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We present a discussion about calculated heat capacities for physisorbed systems based on a
quantum-mechanical cell model. Recent calculations on monolayers have shown the lateral contri-
bution to the heat capacity to be below the classical harmonic limit as the temperature is increased
to near the triple line. We interpret this effect to be due to the increasing anharmonic nature of the
potential. The effect is enhanced by the expansion of the lattice. New results for the methane-on-
graphite system are given and compared to the experiments of Marx and Wassermann. Compar-
isons to classical Monte Carlo simulations show that the quantum cell theory gives good results for
the equilibrium lattice constant, internal energy, and the heat capacity for the midrange of tempera-
tures. As a limit of the quantum cell theory, the quantum corrected cell model is much more effi-

cient in the middle- and high-temperature range.

I. INTRODUCTION

Heat-capacity measurements have contributed greatly
to the understanding of adsorbate phases.!~® Primarily,
the observation of heat-capacity peaks has been used to
study phase transitions. The emphasis in this discussion
is, however, on the approach to the harmonic classical
limit as the temperature increases nearer to the triple line.
Recent experiments'® with CH, on graphite are in agree-
ment with the unusual behavior found in our calculations
here and previously'"!? (see Fig. 1). Namely, the heat
capacity does not approach the classical harmonic limit.

This report discusses calculated heat capacities based on
a quantum-mechanical cell model for physisorbed sys-
tems. We believe our results show the extent of anhar-
monicity in the interactions of these systems.

An understanding of the high-temperature behavior of
the calculated heat capacity of a solid monolayer by any
model is important for at least two reasons. First, does
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the model [in this case quantum cell theory (QCT)] suffi-
ciently account for heat capacity in this region? This near
universal problem is well illustrated by Klein et al.!*
Second, if the model (QCT) is able to reasonably predict
the high-temperature heat capacity, does the approach to
the classical limit give a measure of the anharmonicity of
the adsorbate interactions?'*

II. CALCULATIONS

In previous papers, Phillips and Bruch!! and Phillips'2
found broad maxima in the heat capacity of certain two-
dimensional (2D) solids as calculated by the non-self-
consistent quantum cell model. In this paper, we attempt
to explain the origins of the apparent maximum in the
heat capacity for monolayers of argon (2D), xenon (2D),
and methane [three-dimensional (3D)] by the quantum

T(K)

FIG. 1. A comparison of the heat capacity for a monolayer
of methane on graphite calculated, &, by QCT with the experi-
mental data, @, of Marx and Wasserman (Ref. 10). Note, the
maximum in the experimental data is due to the C-IC transition
and should be ignored in this comparison.
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FIG. 2. A diagram of the lowest-energy eigenvalues for three
of the cell potential models. The numbers on the side are the
degeneracies.

8843 ©1986 The American Physical Society



8844 KATHLEEN A. HUNZICKER AND JAMES M. PHILLIPS 34

cell model and for real maximum from a (2D) square-well
calculation. The relevance to methane on graphite experi-
ments will be discussed in a later section.

The quantum cell model is a good approximation for a
class of 2D solids over a broad range of tempera-
tures.!l121516 Any departure of the calculated heat capa-
cities of this model from harmonic theory is of interest.
In this discussion, we use the results of four quantum cell
models with parameters!! representative of monolayer
solids on smooth substrates. The cell potential w(r) (Ref.
16) is assumed to be: (1) a harmonic (Einstein) model, (2)
a cylindrical square well, (3) a circularly averaged poten-
tial of 36 shells of Lennard-Jones LJ(12,6) interacting
atoms in a 2D triangular lattice,!” and (4) a 3D calcula-
tion for a methane monolayer on graphite.'® The first and
second cell potentials represent the harmonic-
approximation reference system and an extreme anhar-
monic case. The third!"!® is a more realistic anharmonic
system. The fourth case is described later in this section.

T (K)

FIG. 3. A summary of the quantum cell results for the ther-
modynamic properties of a 2D triangular lattice of atoms with
argon parameters. (a) is from the harmonic model results and
(b) the square-well model. The results were taken along the sub-
limation line (¢=0) as defined by the full LJ(12,6) of Ref. 11
with argon parameters. The data shows an inflection point in
S/Nkp.

TABLE 1. Heat capacity of a methane monolayer on gra-
phite at zero spreading pressure. These results do not include
the contribution due to the rotation of the methane molecules.
The number of significant figures represents the computational
precision not the physical accuracy. The model represents a
scaling of a Lennard-Jones system to methane parameters. The
heats (Ref. 18) of formation of monolayer and bilayer structures
are within 5% of the experimental values. The columns are the
lateral (in plane) contribution C,,, the vertical degree of freedom
contribution C,, and the total heat capacity for the system.

T (K) Cyy/Nkp C,/Nkp Cio/Nkg
5 0.001 90 0.00000 0.001 90
10 0.18396 0.000 56 0.184 52
15 0.61643 0.016 33 0.63276
20 0.99197 0.07475 1.066 72
25 1.249 39 0.170 12 1.41951
30 1.40194 0.27921 1.68115
35 1.492 06 0.38520 1.87726
40 1.54195 0.48053 2.02247
45 1.562 51 0.56325 2.12576
50 1.56074 0.63403 2.19477
55 1.53729 0.694 42 223171
60 1.48523 0.746 13 2.23136

The quantum cell approximation accurately accounts for
the anharmonicity but omits correlations and the accom-
panying communal entropy.'®?° Comparisons of the
quantum cell model to quasiharmonic lattice dynam-
ics'"'!% show the relative importance of anharmonicity and
correlations. Some of the lost communal entropy can be
recovered.?’ Barker?! has given a classical self-consistent
cell model.

We solve the radial form of the 2D Schrodinger equa-
tion

—(#/2M)\V Y+ o(r)=E,,

for the energy eigenvalues E, ; of the three w(r) cell po-
tentials. The integers n and [/ are the energy and angular
momentum quantum numbers, respectively, and M is the
mass of the atom in the cell. The relative magnitudes and
degeneracies of the energy eigenvalues are shown in Fig.

TABLE II. Heat capacity of a methane monolayer on gra-
phite for fixed-lattice constant. Features are the same as those
in Table I.

T (K) C,,/Nkp C,/Nkpg Ciot/Nkp
5 0.001 21 0.00000 0.001 21
10 0.15348 0.000 56 0.154 04
15 0.55107 0.016 33 0.56740
20 0.91117 0.07475 0.98592
25 1.158 89 0.17012 1.32900
30 1.31986 0.27921 1.599 07
35 1.424 82 0.38520 1.81002
40 1.494 54 0.48053 1.97507
45 1.54177 0.56325 2.10502
50 1.57426 0.63403 2.208 30
55 1.596 85 0.694 42 229127
60 1.61257 0.746 13 2.35870
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TABLE III.

A comparison of heat capacity, internal energy, and equilibrium lattice constant for a

2D LJ(12,6) system with argon parameters. All results were taken on the sublimation curve defined by
a minimum in the Helmholtz free energy (zero spreading pressure) as calculated by QCT. The results
of the classical cell model are in the CCM column, quantum cell theory (QCT), and quantum-corrected
cell model (QCCM). The Monte Carlo results scaled to argon parameters are the following: T =15.6

K, C/Nkp=1091, U/Nkp=—372.8895;

T=31.25 K, C/Nkg=1.76,

U/Nkp=—337.3568,;

T=46.88 K, C/Nkz=1.78, U/Nkz=-—295.3070; T=50.33 K, C/Nkz=1.71,
U /Nky = —284.7646.
Ly(A) U /Nkp C,/Nkg

T (k) QCT CCM QCCM QCT CCM QCCM QCT
20.0 3.87 —360.387 —346.511 —345.886 1.88 1.30
30.0 3.89 —337.739 —331.897 —328.809 1.82 1.77 1.57
40.0 3.94 —312.996 —309.672 —306.919 1.76 1.75 1.64
45.0 3.96 —299.572 —296.992 —294.957 1.72 1.73 1.64
50.0 3.99 —285.156 —283.148 —281.332 1.69 1.69 1.62
55.0 4.03 —269.427 —267.876 —266.015 1.64 1.65 1.58

2. The first two models are solved analytically but the
third and fourth models are studied by the numerical
methods outlined in Ref. 11 and 18.

The thermodynamic properties are obtained by substi-
tuting the energy eigenvalues E, ; into the partition func-
tion and its derivatives. The thermal properties of the
harmonic model are also given in Fig. 3 to be compared to
the harmonic model. Note that the results show a max-
imum in the heat capacity. The thermal properties of the
LJ(12,6) cell potential are given in Ref. 11 for neon and
argon parameters.

In the harmonic model the spring constant is defined by
the LJ(12,6) argon parameters to be k(T)= %2, jV2¢(r,~j).
In the square-well cell model, the cell radius is defined as
a’?=(2V'3/m)V/%L —0)* where L is the lattice constant
and o is the root of the LJ(12,6) potential for argon.

The 3D calculation for the monolayer of methane-on-
graphite system was also modeled as a quantum cell prob-
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FIG. 4. A diagram of the heat capacity at constant area with
temperature from the square-well cell model showing a real
maximum at lower temperatures. The number of square-well
states (Fig. 2) included is increased from 2 to 100 (agrees with 30
levels result).

lem. In this case, the Schrodinger equation was written
for a cylindrically symmetric cell potential. The lateral
interactions for the adsorbate molecules are LJ(12,6) po-
tentials scaled to methane parameters'? (e /kz =137 K and
0=3.6914 A). Substrate mediated interactions?? via the
MacLachlan formula®® were included. The lateral contri-
bution from the periodic potential of the graphite was tak-
en to be the Fourier series representation by Steele.?*
Vertical contributions to the cell potential are from the
Steele =(4—10) potential.”® The parameters for the po-
tentials were determined in a previous paper.'?> The ener-
gy eigenvalues of this system are used in the partition
function to determine the thermodynamic properties.

The detailed heat-capacity results for the methane on
graphite (3D) calculation are given in Tables I and II.
The results in Table I are taken along the monolayer sub-
limation line defined by a constant spreading pressure
(¢=0). The results in Table II are taken at a constant lat-
tice dilation (L =4.26 A, the V'3 X V3 registry configura-

TABLE 1IV. Heat capacity of a 2D Lennard-Jones system
with argon parameters by quasiharmonic lattice dynamics and
quantum cell theory for a fixed-lattice constant. The lattice
constant is that of the uncompressed lattice at 5 K (3.8511 A).
The QHT data follows the T? law quite well up through 3 K.
The calculations were done in the QHT case by the numerical
second derivative of the Helmholtz free energy.

C,/Nkg
T (K) QHT QCT
1 0.0059
2 0.0243
3 0.0568
4 0.1069
5 0.1767 0.0175
6 0.2643
10 0.6903 0.4337
15 1.1400 0.9423
20 1.4237 1.2569
25 1.5962 1.4351
30 1.7046 1.5384
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tion). The spreading pressure increases considerably as
the temperature rises.

III. ANHARMONICITY AND HEAT CAPACITY

There are several physical effects which could poten-
tially cause the heat capacity of a solid to approach its
classical limit from above as the temperature increases to
the triple line.

One possibility is for a system with a small number of
allowed energy levels, e.g., a two-state system, the upper
state can become saturated as the temperature rises reduc-
ing the derivative of the internal energy with temperature
to zero. Figure 4 shows the results from the square-well
model at a fixed-lattice constant and an increasing num-
ber of energy levels included in the statistical mechanics.
The curve stabilizes for N =30 energy quantum levels
and does not change further even for N =100. This
would suggest that the very anharmonic nature of the po-
tential is more the cause of the heat-capacity maximum
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than the number of levels which enter into the problem.

Another real possibility for the effect is the simple
failure of the quantum cell model to properly account for
the anharmonic nature of the system. Cell models differ
from harmonic theories of lattice dynamics in just this
way. The QCT model is tested for a system with sizable
quantum contributions, i.e., argon [see Tables III and IV
and Figs. 3(b), 5, and 6], for nearly classical systems we
have used, previously the quantum-corrected cell model
(QCCM)."* The QCCM theory is an attempt to include
quantum effects into the classical cell model (CCM).
Quantum-mechanical corrections are introduced into the
partition function of the CCM by a formal expansion in
powers of #°. Using the Wigner-Kirkwood expansion,'®
the 2D partition can be written

ZN =Tr( —’H/kB T)
~(MkyT /2m#*NQ'(N, 4, TV,

where

Q’(N,A,T):vaowdppexp[-(p)/kBT](l—ﬁz/[IZM(kBT)Z]{VZw(p)— 1/(2kg D[Vo(p)]*} +O(#*)) .

For a classical system, xenon results of QCT are com-
pared to Monte Carlo simulation, classical cell, and
quantum-corrected cell (see Tables V and VI). Our con-
clusion is that QCT fully accounts for anharmonicity.!!
For argon parameters, the heat capacity for a 3D crystal
is well predicted by an early version of the quantum cell
idea (see Fig. 13 of Ref. 13, also Ref. 26).

0 10 20 30 40 50
T(K)

FIG. 5. A diagram of the heat capacity at constant area with
temperature for a range of lattice constants. The results are for
the full LJ(12,6) cell model of Ref. 11. The shaded contour is
for the sublimation line (zero spreading pressure ¢=0). The
projection of this contour onto a plane is the graph of Fig. 2 in
Ref. 11 which has the apparent maximum at approximately 45
K. There is a slight dip in the data for 55—60 K in all models,
this is near or beyond the triple-point melting temperature.

—

In 2D, quantum cell for a LJ(12,6) system with xenon
parameters results can be compared to the classical Monte
Carlo simulations.?’” Table III gives new results for the
xenon system with the earlier work on the quantum-
corrected cell model, and Monte Carlo simulations. As
can be seen in Table III, the predictions for the equilibri-
um lattice constant, and internal energy are rather close in
the proper range of 30—60 K for all three methods. The
low-temperature results are in good agreement with
quasiharmonic lattice dynamics.”>?’ The quantum-
corrected cell model results for heat capacity are quite
close to the simulations from 30 K to the triple line. The
Monte Carlo (MC) calculation must be done at sufficient-
ly high temperatures to overcome the lack of zero-point
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FIG. 6. A comparison of the heat capacities calculated by
quasiharmonic theory (QHT) and quantum cell theory (QCT)
for a two-dimensional triangular lattice of LJ(12,6) interaction
particles with argon parameters. The calculations were all car-
1;ied out at the equilibrium lattice constant at 5 K, Ly,=3.8511
A. Below 3 K the QHT results fit the T2 law quite well.
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TABLE V. A comparison of heat capacity, internal energy, and equilibrium lattice constant for a 2D LJ(12,6) system with xenon
parameters. All of the results have been taken on the sublimation curve defined by a minimum in the Helmholtz free energy (zero
spreading pressure). Above 60 K the QCT calculation was very inefficient. The number of quantum levels required for convergence
to the QCCM limit was very large. The results of Monte Carlo simulations are in the MC column, classical cell model (CCM), quan-
tum cell theory (QCT), and quantum-corrected cell model (QCCM).

Lo (A) U/Nkg* C,/Nkz®
T(K) MC CCM QCT QCCM MC CcCM QCT QCCM MC CCM QCT QCCM
300 451 451 451 4.51° —3.1126 —3.1107 —3.0903 —3.0972 191 192 177 1.88
60.0 457 457 457 4.57 _2816 —2.8192 —28135 —28144 186  1.83 1.69 1.83
90.0 4.67  4.67 4.66 —2.465 —2.4681 —24660 175 1.72 1.72
96.6 470 4.70 4.69 —2.377 —2.3777 ~23968 171  1.69 1.69

2The units are reduced, to get kelvin units multiply by 230.

®The heat capacity results by Monte Carlo simulation were rerun for long (15000 moves per molecule) tests. The results differ slight-
ly from those in Ref. 11.

“The prediction for 30 K using quasiharmonic lattice dynamics (QHT), is 4.51 A and the energy is 1%T below the QCT value. At S

K, the QHT lattice constants are identical and the energy agrees to within 0.2%.

effects. At 30 K, the heat-capacity results of the two
methods (QCCM and MC) are approaching each other
and both drift downward for increasing temperature.
Near the triple line, the quantum cell theory is very ineffi-
cient. The angular momentum quantum number must
exceed / =12 and the radial levels n =50. The number of
grid separations for the Richardson extrapolation to deter-
mine the eigenvalues for the / =0 states (see Ref. 11) must
be increased fourfold. Even using the plane-wave
methods of Ref. 11, the computational effort is near that
of the Monte Carlo simulations. The QCCM calculation
is at least 10° faster.

The downward drift of the heat capacity with tempera-
ture is present in all of the uncompressed monolayer cal-
culations and the Monte Carlo simulations except for
neon [Fig. 3(a)]. Neon is quite quantum mechanical in
2D (Ref. 16) and its triple line is comparatively quite low.
Melting simply preempts the effect in neon.

A good test of these models to experiments®® is for the
xenon monolayer on the (111) surface of silver with
substrate-mediated forces included (see Table VI). The
comparisons of the thermal expansion and a number of
thermodynamic properties, including heats,?® with the ex-
periments of Webb and co-workers is quite good. With all
of these cross checks of the models and methods we be-
lieve the dropping of the heat capacity near the triple line
is physical and the primary origin is the anharmonicity.
As discussed in Ref. 11, the most important correction to
the harmonic Hamiltonian for most of these monolayer

systems is the approximation for the anharmonicity.

In Fig. 5 (argon parameters), the heat capacity for
fixed-lattice dilation (C4) does not show a maximum be-
fore the triple line. However, the approach to the classical
limit is successively lower for each curve with increasing
lattice dilation. So, when the heat capacity is plotted
along the sublimation line there appears to be a max-
imum. The same is true for the methane-on-graphite sys-
tem (Tables I and II). For the cases of xenon and the
square well the maximum persists even for fixed-lattice
parameters. A generalization can be drawn empirically
that the more anharmonic and expanded the system be-
comes the more pronounced effect.

This type of behavior is reasonable in the light of the
equipartition of energy theorem for nonquadratic systems.
A quantum-mechanical system in its classical limit
with a power-law interaction potential V(x)=c |x"|
has a thermal average (V) which approaches
(1/n+1/2)kgT."* The square-well potential, as an ex-
treme anharmonic example, approaches the classical limit
+ kg T instead of kT per degree of freedom. Figure 4 il-
lustrates the point for the 2D square-well potential. The
internal energy is all kinetic.

The quantum cell model appears to account very well
for the increasing anharmonicity of the monolayer sys-
tems with increasing temperature. It is consistent at the
lower temperatures with lattice dynamics, the functional
limit as T—0 notwithstanding,3 I and verifiable for mid-
range temperatures by computer simulation. The quan-

TABLE VI. The Monte Carlo results for heat capacity, internal energy, equilibrium lattice constant,
pressure, and bulk modulus for a Xe/Ag(111) monolayer system along the sublimation line. The in-
teraction model is described in Refs. 15 and 31. All of the results were taken on the sublimation curve
defined by a minimum in the Helmholtz free energy (zero spreading pressure). Experimental compar-

isons for the system are give in Ref. 30.

T (K) L, (A) C4/Nky U/NksT P/pkpT B, /pksT
30.0 4.45 1.93 —19.9513 0.0160 374.69
50.0 4.49 1.94 —11.0656 0.0363 174.24
80.0 4.57 1.82 —5.9578 —0.0050 62.76
90.0 4.62 1.74 —4.9383 0.0644 36.10
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tum cell model comes into question however when the
system is about to melt. The xenon case makes the point.
The 2D LJ(12,6) system with xenon parameters has a rela-
tively high triple line at approximately 95 K.?”3? The
system is quite classical at the higher temperatures so the
quantum cell calculations and computer simulations
should both be able to account for the anharmonic contri-
butions to the thermal properties. In the computer simu-
lations a record was made of the structure of the mono-
layer by graphics plots of the atom positions. The appear-
ance of defect pairs, voids, and the number of nearest
neighbors not equal to six, corresponds to the QCT heat
capacity falling below the simulation values. Even though
the predicted thermal expansion and internal energies are
close, the fluctuations in the internal energy from the
simulation (heat capacity) are larger than those from the
quantum cell calculation. The quantum cell model, as we
have applied it,!! would appear to represent the role of
anharmonicity in physisorbed systems rather well but does
not allow for the additional localized excitations. The
Holian harmonic correction?® does not apply directly to
this issue.

The most important comparison resulting from this
study is the good agreement between the QCT predictions
for the heat capacity of a monolayer of methane on gra-
phite and the measurements of Marx and Wassermann.'
In Fig. 1, we have attempted to reproduce their data plot
(Fig. 2 of Ref. 10). We have superimposed our QCT re-
sults on their graph. Some of their data points are miss-
ing in our drawing. When our calculated values over-
lapped the data points we omitted them for clarity of the
figure.

Two features of Fig. 1 are important: first, the agree-
ment between theory and experiment, and second, the fact
that the data is at a high-temperature limit of +kp in-
stead of the classical harmonic limit of +kz. Also, note
the bump in the experimental data due to the
commensurate-incommensurate (C-IC) transition has been
constrained out of the calculation. Our prediction of this
C-IC transition has been published.?’ The rotational con-
tribution of 2kjp has been added directly to values like
those given in Table II for the reported temperatures. A
full analysis of the rotational contribution is given by
Hamilton.* In the 45—50 K range of temperature, the
rotational contribution is slightly above >kz (Ref. 33)
which would give an even better agreement than that
shown in Fig. 1.

We observe that the data of Marx and Wassermann and
our calculations both fall 1kz below the conventional
value and the error bars indicate the result can be taken as
physical. This agreement with experiment, Monte Carlo
simulation, and the other calculation methods leads us to
the conclusion that anharmonicity in monolayer systems
is significant and measurable.

IV. SUMMARY

We have attempted to show that the low maxima in the
heat capacities of monolayer solids are a physical result.
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Also, that the effect is not a limitation of QCT or the
computational methodologies. We suggest the physical
origins of the downward drift in the heat capacity, as the
temperature approaches the triple line, is due to the in-
creasingly anharmonic nature of the expanding lattice.
As can be seen from the equipartition of energy theorem
for power-law potentials, |x"| with n>2, in the high-
temperature limit, has the energy going to (1/n + %)ka T.
Therefore the heat capacities should fall below the har-
monic limit of (7 + 5 )k T per degree of freedom. Except
for 2D-neon LJ(12,6), all of the monolayer systems stud-
ied: (1) 2D-argon LJ(12,6), (2) 2D-xenon LJ(12,6), (3) 2D
Xe/Ag(111) full model (4) 2D square-well, and (5) 3D
methane-on-graphite, all show the anharmonic influence
in the high-temperature heat capacity along their solid-
vapor equilibrium lines. The extent of the drop in the
heat capacity with increasing temperature can quite possi-
bly be a measure of the degree of anharmonicity present
in the system. We have also run the Monte Carlo simula-
tions for LJ(6,3) potential (it is more harmonic at the
same temperatures). The heat capacity from these simula-
tions approaches the classical harmonic limit in the same
fashion as the harmonic approximation curve (QHT) of
Fig. 6.

It is also important to note that the systems we have
studied cover the range of quantum-mechanical effects
from neon to the quite classical xenon at the higher tem-
peratures. Quantum cell theory would appear to reason-
ably predict the thermodynamic properties of these sys-
tems over the middle to high range of the stable solid.
However, the quantum corrected cell model is much more
efficient for the middle and high range of temperatures in
the very classical xenon case. In principle, the difference
between the cell theory predictions and the computer
simulations for the heat capacity are due to two effects, a
missing piece of the communal entropy and contributions
from additional collective excitations.

The variety of system types and the several computa-
tional methods we have used, all confirm each other in the
appropriate conditions where any two or more combina-
tions apply. The close agreement of quasiharmonic lattice
dynamics,!® at low temperatures, and quantum-corrected
cell model and Monte Carlo simulations,?’” at middle and
high temperatures, with Xe/Ag(111) experiments* gives a
realistic basis to the models and methods. The close com-
parisons with the experimental data of Marx and Wasser-
man'® QCT give a physical result and indicate that the
role of anharmonicity in the lateral interactions of mono-
layer systems is significant.
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