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Effects of electron-electron correlations on defect and interface states
in amorphous Si and Si02 systems
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The effects of electron-electron correlations are included in the nearest-neighbor tight-binding
model of tetrahedrally coordinated covalent solids in the amorphous phase. The amorphous systems
are represented by Bethe lattices and the electron-electron interactions are parametrized for a short-

range interaction in a Hubbard-like Hamiltonian. Self-consistent solutions are obtained in the
Hartree-Fock approximation. If defects are included the self-consistent energy parameters vary
with distance away from the defect but the solution is still possible if this variation falls away rapid-

ly over a few shells. The cases of dangling bonds in Si and Si02 are considered by terminating the
Bethe lattice. The former shows localized states in the gap for two charge configurations, but Si02
shows only one. The interface between Si and Si02 is represented by joining two Bethe lattices. The
self-consistent solution shows appreciable charge transfer on to the first 0 atom and consequential

changes in the local density of states.

I. INTRODUCTION

The interface between crystalline Si and amorphous
Si02 has been extensively studied because of its practical
importance in metal-oxide-semiconductor devices. Elec-
tronic traps localized at defects in the interface play an
important role in the performance of such devices.
Among the numerous theoretical treatments of the elec-
tronic problems, there have been several tight-binding
models. ' All of these works simulate the amorphous
substance by Bethe lattices and use a nearest-neighbor
Hamiltonian with five parameters. In the paper by
Laughlin et aI. ' the Si crystal is also simulated by a Bethe
lattice, and therefore the interface is represented by a sin-

gle atom. It is interesting to note that most of the local
properties of the interface are well treated in this way, and
that the surface effects are confined to very few layers
around the interface. Martinez and Yndurain pointed
out that, besides the two-dimensional nature of the inter-
face (not taken into account by Ref. 1), the value of the
site-energy parameter in atoms near the interface could in-
fiuence the properties of the states near the Si gap. They
also pointed out that the single-particle tight-binding
model was particularly inadequate in this region since the
strong local perturbation changes the many-body proper-
ties so that the local tight-binding parameters should be
calculated self-consistently. In the preceding paper we
have extended the calculation of a Si crystal with attached
SiO2 Bethe lattices with particular reference to defect
states at the interface, with various assumptions on the
parameters involved.

On the other hand, Barrio et al. (BTMY) developed a
theory for a-Si in which the two tight-binding parameters
of the Weaire and Thorpe Hamiltonian can be calculated
self-consistently by parametrizing the electron-electron
correlations in a Hartree-Fock Hamiltonian. It is the pur-
pose of this paper to apply the BTMY self-consistent
method to the two-Bethe-lattice system of Ref. 1 in order
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where the summations are over neighboring sites. The in-
teraction terms U and E have been linearized and the
density-matrix elements P p(n, n) are calculated self-
consistently using
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The integral is over occupied states and the Green's func-
tion G is found by solving the equations of motion for the
Bethe lattice.

There are various ways by which the Hamiltonian (1)
can be improved. First, it should be extended to include
the electron spin (cr), in order to account for spin effects
in the electron-electron correlations. Second, intrasite
correlations of the type

J g P &(n, n)
~
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~
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to investigate the changes of the tight-binding parameters
near the Si-SiOz interface. In Sec. II we describe the
theory for a Si Bethe lattice; that is, we extend the calcu-
lation of BTMY to a complete five-parameter Hamiltoni-
an. In Sec. III we show how the Si02 Bethe lattice can be
mapped into the preceding problem, and with these results
we connect the two lattices in Sec. IV to study the inter-
face. In Sec. V we summarize the important results of the
work.

II. SELF-CONSISTENT Si BETHE LATTICE
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are introduced. This was not done by BTMY because
terms of this type break the symmetry around a defect site
and the problem is then more complicated. Finally, in-
stead of the Weaire-Thorpe Hamiltonian with 5 and V,

all the possible interactions between s and p nearest-
neighbor orbitals are included. In this case one has 4)&4
matrices for various a at each site in shell n in the Bethe
lattice. The site-energy matrix is defined as

A i(n)=
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The subscript in the matrix notation states that the site in
shell n is connected to the previous shell by bond 1. The
interaction between sites connected by the same bond is

r

I

Since T~(N+2)=T, (N+1), substitution of (7) and (8)
into (6) gives a solution for T& (N+1). Then one obtains
a chain of equations for the rest of the T matrices,
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Of course, for a pure infinite lattice these matrices do
not depend on the shell number n and all the four direc-
tions are the same. However, if defects, like a dangling
bond, or surfaces are introduced, this symmetry is broken
and the values depend on shell and bond number.

We create a terminated Bethe lattice by removing bond
1 on site n =1. It is now necessary to solve an infinite
chain of equations because all the quantities depend on n.
It is reasonable to assume that beyond a certain shell N
this dependence is negligible and that locally the system
behaves as a pure Bethe lattice. In practice, N is chosen a
posteriori as the minimum number of shells that are need-
ed in order to have variations smaller than certain desired
number ( —10 }. Beyond shell N the Green's function in
the Bethe lattice obeys the equation of motion,

Gi (N, N+1)[EI A i (N+1)]—
=G ( (N, N) Wi (N}+ g GN(N, N+2) W~(N) . (6)

a (+I)

Notice that we have assumed that W& (N) = W, (N+ 1).
Equation (6) can be solved by defining a transfer matrix

for n =2, . . . , N With t.hese matrices all Green's func-
tions needed can be built sequentially, starting with

G, (1,1)= EI —A, (1)—g S T, (2)W, (1)S
a (+1)
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Using the equations for site 2, we find

The term in square brackets is present in the pure lattice,
but is absent for a dangling-bond defect in orbital l.

We can work out all the other correlations needed using
the rotations S~ and equations like (8); for instance, the
correlation between sites 1 and 2, connected by bond a, in
the representation where the first row is a = 1, is

G i (1,2) =S~G~(1,2)S~ '

Gi (N, N+1)=Gi (N, N)Ti (N+1),
Gi(2, 2)=[[W)(1)] '+G)(1,2)] 'T)(2) . (12)

and three matrices S which transform orbital a into or-
bital 1; therefore,

G~(N, N+2) =S~ 'G) (N, N+2)S~

=G, (N, N+1)S~'T)(N+2)S~ . (8)

These relations can be extended to further shells. The
local densities on each shell are

p (n)= Im TrG& (n, n),

TABLE I. Parameters used for the Si Bethe lattice (in eV}. The parameters in this table differs from
those given in Table I of Ref. 3 in terms of the use of a Bethe lattice instead of a crystal, and because of
a shift in the energy origin of 5.36 eV.

Vl

—5.44

V3

—0.2

V4 V5

0.6
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TABLE II. Site-energy matrix elements (in eV) and charge densities for a Si Bethe lattice with a dan-

gling bond as a function of the shell-generation number n (blanks mean that the value is the bulk one,
which is given at the bottom of each column). The parameters in this table differs from those given in
Table I of Ref. 3 in terms of the use of a Bethe lattice instead of a crystal, and because of a shift in the

energy origin of 5.36 eV.

Charge density

~22

3.28
5.35

4.18
4.18

—1.74
—1.81

—1.82
—1.82

0.88
0.16

0.53
0.47

4.14
4.30

4.21
4.20

—1.81
—1.81

0.53
0.47

0.51
0.49

4.15
4.25

—1.82
—1.81

4.20
4.22

—1.82
—1.82

4.20
4.20

0.50
0.50

0.50
0.50

—1.82 —1.82 0.5

and the various elements of the density matrix are

—2P ~(n, m)= Im G ~(n, m)dE
QO

(14)

This integral is done in the complex plane following the
method described by Robbins and Falicov in order to
minimize the computing time, and the Fermi level is
found according to the sum rule

Ã 4

g [P (n, n)+P (n, n)]=4.
n=l a=1

The self-consistency is obtained by feeding back into (4)
and (5) the numbers calculated with (14). The values of
the parameters U„J,and E are chosen to reproduce the
bands for the pure case [Eq. (10) with the term in square
brackets in it]. For instance, the combined value of
UH+ —,

'
UPi, (n, n) has to be the same as UH for the nor-

mal tight-binding Hamiltonians.
The dangling bond is then studied by removing the

term in square brackets in (10) and the occupancy of the
orbital is stated by the initial values of P»(1, 1) and
P i &

(1,1 } to give electron numbers 0, 1, or 2 in Eq. (15).
In Table II we sumrgarize the results, obtained with the

parameters shown in Table I, for a dangling bond in n = 1

with initially one electron with o= 1. %'e give only the
values of the different matrix eleinents of A because the
variation of Wii with n, from the bulk value of 5 eV, is
negligible ( &10 }. Here, as in the BTMY theory, the
value of U that reproduces the bands is 3 eV, much small-
er than the typical atomic values of the order of 10—12
eV. This is attributed to the fact that polarization terms
due to electron rearrangement around a defect in a solid

can be absorbed into U in a Hartree-Pock treatment. If
polarization terms (-D) are included, then the effective
U is U,~f

——U —2D, and D may be as large as 5—6 eV in
some insulators, although in Si it is probably 3 eV.

We observe that X in this calculation is 5; that is, that
the effects of the dangling bond are localized around the
defect site. The largest variation is seen in A ii, changes
are as large as 27%.

We notice that the change-density fluctuations around
the dangling bond are localized in agreement with the re-
sults of BTMY. A simple calculation using the Haldane-
Anderson model for a dangling bond in Si gives similar
charge densities around the defect.

In Fig. I we show the local densities of states from the
final results of Table II; we notice two dangling-bond
states in the gap corresponding to the singly occupied and
doubly occupied defects, separated by 0.7 eV. It is worth
remarking that the self-consistency over all the lattice is
necessary for this reduction; if electron-electron correla-
tions were permitted only on the defect site, this differ-
ence would have been of the order of U =3 eV.

Our results agree with the BTMY theory because we
show here that the most important term in the Harniltoni-
an is U. The quantities are somewhat different but the
qualitative behavior is consistent with BTMY.

III. Si02 BETHE LATTICE

The Si02 lattice can be treated in the same way since
the Si sites form a lattice topologically analogous to the Si
one, except that there are oxygen atoms between the Si
sites. The Si-0 interactions are shown in Fig. 2, where we
have neglected oxygen @pm interactions, for two reasons:
(1) With these interactions the equations of motion de-
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ergy. The first terms on the right-hand side of (16) are
the matrices in the form (4) and (5) with different values
of UH, Vi, U, J, and K, while V; =0 for i =2,3,4, 5. Ex-
plicitly, the energy-dependent terms are

T +3(T') r +3(r')
E E— E E-

2[TT'+(T')'j 2[«'+(r')'j

Cii(E) = +T cos8

Ci (E)= + =C i, a=2, 3,4
TT' cos8
E —E E —E,

C p(E)= +, a,P=2, 3,4. (17e)
(T') cos8 (r')

E(eV)
12

pend on the dihedral angles which therefore need to be
specified for every bond, and (2) these interactions have
very little effect on the results near the Si gap. Using the
equation of motion one transforms the oxygen coordinates
away by renormalizing the Si—Si bonds, which means
that the equations are the same as (6), except that the ef-
fective interaction matrices A' and W' contain the oxy-
gen parameters and depend on the energy. We define

A i ~(n) =A i (n)+X(E),

Wi ~(n)= Wi (n)+C(E),
(16)

where we have separate the terms that depend on the en-

FIG. 1. (a) Local density of states at the dangling bond ter-
minating a Si Bethe lattice. Solid line for spin orbital o.=1.
Dashed line for spin orbital or= f (double occupancy). The cal-
culation is made using the parameters in Table I and an imagi-
nary part to the energy -10 ' eV. (b) Density of states in the
bulk.
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The values Ez and E, are eigenvalues of the oxygen 2s
and 3p orbitals respectively

The pure Bethe lattice can be solved using the opera-
tions in Sec. II. Using the parameters listed in Table III,
the results are shown in Fig. 3(b). The Bethe-lattice densi-

ty of states stretches over a broad energy range with a gap
between 0 and 8 eV.

cf
LJ0

-30 -20 -10 0 10
E(eV)

20

FIG. 2. Tight-binding parameters used to construct a Si02
Bethe lattice.

FIG. 3. Same as Fig. 1 for a Si02 Bethe lattice with parame-
ters in Table III.
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TABLE III. Parameters used for the SiO2 Bethe lattice {energies in eV}. The parameters in this table

differs from those in Table II of Ref. 3 because of a shift in origin of 5.36 eV {cf.E„E~,and 3 ll, the

latter should be compared to Upgo).

—1.52 —15.5 —0.2

U J E

144 4 2 2

~»(E)= E E + E
3( r') 3(r')

TT +2(T ) rT +2(r )
lcd g g g g c~

P S

T'+2(T')' r'+2(r')'
E E—E E, —

2TT'+(T')' 2rr'+(r')'
P =

E E + E E

(18a)

(18b)
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The results of the calculation for the dangling bond are
summarized in Table IV. One notices immediately that
the effect of electron correlations in the SiOz lattice is

The dangling-bond case can be treated as before, allow-

ing for a modification of the energy-dependent terms X on
the defect site. For a dangling bond on site n =1 and or-
bital 1, there are only three adjacent oxygens, and

practically concentrated on the first shell around the de-
fect. The density of states for this system is shown in Fig.
3(a). The single dangling-bond state produces a sharp lev-
el in that gap (solid line), while the second orbital pro-
duces resonances in the conduction bands (dashed line).

IV. INTERFACE

There are various ways in which an interface between
the two Bethe lattices can be built of these we choose the
one in which the last atom in the Si Bethe lattice is sur-
rounded by three Si atoms and one oxygen atom, and the
first atom in the Si02 is surrounded by four oxygen
atoms, just as the rest in the SiO2 lattices. This models
the interface between Si(111) and a-SiOq, which has been
studied by us without the self-consistent theory. The no-
tation for the layers is illustrated in Fig. 4. Then the
equations of motion near the interface are

Gi ( —1, 1) EI —3 i (1)—g S~ 'T, (2) Wi (1)S~ =Gi( —1, —1)Wi(0),
a (&1)

(19a)

Gi( —1, —1) EI —Ai (1)— g S 'T'i ( —2)IVt ( —1)S =I+Gt( —1, 1)8" i (0) .
a (+1)

(19b)

The site-energy matrix A i (1) now depends on the energy
through the oxygen bond; therefore, to (4), one has to add
the terms

( l"')' (r')'
E EE E— —

p s
(20b)

T
' '=E E+E ES

(20a)
TT'

&~~(E)= + =X i(E), a,P&1 . (20c)

TABLE IV. Site-energy matrix elements (in eV) and charge densities for a Si02 Bethe lattice with a

dangling bond at shell n =1 (blank entries indicate bulk values given in last rom). The parameters in

this table differs from those in Table II of Ref. 3 because of a shift in origin of 5.36 eV {cf.E„E~,and

3 l&,
' the latter should be compared to U~o).

Spin 334
Charge density

Pg2

T

7l

5.81
13.98
7.52
7.56
7.53
7.53

7.54
7.56
7.53
7.53

—1.32
—1.62
—1.58
—1.58

—1.57
—1.58

—1.58

0.06
0.94
0.44
0.55

0.50

0.43
0.56
0.48
0.52
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TABLE V. Site-energy matrix elements (in eV) for Si sites in

the Si-Si02 interface shown in Fig. 4 {both spin values give the
same result).

334

—2
—1

1

2
3

7.53

7.505
7.503
3.61
4.18
4.19

4.2

7.53

7.505
7.506
4.25
4.21
4.20

4.2

—1.58

—1.59
—1.83

—1.82

—1.58

—1.59
—1.81

—1.82

FIG. 4. Si-Si02 interface showing the sheH-generation num-

bers n for each Si atom on both sides of the interface.

We find two dangling-bond states in the gap that corre-
spond to different occupancy states; the separation be-
tween the two is -0.7 eV, in agreement with that mea-
sured in spin-resonance experiments. This is a conse-
quence of the self-consistency performed in the whole lat-
tice and stresses the importance of screening effects in a

The interactions through the bond at the interface n =0
are straightforward extensions of W',

W (0)= Wi~(0) = Wi~(2),

except for the first diagonal term, which is

(1
f

8'i (0)
f
1)=K'Pi i(l, —1)

(21)

{1
f

Wi (0)
f
1)=K'P„(—1,1),

where K' is the value in the Si02 lattice.
The results, using the same parameters as in the preced-

ing sections, are shown in Table V. One immediately no-

tices that the Si02 lattice is not perturbed much by the
presence of the interface, but the Si lattice is strongly af-
fected in the first shell. There is a charge defect in the in-

terface; the charge-density difference between the first two
shells on the Si side is -0.2 electrons. This charge has
been sucked by the oxygen bond in the interface, resulting
in a decrease in the site energy UH of the Si with three Si
bonds. Figure 5(b) gives the local density of states on Si
atoms well away from the interface in the Si (solid line)
and Si02 (dashed line). The results are similar to those
within the single Bethe lattices of each species [cf. Figs.
1(b) and 3(b)]. Figure 5(a) gives the same result for Si
atoms next to the interface. There is little change on the
Si02 side, but the Si attached to the other lattice is strong-

ly affected.
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V. CONCLUSIONS

We have extended the BTMY theory in order to include
all the nearest-neighbor interactions between sp states in
Si. The results for the pure-Si lattice and for the dangling
bond are in qualitative agreement with the results of
BTMY. We believe that the present treatment is more
realistic since we use a better tight-binding Hamiltonian.

-30 -20 0 10

(eV)
20

FIG. 5. (a) Local densities on the Si orbitals next to the Si-

Si02 interface on the Si side ( ) and the Si02 side

( ———). (b) Local densities on Si atoms in shells far away
from the interface on the Si side 4,

') and the SiO& side

I ———)



34 EFFECTS OF ELECTRON-ELECTRON CORRELATIONS ON. . .

lattice. In accordance with BTMY we found a net mag-
netic moment localized in the dangling bond,
P»(1)—P» (1)=0.72 electrons, as expected. '

In the Si02 lattice the effects of the dangling bond are
much more localized, there are no multiple occupancy
states in the gap, the singly occupied state is found at
-5.75 eV, and the doubly occupied state is as resonance
in the conduction band at -9.5 eV. The difference in en-

ergy of 3.75 eV is practically the value of U=4 eV, re-
fiecting the fact that the screening of the electrons in the
lattice is much less severe in this case.

The results for the interface show an unexpected effect,
since there is charge imbalance there resulting in a change
in the wrong direction of the effective UH for the Si with
one oxygen bond. In previous calculations' this value
was taken as —,'(3UH+ UH)=5. 3 eV, while the value cal-
culated here was 3.61 eU, a large discrepancy. This is at-

tributed to the ionicity of the oxygen-silicon bond that at-
tracts the electron in the interface bond toward the oxy-
gen. It will be necessary to construct other interfaces with
two and three oxygen bonds in order to investigate the
variation of Utt with the number of oxygen bonds. It will
also be necessary to perform a self-consistent calculation
of the type described here to the crystalline interfaces of
reference, in order to treat the Pt, center in the interface.
Such a calculation is in progress.

ACKNOW LEDGMENTS

We are grateful to Dr. J. Taguena-Martinez and Profes-
sor Beall Fowler for useful discussions. This work was
supported in part by the U.S. Army through its European
Research Office. One of us (R.A.B.) wishes to thank Ox-
ford University for its hospitality.

'Permanent address: Instituto de Investigaciones en Materiales,
Universidad Nacional Autonoma de Mexico, Apdo. Postal
70-360, 04510 Mexico D.F., Mexico.

Permanent address: DFTE—Centro de Ciencias Exatas,
UFRN, 59000 Natal —NR, Brazil.

'R. 8. Laughlin, J. D. Joannopoulos, and D. J. Chadi, Phys.
Rev. 8 21, 5733 (1980).

2E. Martinez and F. Ynduriin, Phys. Rev. 8 25, 6511 (1982).
A. S. Carrico, R. J. Elliott, and R. A. Barrio preceding paper,

Phys. Rev. 8 34, 872 (1986).
4R. A. Barrio, J. Taguena-Martinez, E. Martinez, and F.

Yndurain, J. Non-Cryst. Solids 72, 181 (1985).
5D. %eaire and M. F. Thorpe, Phys. Rev. 8 4, 2508 (1971).
6J. C. Slater, Quantum Theory of Molecules and Solids

(McGraw-Hill, New York, 1965).
7M. O. Robbins and L. M. Falicov, Phys. Rev. 8 29, 1333

(1984).
W. 8. Fowler and R. J. Elliott (private communication).
E. H. Poindexter and P. J. Caplan, Prog. Surf. Sci. 14, 201

(1983).
~ See, for instance, Amorphous Semr'conductars, edited by M. H.

Brodsky (Springer-Verlag, Berlin, 1979).


