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The magneto-optical absorption spectrum of a two-dimensional polaron is calculated by using a
memory-function approach. The cyclotron resonance frequency and the cyclotron resonance mass
of the polaron are obtained for weak electron-phonon coupling. The absorption spectrum exhibits
peaks around the cyclotron frequency @, and the LO-phonon-assisted harmonics wio+hno.
(n=1,2,...). The oscillator strength and the position of the peaks are investigated as a function of
the magnetic field strength. A Landau-level broadening parameter is introduced phenomenological-
ly in order to remove the divergencies in the magneto-optical absorption spectrum. The effect of the
nonzero width of the two-dimensional electron layer is also investigated. After taking into account
the effect of the nonparabolic energy band of the electron, the calculated cyclotron resonance masses
are compared to the experimental data for GaAs-Al,Ga,_,As heterostructures and InSb inversion
layers. In order to explain the experimental results for GaAs-Al,Ga;_, As heterostructures with our
one polaron theory an effective electron-phonon coupling constant has to be used which is smaller
than generally accepted. Many-body effects are expected to be responsible for this reduction.

I. INTRODUCTION

In polar semiconductors and ionic crystals an electron
interacts with longitudinal-optical (LO) phonons. In the
presence of a magnetic field there will be so-called
resonant polaron effects when ., the unperturbed cyclo-
tron frequency, approaches w; o, the LO-phonon frequen-
cy. The main evidence for the existence of resonant pola-
ron effects is provided by a cyclotron-resonance experi-
ment. In such an experiment the mass renormalization of
the electron due to the polaron effect is observed clearly.
Over the last few decades three-dimensional (3D) polarons
have been extensively studied. For a review of the
theoretical and experimental progress in this field, we
refer to Ref. 1.

Recently, due to technological progress in material
growth (e.g., the advent of molecular-beam epitaxy),
quasi-two-dimensional (Q2D) electron systems have
been created in polar semiconductors. Examples of such
systems are GaAs-Al,Ga,;_,As heterostructures,
Ga,;_,In,As heterojunctions, InSb inversion layers, etc.?
Only very recently have polaron effects been studied in
these 2D systems.’~!> The main emphasis was on the in-
vestigation of the peak position of the cyclotron-resonance
line and on the splitting of the line around the resonance
frequency w.=wyo. In Ref. 8, by using a Green’s-
function approach, Das Sarma and Madhukar made a for-
mal calculation to investigate the Landau-level correction
and the magneto-optical anomalies in the resonant region.
They showed that the influence of the electron-phonon
coupling in 2D systems can lead to a splitting of the
cyclotron-resonance line when w, ~wj g, which is similar
to that for the 3D polaron (see, for instance, Ref. 13 and
references therein). In their calculation off-resonance
terms in the perturbation theory were neglected. Subse-
quently, Larsen studied the cyclotron resonance of a 2D
polaron using the Rayleigh-Schrodinger perturbation
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theory (RSPT).” In Ref. 9 the effect due to the nonzero
density of the electron gas on the polaron Landau levels
was also investigated by summing the most divergent
terms in the perturbation theory to all orders. The
electron-phonon interaction correction to the Landau lev-
els of the 2D polaron has also been studied by the present
authors using the so-called improved Wigner-Brillouin
perturbation theory (IWBPT).' Most of the above-
mentioned studies are based on a perturbation calculation
of the position of the Landau levels of the 2D polaron.
The cyclotron-resonance mass of the electron is then ob-
tained from the difference in energy between two adjacent
Landau levels.

In this paper we present a calculation of the 2D polaron
cyclotron resonance spectrum which is based on a
memory-function approach.!>~!¢ Instead of calculating
polaron energy levels, we calculate the magneto-optical
absorption spectrum, which is expressed in terms of a
memory function. Our motivation is that the magneto-
optical absorption is the physical measured quantity. The
cyclotron-resonance frequency and the cyclotron-
resonance mass of the electron are obtained from the posi-
tion of certain peaks in the magneto-optical absorption
spectrum. The present paper is divided into two parts:
The first part contains our theoretical calculation, and in
the second part our results are compared with recent ex-
perimental data.®—°

In the theoretical part of this paper we limit ourselves
to a single electron with a parabolic energy band, interact-
ing with bulk LO phonons. The effect of the nonzero
width of the 2D electron layer is included by considering
the lowest subband where the standard variational wave
function is used.? We also introduce a Landau-level
broadening parameter”'® in order to remove the divergen-
cies in the absorption spectrum. This is equivalent to a
standard procedure in which the unperturbed density of
states, which consists of a series of 8 functions, is replaced
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by a set of Gaussian functions. The electron-phonon in-
teraction is treated as a perturbation and the memory
function is calculated to first order in the electron-phonon
coupling constant. The spin, the effect resulting from
Fermi-Dirac statistics, and the screening effect of the
electron gas are neglected in the present study.

The present paper is organized as follows: In Sec. IT we
outline the calculation of the memory function including
the effect of the finite width of the 2D electron layer and
of the Landau-level broadening. The magneto-optical ab-
sorption spectra of the 2D polaron are then calculated.
Section III contains our numerical results and discussion.
In Sec. IV we take into account the band nonparabolicity
and compare our calculations with recent experimental
data. Our conclusion is presented in Sec. V.

II. FORMULATION AND CALCULATION

The electron-phonon system
Frohlich Hamiltonian

is described by the

2
1 eA t
F=— |p+ <& fior o)
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+3 (Viage™ "+ Viale %), (1)
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where p (rg is the momentum (position) operator of an
electron. ay (ay) is the creation (annihilation) operator of
a bulk LO phonon with wave vector k and energy #iw; o.
The magnetic field H is taken perpendicular to the 2D
electron layer and the z axis is chosen along the direction
of the magnetic field. In Eq. (1) Vy is given by
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where ¥(z)=(b>/2)""*2¢ ~%/? is the variational wave
function describing the motion of the electron in the
direction normal to the 2D electron layer. b is given by

b =(48wNmye?/#e))'? ,

where N =ny+ 4rn, and ny and n, are the depletion and
carrier charge density, respectively. For simplicity we
take into account only the lowest subband and neglect all
higher subbands. Such an approximation results in Eq.
(2).

Within linear-response theory the dynamical conduc-
tivity of the system can be written as

in,e?/my

(3)

ole)= o—0,—2(w)’

where 3(w)=3(a,w,,b;w) is the memory function.!*~!6

w, =eH /myc is the cyclotron resonance frequency when
no polaron effects are present. The magneto-optical ab-
sorption is defined as the real part of Eq. (3) (within a fac-
tor)

—Im3(w)
[0—o, —Re3(0)]*+[ImZ(w)]*

(4)

The zero-magnetic-field limit of Eq. (4) leads to an ex-
pression similar to that obtained in Ref. 16. In the
present paper the memory function will be calculated
within an approximation similar to that used in Ref. 15.
This amounts to a perturbational calculation of 2(w). To
first order in the electron-phonon coupling constant the
memory function has the form (see also Refs. 16 and 18
for the zero-magnetic-field case)

1 © .

1/2 A S(@)=— [ " dt(1—e™"ImF(1) (52)
. 4 # k ’
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b%LO and
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F(t)= __2 — Hﬁ | Ve i 2{[1+n(wL0)]<eik~r(r)e —ik~r(0)>_n(wLO)<e—ik~r(0)eik.r(2)) }e—m]_ot ’ (5b)
kK Mo
I

where n(co%o)z(emmm—1)’1 is the number of phonons In the following we will concentrate on the zero-

and k|2I =ky +ky2. ( ) stands for the average and must be
calculated without electron-phonon interaction in order to
be consistent with the memory-function calculation.

The problem is now reduced to the calculation of a
density-density correlation function

I(k’t)=<eik'r(f)e —ik-r(O)) . (6)
J

temperature case and calculate I (k,?) to zero order in the
electron-phonon interaction, which amounts to a replace-
ment of the Hamiltonian % by 27 (" is the Hamiltoni-
an of a free electron in a magnetic field). The calculation
of I(k,t) is analogous to a similar calculation given in
Ref. 10. Here we give the main steps

I =3(0]e"""10)(0]e™ [ n)(n e " n)(n|e—*|0)
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where | n) is the wave function of the unperturbed nth
Landau level. In Eq. (7) we introduce the Landau-level
broadening parameter I' by assuming that the propagator
of a free electron is exp(—iE,t/#—T%t?/8) (see Refs. 2
and 17). For convenience we choose I' independent of the
Landau-level number.

After some algebra we arrive at

F(t)=n fow dx xf (x,bg)

——l(z)cl

2.2
,_ I

xexp | —x*1—e —iwyot

’

(8)

where 7=2awiolo,/010)*? and bo=b(#/2myw,)"">.

The form factor f(k,b) is given by

fk,b)=(8b3+9b% +3bk?)/[8(b +k)°]

which expresses the nonzero width of the 2D electron
layer.

The explicit form of the memory function can be ob-
tained from Egs. (5). In the present paper we will give nu-
merical results for the case of zero lattice temperature. In
this limit the real part of the memory function becomes

) B’l En 8,,+Cl)
ReX(w)= 2D |— |—D
e2(w) "§0 — T F
Ep—®
—D F , (9a)
and the imaginary part
= V7B, (€, +w)?
Im=(0)= ——
m2() EO 20r | P 2
(€, —w)?
—exp | — = , (9b)
with
By=-L [ " dxxf(x,bo)xe ", (9¢)
n! Yo

where €, =01 o+nw, and
o2t x2
D(t)=e fo dxe

is the Dawson integral. The real and imaginary parts of
the memory function given by Egs. (9a) and (9b) satisfy
the Kramers-Kronig relation

L *= g dm2x) (10)

@W—X

Re3(w

= —

w - 0

where the integral is interpreted as a principal integration.

III. NUMERICAL RESULTS AND DISCUSSION

We have performed the numerical calculation of the
memory function and of the magneto-optical absorption
spectrum. First, we study the case with zero Landau-level
broadening, i.e., I'=0. In this case the imaginary part of
the memory function consists of a series of  functions at

the frequencies w=wio+nw, (n=0,1,2,...). The real
part of the memory function diverges at o =wo+ho, as
1/(w—wpo—nw,.) [see Eq. (9a)]. Due to this special
structure of the imaginary part of the memory function
the magneto-optical absorption spectrum consists of a
series of &-function peaks. The position of these peaks are
determined by the equation w —w. —ReZ(w)=0 and are
thus not influenced by the imaginary part of the memory
function. The &-function peaks in the absorption spec-
trum have oscillator strength

—1

71— % Re3(w)
dw

In Fig. 1 the frequencies (w*) of the first four peaks in
the magneto-optical absorption spectrum are plotted as a
function of the magnetic field for an ideal 2D system.
These peaks correspond to the transitions of the polaron
from the ground state (n =0) to the nth (n =1,2,3) Lan-
dau level. The splitting of ] and ) around w,=wy o,
and the pinning behavior of w} for w. >>wy o, are clearly
seen from this figure. In Ref. 19 a detailed comparison
was made between the results of the IWBPT calculation
and the present results. It was suggested in Ref. 19 that
the present approach is a rather good approximation in
calculating the polaron cyclotron-resonance mass, even
for a~0.1.

We compare the ideal 2D and Q2D results in Fig. 2.
The effective mass of the electron, which is derived from

w/wy,

we fw

FIG. 1. The positions of the first four peaks in the magneto-
optical absorption spectrum are plotted as a function of the
magnetic field strength for an ideal 2D system.
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FIG. 2. The cyclotron-resonance mass derived from the
magneto-optical absorption spectrum is shown as a function of
the magnetic field for the 2D and Q2D systems. The 3D result
is given by the dash-dotted curve.

o} and o} by m*=oe./0} for o <wo and
m*=w,/w; for w.>wy, is plotted as a function of the
magnetic field strength. As for the zero-magnetic-field
case,?’ the nonzero width of the electron layer reduces the
polaron effects. This reduction is a consequence of the
fact that the form factor f(k,b) <1 in Eq. (9), while for
the ideal 2D system f(k,b =o)=1. Notice that the
splitting of the first two Landau levels is not symmetrical
about the LO-phonon energy, i.e., 0 o—0] %03 —0Lo, at
w,=w1o. A similar result was recently found for the
IWBPT theory.!® In Fig. 2 we also plot the corresponding
3D results for 0* <wio (for ©* >wyo the situation is
more complicated since the imaginary part of the memory
function is different from zero'®). For the ideal 2D sys-
tem the polaron effect is enhanced compared to the 3D
case, i.e., we have a larger polaron-mass correction. For
the zero-magnetic-field case a similar result was found
earlier.’ In the zero-magnetic-field limit we find the
familiar result m*/my,=1+ma/8 for the ideal 2D sys-
tem.

The oscillator strength of the first four &-function
peaks is plotted as a function of the magnetic field for the
ideal 2D and Q2D systems in Fig. 3(a) and Fig. 3(b),
respectively. The nonzero width of the 2D electron layer
does not change the qualitative behavior of the oscillator
strength. Most of the oscillator strength is contained in
the first two peaks. As the magnetic field increases, the
oscillator strength is transferred from the first cyclotron-
resonance peak to the second peak. For the Q2D system
such a transfer of the oscillator strength is more abrupt

OSCILLATOR STRENGTH

OSCILLATOR STRENGTH

1

We/Wyo
FIG. 3. The oscillator strength of the first four 8-function
peaks in the magneto-optical absorption spectrum is shown as a
function of the magnetic field for (a) the ideal 2D system and (b)
for the Q2D system.

due to the reduction of the polaron effects [see Fig. 3(b)].
From Fig. 3 we can conclude that the oscillator strength
of the nth LO-phonon-assisted harmonic is roughly an or-
der of magnitude smaller than the oscillator strength of
the (n —1)th LO-phonon assisted harmonic. Further-
more, note the interesting result that the oscillator
strength of w3 increases with increasing magnetic field,
while for w} it increases up to w, ~wyo/2 and starts to
decrease for larger magnetic fields. The behavior of the
oscillator strength found here are similar to that found for
the 3D polaron.!

In Fig. 4 the cyclotron-resonance mass of the electron
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FIG. 4. The cyclotron-resonance mass derived from the first
peak of the magneto-optical absorption spectrum is shown as a
function of b for different values of the magnetic field.

derived from the first peak is plotted as a function of b,
which is inversely proportional to the width of the 2D
electron layer, for different values of the magnetic field.
As b increases the 2D electron layer becomes narrower
and closer to the ideal 2D system. Consequently, the ef-
fective electron-phonon coupling strength is enhanced and
the polaron correction to the cyclotron-resonance mass of
the electron increases as shown in Fig. 4. We point out
that in the limit of b—0 we do not recover the 3D re-
sults. This is due to the fact that in the present study we
only consider the lowest subband.

In the case I' >0 the Landau levels have a nonzero
width and the real and imaginary parts of the memory
function are continuous functions of the frequency. All
6-function peaks in the absorption spectrum are
broadened. In this case the position of a peak is deter-
mined by the maximum in the absorption spectrum,
which is determined by the behavior of ReX(w) and
Im3(w). These peaks do not necessarily coincide with the
zeros of w—w, —ReZ(w)=0. In the present study the
Landau-level broadening parameter is introduced
phenomenologically and taken as a given constant. The
broadening of the Landau levels may be attributed to im-
purity scattering, electron-electron interaction, higher or-
ders of the electron LO-phonon interaction, acoustic-
phonon scattering, etc.’

The real and imaginary parts of the memory function
are plotted in Figs. 5(a) and 5(b), respectively, for the ideal
2D system. The imaginary part of the memory function
consists of a series of peaks around w=w;g+no,
(n=0,1,2,...). The amplitude of the peaks decreases
with increasing n. This can be seen from Egs. (9) because
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FIG. 5. (a) The real and (b) imaginary part of the memory
function is plotted as function of the frequency for an ideal 2D
system and for three different values of the magnetic field.

at w=wyo+hno, the dominant term in the summation of
the imaginary part of the memory function [see Egs. (9)]
is, for n5£0, proportional to B, /n, which is a decreasing
function of n. The real part of the memory function,
which can be obtained from the imaginary part by using
the Kramers-Kronig relation, is an oscillating function.
Approximately, we have ReZ(w)=0 when Im2(w) attains
its maximum values.

The magneto-optical absorption spectrum of the ideal
2D system for w near wy g is plotted in Fig. 6 for different
values of T" and three values of the magnetic field strength
which are chosen in such a way that they are near the res-
onance condition w, ~wyo. Similar to the case I'=0, we
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FIG. 6. The magneto-optical absorption spectrum of an ideal
2D system is shown for different values of I' and for magentic
field values around the resonance condition.

observe that the amplitude of the first peak decreases for
increasing ., while the amplitude of the second peak in-
creases. The Landau-level broadening parameter not only
affects the amplitude of the peaks but also their position.
As T increases the peaks broaden and become less pro-
nounced. For sufficient large I' values the cyclotron-
resonance peaks will not even be resolved. The absorption
spectrum of the Q2D system is plotted in Fig. 7. The fi-
nite width of the 2D electron layer reduces the splitting of
the peaks and also reduces the absorption.

The magneto-optical absorption spectrum above the
LO-phonon continuum is plotted in Fig. 8 for the ideal
2D system and for different values of the magnetic field
strength. The LO-phonon-assisted harmonics are clearly
resolved. For a fixed magnetic field strength the ampli-
tude of the LO-phonon-assisted harmonics decreases for
higher harmonics. This is due to the fact that near the
peak position w, one has w,=~wio+no, (n=12,...)
and the amplitude of the LO-phonon-assisted harmonic
peak is approximately given by Im2(w,)/(0, —0.)* [see
Eq. (4)], which decreases with increasing n because also
Im3(w, ) decreases with increasing w, [see Fig. 5(b)].

Finally in Fig. 9 we plot the splitting of the cyclotron
resonance peak (A=w; —w}) at o, =wro as a function of
I', the Landau-level broadening parameter, for the ideal
2D system. As I increases, the splitting first increases
and reaches a maximum, after which it decreases rapidly
(see also Fig. 6).
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FIG. 7. The magneto-optical absorption spectrum of the
Q2D system.

IV. COMPARISON WITH EXPERIMENT

In this section we apply the theory, developed in the
preceding sections, to analyze the experimental polaron
cyclotron resonance data of Refs. 4 and 5 for GaAs-
Al,Ga,_, As heterostructures and of Ref. 6 for InSb in-
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FIG. 8. The LO-phonon-assisted harmonics of the magneto-
optical absorption spectrum is shown for the ideal 2D system
and for different values of the magnetic field.
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FIG. 9. The splitting of the first two cyclotron-resonance
peaks at w. =wyo is shown as a function of I, the Landau-level
broadening parameter for the ideal 2D system.

version layers. To make a realistic comparison with the
experiments, we have to take into account the nonparabol-
icity of the electron energy band, which leads to an effec-
tive electron mass which increases with increasing mag-
netic field strength. In this respect it has a similar effect
on the electron effective mass, as polaron effects have, at
least when o, <<@po. The essential difference between
the effect of band nonparabolicity and the polaron contri-
bution is that polaron effects induce a resonant contribu-
tion around @, ~wyo which leads to a pronounced mass
renormalization for these magnetic field values. This
resonant behavior is absent in the case when there is only
band nonparabolicity. In preceding sections energy-band
nonparabolicity is neglected in the calculation of the pola-
ron cyclotron resonance mass. In the following we will
apply the theory of Zawadzki?' in order to include the
band nonparabolicity.

First, we list a few equations of Ref. 21, which will be
used in this section. For details we refer to Ref. 21. In
the presence of a magnetic field the energy of the electron
in the lowest subband, according to Zawadzki, is given by

Enp=€+2(gg+¢), (11a)

where z is the solution of the equation
172

€ 4meFfi 3
8 _3/2, 4_5/2 8
<z + <z = ., (llb)
3 5 2mb (Eg+25”)2 4
and
. 2 172
€
gj|=_.—2“"—+ —Zi +egfiw (n +7) (11c)

Here, €, is the energy band gap. F is an electric field
which determines the electron-confining triangular well
potential and which is treated here as a fitting parameter.
In this way the electron density does not directly enter the
theory. The spatial extent of the subband wave function

is determined by the variational parameter b, which is
given by b =2(3eFm,, /2#*)!/? and is consequently entire-
ly determined by the electric field F.

Let us first consider band nonparabolicity and disregard
momentarily polaron effects. The cyclotron-resonance
frequency is then given by

e Inp=Enp(n =1)—gpy(n =0),

which is different from #iw,. This shift from w, to (o, )y,
arises solely from the nonparabolicity of the energy band.

In the present paper we apply the following scheme in
order to incorporate polaron effects together with band
nonparabolicity. We use (@, ), and b, given above, as in-
put to the equation (for convenience we take I'=0)

o— (0 )pp—ReZ(a, (0 )y, b;0)=0 . (12)

The calculation of the memory function is described in
Sec. II. The solution w* of Eq. (12) gives the cyclotron-
resonance frequency, which is affected both by the non-
parabolicity and by the electron-phonon coupling.

Before comparing our theoretical results with the exper-
imental data, we discuss the physical significance of our
approximations which lead to the cyclotron-resonance fre-
quency as determined by the nonlinear equation (12). (1)
Note that for (i) =0, i.e., in the absence of the electron-
phonon interaction, Eq. (12) leads to " =(w )y as
should be the case; (ii) in the parabolic limit one has
(wc)np=w, and the result of preceding sections is
recovered. Consequently, the correct limiting behavior is
obtained if either the electron-phonon interaction or the
nonparabolicity are switched off. (2) The correction to »*
due to the band nonparabolicity and the polaron effect are
not considered to be additive in Eq. (12) because (i) ReZ
also contains (@), and (ii) the solution of Eq. (12)
denoted by w* results as the solution of a nonlinear equa-
tion. (3) Our approximation for the combined incorpora-
tion of the band nonparabolicity and the electron-phonon
interaction corresponds to a local parabolic approximation
to the band nonparabolicity. In calculating the polaron
effect all Landau levels are incorporated in the calculation
of ReX within this local parabolic approximation. This is
in contrast to earlier work of other investigators,>”?!
where only the resonance term in the perturbation theory
for the electron-phonon interaction was considered (see
also Ref. 19). This latter approach leads to the unfor-
tunate consequence’! that for w,—0 the cyclotron-
resonance mass diverges as m* ~w_ '/, This problem is
not present in our approach, where the correct zero-
magnetic-field limit is obtained because we sum over all
Landau levels. (4) Note that in the standard calcula-
tion*>72! the polaron cyclotron-resonance frequency is
determined as the difference of two adjacent Landau lev-
els. The Landau levels are calculated within, e.g.,
second-order perturbation theory. In the present ap-
proach we immediately calculate the polaron correction
(see, e.g., Ref. 15), i.e.,, ReZ, to the cyclotron-resonance
frequency w* without calculating the position of the indi-
vidual Landau levels. Recently, the present authors!®
showed that such an approach describes more accurately
the polaron contribution to the polaron cyclotron-
resonance mass. (5) The zero-temperature limit is a good
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approximation to the experimental situation 7 ~4 K be-
cause the LO-phonon energy induces a temperature scale
(i.e., To="*wyo/kg=~283 K for InSb and 426 K for
GaAs), which is almost 2 orders of magnitude higher.

In comparing our theory with the experimental data, we
are confronted with the problem that the value of F, or
equivalently the width of the 2D electron layer, is not
known experimentally. Therefore we have to take F as a
fitting parameter. The nonparabolicity of the electron en-
ergy band (without polaron effect) results in a electron ef-
fective mass m,"{p which is almost a linear function of the
magnetic field strength.* The incorporation of the pola-
ron effect leads to a strong increase of the cyclotron-
resonance mass m* when (@, )y, ~wro and, consequently,
m* deviates from the linear behavior of mgp, The
stronger the electron-phonon coupling strength, the larger
the deviation of m* from my,. The band mass m, also
affects m*, but has little influence on the slope of m*
versus the magnetic field.

It is worth noticing that in the experiment of Horst
et al. and of Sigg et al. the samples have almost the same
electron density, i.e., n,=4.07x10'!" and 4x10!' cm~?,
respectively. However, the polaron cyclotron-resonance
mass in both experiments shows quite different behavior,
particularly in the lower-magnetic-field region (see Figs.
10 and 11). This is a puzzling fact which needs more ex-
perimental attention. Therefore in the present study we
will concentrate on the higher-magnetic-field region
where the polaron effect is believed to be dominant. Even
in the high-magnetic-field region (i.e., H > 12 T) the ex-
perimental results of Horst et al. for the cyclotron-
resonance mass are slightly higher than those of Sigg
et al.

We find that our one polaron theory cannot explain the
experimental results quantitatively in the case of the
GaAs-Al,Ga,_,As heterostructures if we use the well-
known value for the electron-phonon coupling constant,
i.e.,, ®=0.068. For any choice for F we find that with
a=0.068 the calculated cyclotron-resonance mass shows
a rather large increase compared with the experimental
data when (o, )y, ~wro. Therefore we will consider a as
an effective electron-phonon coupling constant and adapt
its value in order to fit our theory to the experiments
(without confusion we will use the same notation a). The
difference between this effective value for a and 0.068
may be interpreted as resulting from a constant overall ef-
fect of the many-particle nature of the 2D electron system
on the cyclotron-resonance mass.

In Fig. 10 we plot the cyclotron-resonance mass derived
from the experimental result of Horst et al.* (solid circles
and solid squares) and compare it with our calculation.
By using an effective a=0.05 and an electric field
F =3x10* V/cm, we can fit our results to the experimen-
tal data when H > 15 T (solid curve). The electric field F
results in a width of the 2D electron layer

(z = (z2))2=V3/b~55 A .

The dashed curve is the result of Zawadzki.?! We even
can obtain a fitting over the whole magnetic field region
(see dash-dotted curve in Fig. 10) when the effective
electron-phonon coupling constant is taken as a=0.015,
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FIG. 10. The experimental data of Horst et al. (Ref. 4) (solid
circle and square points) for GaAs-Al,Ga,_,As are compared
with the present theoretical results (solid and dash-dotted
curves). The dashed curve is the results of Zawadzki (Ref. 21).
The effective electron-phonon coupling constant a <0.068 be-
cause many-body effects were not included.

0068

which is about 4.5 times smaller than the well-accepted
value @=0.068, and an electric field F=1.3x10° V/cm,
which results in a very thin 2D electron layer of 34 A.

Next, we analyze the experimental data of Sigg et al.’
in Fig. 11, where we have to use an effective a=0.05 in
order to fit the experiment in the region H > 12 T. This
value for a is consistent with our previous one. Notice
that the cyclotron-resonance mass derived from the exper-
imental data of Ref. 5 exhibits a pronounced peak struc-
ture at H~5 T (see Fig. 11). This is not caused by pola-
ron effects and was attributed in Ref. 5 to a change of the
filling factor from v>1 to v<1. Here we use a smaller
electric field value F=2X10® V/¢cm, which leads to a
electron-layer width of about 135 A. The other physical
parameters used in the calculation are fiw; o=36.75 meV
and €, =1520 meV. The band mass m, is taken from
Ref. 4 and is m;, =0.0665m,.

In Fig. 12 the experimental data for InSb inversion
layers® (for the lowest subband) are compared with our re-
sults (solid and dashed curves). The experimental data
plotted as solid circles and square points correspond to the
electron densities n, =2 10'! and 10'> cm~?, respective-
ly. Here we also take into account the effect of spin. For
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FIG. 11. The experimental results of Sigg et al. (Ref. 5)
(solid circles) are compared with the present theoretical results
(solid curve). The effective electron-phonon coupling constant
a <0.068 because many-body effects were not included.
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FIG. 12. The experimental data for InSb inversion layers
(Ref. 6) are compared with the present theoretical results (solid
and dashed curves). The solid circle and square points corre-
spond to the experimental electron densities n,=2x10'' and
10'2 cm 2, respectively.

this purpose #w.(n+73) in Eq. (1lc) is replaced
by #w.(n+5)—|gs |ugH/2. The electron-phonon
coupling constant is a=0.02. The electric fields are
F =2.3X10° (two upper curves) and 6.5X 10° V/cm (two
lower curves), respectively. The other parameters are
fiw 0=24.4 meV, m,=0.0135m,, ;=235 meV, and
lgo | =51

It is clear that the effective electron-phonon coupling
strength is reduced considerably in the experiments of
Refs. 4 and 5. This may be attributed to occupation ef-
fects (i.e., Fermi-Dirac statistics) and screening arising
from the electron-electron interaction, which are neglected
in the present study. It has been suggested in Refs. 3 and
5 that electron screening may play an important role in
the electron-phonon interaction in the cyclotron-resonance
experiment and may modify the polaron effects consider-
ably. In the experiment of Ref. 3 no significant polaron
effects could be identified. This can be understood by
noticing the fact that the largest probe-laser energy used
in the experiment is only about #w; /3, corresponding to
a wavelength A=96 um (see Ref. 3), which is far from the
polaron resonance condition. Therefore the experimental
results could be explained by band nonparabolicity only.

In Ref. 6 the cyclotron-resonance frequency o* is mea-
sured below and above the LO-phonon energy. For
o* <wy1o the cyclotron-resonance mass m* is almost a
linear function of the magnetic field (see Fig. 12). Such a
linear behavior of m* can also be explained by band non-
parabolicity. However, band nonparabolicity cannot ex-
plain the splitting of m* for ®* ~wyo. The splitting of
m* in the experiment of Ref. 6 is so large that it is neces-
sary to take a=0.02 to explain the experimental data.
a=0.02 is the well-accepted value for the electron-
phonon coupling constant in InSb. This is in contrast to
the above analysis of the experimental results of Refs. 4
and S for the GaAs-Al,Ga,_, As heterostructures, where
we need a smaller effective electron-phonon coupling con-
stant to explain the data with our theory. For the mo-
ment, it is not clear why the electron-phonon coupling is
not reduced in the experiment of Ref. 6 by the many-
particle effects. A possibility is that occupation effects
and screening are not important at the resonant condition
itself.?> Note also that in order to explain the o, <wio
results of Ref. 6 no polaron effects have to be invoked.

V. CONCLUSION

In the present paper we have calculated the magneto-
optical absorption spectrum of a single 2D polaron. In
order to remove the divergences in the absorption spec-
trum we have introduced a Landau-level broadening pa-
rameter in a phenomenological way. The nonzero width
of the 2D electron layer is incorporated into the memory-
function calculation by considering the lowest subband. It
is found that the nonzero width of the 2D electron layer
considerably reduces the polaron effects. In order to
make a realistic comparison between our results and the
experimental data, we have taken into account the effect
resulting from the nonparabolic electron energy band.
When we use an effective electron-phonon coupling con-
stant which is smaller than the experimentally determined



34 THEORY OF THE CYCLOTRON RESONANCE SPECTRUM OF A . .. 8809

values, we are able to explain quantitatively the experi-
mental data for GaAs-Al,Ga,_,As heterostructures in
the high-magnetic-field region. Effects from Fermi-Dirac
statistics and the electron screening are probably respon-
sible for the reduction of the electron-phonon coupling,
but this needs further theoretical consideration before we
can be definite about it. We have also compared our
theoretical results with the experimental data of Ref. 6 for
an InSb inversion layer. We find that in this case the
electron-phonon coupling constant is not reduced and that
‘the one-polaron theory could explain the experimental re-
sults.

In the present study we have neglected the many-body
effects. We have studied the problem of one polaron.
Therefore the present theory is expected to be valid in the
limit of low electron density only. Recently, the optical
absorption spectrum of a 2D polaron has been calculated
for the zero-magnetic-field case by the present authors.?
In Ref. 23 the dynamical screening effects due to the
electron-electron interaction on the electron LO-phonon

interaction have been found to be important. For the
Q2D electron system, like the GaAs heterostructures in
Refs. 4 and 5, the electron density is not very high:
n,~4x10"" cm~2 Near the resonance condition
w, =~y the filling factor v<1 and electrons will be in
the lowest Landau level. This probably is the reason why
the present one-polaron theory provides such a close
agreement with the experimental results.
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