
frequency and unequal frequency, respectively. From
Eqs. (3.18) and (3.19) we shall say that the two-phonon
process has been driven unstable if N, &N„and the
threshold of the instability is defined by N, =N, . This
threshold value N, in Eqs. (3.19) is the same for both
modes since NQ and NQ are linearly related, as seen in

2

Eq. (3.16b). This instability criterion can be seen clearly
by linearizing the equation of motion. In the present case,
linearizing Eq. (3.14) by neglecting the term Ng Ng gives

that Ng is proportional to (N, —N, ) which displays in-

stability at N, =N, vividly since NQ~ao there. Using
the results of these equations, we find that the critical
number of the pumped localized modes N,

'"' at the reso-
nance is given by

i

NQ,
——Ne

gQ

Ng, -Ng, , for N, ((N,
1/2

gQ NQ
+NQ

(3.19a)

(3.19b)
and

2
crit ~Q

321$(s,Q) 1i
for 7/g =7/g —Y/g (3.20a)

for N, =N, QQ QQ
N crit foi Y/g ))7/g

6414(»9 l i l & )
I

' (3.20b)

Ng, =N, +Ng, +, for N, ))N,
Ns gQ

with

(3.19c) In arriving at these equations, we have assumed a normal-
ized line-shape factor for the 5 function evaluated at reso-
nance, ' i.e.,

Cilia(COg +Cog )(Y/g +7)g ) 2/n

[~ —(Cdg, +COg ) ] +(COg, +Kg ) ('gg, +'gg ) 'gg, +'Vga
(3.21)

In order to relate the threshold condition N, =N, to the
experimentally controllable quantity, which in this case is
the intensity I of the external incident radiation, the rela-
tion between I and N, is first derived as follows: If the
intensity just at the face is Io, the intensity at a distance
x into the sample with thickness &)1/p is I =Ioe
=ID pxIO, where p —is the absorption coefficient and the
approxiinate equality holds for px ((1. The rate of ener-

gy absorption in the layer of volume Ax is
—A(I Io)=Axpl, whe—re Io-I. Equating this rate of
energy absorbed by the localized mode to the rate of loss
by relaxation

ficog, (N, N, )Ax /V =ficoN,—/Ix /V,

where V is the volume of the sample, gives

I =ficoN, r/, /VP(co)

therefore, with N, =N, in Eq. (3.22) we get the critical in-
tensity I, at resonance, i.e., co=co, . Here p(co) is the im-
purity induced infrared absorption coefficient of alkali
hahde crystal which, in the hmit of small-impurity con-
centration is given by

4me'N; ~'K(~)'/i, GO (~)
p(~) = ~W~m

n„cV [ReD(cui)]i+[ImD(co )]

(3.23)
where c is the light velocity, n, is the index of refraction
of the crystal, N; is the number of impurity atoms, co is
the frequency of the top of the optical band. ReD(co )

and ImD (co ) are abbreviations of

Re[ lim D[(co+i5) ]I$~0+

ImI lim D[(co+i5)']],
5~0+

respectively [D(co ) is defined in Eq. (2.1)]. Go'(co) is the
imaginary part of the Green function evaluated at the ori-
gin and K (co) is given by

e+( I ~) g+e+(M, /Mz)g(1 —e)
K(co)= z +

CO) CO —6)m

(3.24)

where e'=[(e'/e) —1] is the parameter characterizing
the change of the impurity charge e', as compared with
the charge of the host lattice e.
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Note that, after experimental determination of the
physical parameter I„it is possible to obtain information
about the coupling coefficients between localized s modes
and phonon waves, as well as measurements of the relaxa-
tion rates of impurities.

IV. SUMMARY

~
V(s, QiQz) ~

(Eg +Kg, +1)" g, .g,

X5(~, ficog, —fico—g, ), (4 1)

With the aid of specific crystal and impurity models, a
theory of nonlinear phonon generation via localized
modes of a diatomic cubic crystal lattice has been
developed. These processes are characterized by a growth
of the number of phonons in the unstable mode due to the
decay of localized modes via anharmonic interaction. In
this paper an analytical expression for the critical intensi-
ty in terms of the relaxation frequency of the s mode and
the absorption coefficient has been obtained. Comparing
the result of I, with experiment, we can, in principle,
determine q, and therefore the coupling coefficients be-
tween the impurity atom and its nearest neighbors,

To make an order of magnitude estimate of the power
of an infrared laser source necessary to attain the critical
intensity of photon given in Eq. (3.9), let us consider an
estimate of the matrix element V(s, Q&, Qz) which is relat-
ed to the relaxation frequency i), of the localized mode in
the following form: Using the interaction term of Eq.
(3.4) and from the standard time-dependent perturbation
theory result for the transition probability between the lo-
calized s mode and the phonon states of the host crystal,

g, is given by

1 sinh(fico, /2k& T)
Xg +Kg +1=—

2 sinh(ficog, /2k& T)sinh(ficog, /2k' T)

'fIs ~

2 (Xo+Ng+1)

(4.3)

The integral above was calculated using a linear disper-
sion relation for acoustic phonons (cog ——tq) and the Ein-
stein frequency for the optical phonons (cog=coo). To
make an order of magnitude calculation, let us take
the following typical parameters for NaC1 at room tem-
perature: g„„=2.10' sec ', q„, =2. 10" sec

coo=3.10' se: ', t =10 cm/sec, g, =7.6X10' sec
No+Kg+1=5. 6, and P(co)=1 cm '. ' According to
Eqs. (3.20), (3.22), and (4.3) on resonance I,= 10'
W/cm . This is a large value of I„and in experiments to
look for the instability, a small value of I, is desirable.
Thus, smaller values of il, and i)g are needed. For small

q acoustical modes on the lowest frequency branch at low
temperature, g~ is be1ieved to be small. ' A conservative
approximation to the lower limit of i)g is 10 sec '. At
low temperature, ri, will also be smaller, say, by a factor
of 5 smaller than at room temperature. Therefore, I, will
be of the order of 10 W/cm which can be obtained using
pulse techniques.

(4.2)

Now, summing Eq. (4.1) over q = —qi ——q2 (the most
probable process) and considering the decay process into
phonons on different branches, ' for example, one acous-
tic and one optical branch, we obtain

~
P(s, q, J, ,Jz)

~

V=ii
~

V(s, q,J, ,J2)
~

V
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