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The dynamical conductivity due to phonons around the soliton lattice and around a polaron lat-
tice, and the creation energy of these two structural configurations were calculated in a continuum
model of polyacetylene. The crossover from the soliton lattice to the polaronlike distortion proposed
by Kivelson and Heeger to explain the abrupt onset of the magnetic susceptibility around 5% doping
is not found in a strictly one-dimensional calculation. The harmonic lattice fluctuations around the
static equilibrium configurations were obtained and used to calculate and compare the absorption

spectra for the various defect configurations.

I. INTRODUCTION

Since Su, Schrieffer, and Heeger' proposed the soliton
model of polyacetylene, a number of experimental studies
and theoretical calculations have been carried out to sup-
port this model. Theoretical predictions on the soliton
hopping mechanisms for the electric conductivity at very
light doping level, on the vibrational excitations of
charged solitons and on the effect of dilute doping on op-
tical absorption spectra have been confirmed by various
experiments. Undoped polyacetylene has a half-filled #
band and therefore is unstable against Peierl’s transition
to become a dimerized semiconductor. Upon doping, the
dc electric conductivity increases sharply by 11 orders of
magnitude at 1—2 % doping level. However, up to 5%
doping density the strength of the Pauli spin contribution
to the magnetic susceptibility is much smaller than one
would expect in a metal of similar conductivity. This
anomalous low-X, high-o behavior led to a suggestion that
the conduction in this regime is by unpinned charged soli-
tons. Interestingly, this anomalously low magnetic sus-
ceptibility is abruptly increased around 5% doping level.?
To explain this observation, Kivelson and Heeger pro-
posed recently? that this onset of magnetic susceptibility is
due to the crossover from a soliton lattice* to a metallic
state consisting of a regular array of polaronlike distor-
tions.

We have carried out calculations investigating the
creation energy and dynamical conductivity for static con-
figurations such as the dimerized lattice, the soliton lat-
tice, and a polaronlike lattice in the model of Takayama,
Lin Liu, and Maki® (TLM), to see if numerical calcula-
tions support this idea. We found that there is no cross-
over between the soliton lattice and the polaronlike lattice
in the strict TLM model. Moreover, at high density the
polaronlike lattice is unstable against the undimerized lat-
tice. We checked the possibility that the pinning potential
from an ordered lattice of ionized dopants might favor the
polaronlike lattice over the undimerized one, but we found
that this does not occur. Having obtained the static
equilibrium configurations corresponding to the soliton
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lattice and the polaronlike lattice, we have also analyzed
the phonon modes arising from small harmonic fluctua-
tions around these static configurations. Normal mode
analyses around the dimerized configuration, single soli-
ton, and single polaron were carried out by several
groups.>~% Analysis around the soliton lattice was done
by us and will be reported in a separate paper.” We have
also calculated the dynamical conductivity due to these
phonon spectra. Similar calculations around a soliton and
a polaron have been reported by Mele and Hicks'® and Ito
and Ono.'"" The dynamical conductivity due to phonons
around the soliton lattice and polaronlike lattice was ob-
tained following our previous work by introducing the
internal vibrational degrees of freedom of each primitive
cell [(CH)_, unit]. These calculations were done both at
the low-doping density (1%) and at slightly above the ex-
perimentally observed transition density (—7%) and com-
pared with experiments. Surprisingly, we find that in the
polaronlike lattice at high density, the ir conductivity is
very small, which is not consistent with experiment. An
alternative model for the high-density metallic state will
be discussed.

In Sec. II we will first review the general formulation
for calculating the dynamical conductivity due to phonons
around the static equilibrium configuration along with the
method for incorporating the internal vibrational degrees
of freedom of a (CH)_, chain. Explicit calculation and
the results of absorption spectra will be discussed in Sec.
II1.

II. FORMULATION

The Hamiltonian for (CH)_, is transformed, after tak-
ing the continuum limit,’ to

H=—"— [ dx |A2x,0+ —-4%x,0)
7TUF}\. wQ
+2fdx\ll+(x,t) —ivpogi+01A(x,t) W(x,t)
spin dx T

(1)
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where A is dimensionless electron-phonon coupling con-
stant (=0.38), vr the Fermi velocity, A(x,?) is the order
parameter representing the staggered lattice-displacement
field, wg the bare optical-phonon frequency, and W(x,?) is
the electron wave function in spinor form, the first and
second component of which represent the right- and left-
going waves, respectively, and 0, and o3 are the Pauli ma-
trices. We have the following equations after taking the
functional derivative of Eq. (1) with respect to 8%+ and
SA:

—l'UFO':;“;‘d;-}-O']A(x) ‘I’k(x):Ek‘l/k(x) ’ (2)
2 occ
—y A(x)+2§‘l/;'0,\llk(x):0 . (3)

Equation (3) is the self-consistency relation which guaran-
tees that our system is at a local extremum on the energy
surface. Equation (2) is the eigenvalue problem, from
which we obtain the one-electron energy spectrum. Then
the total energy is just given by

' 1 2
Ea=—23 Ek—i—mfdxA (x) . )

The factor of 2 comes from spin degeneracy, and the
prime means that the sum over k runs up to Fermi level,
which changes as we put extra electrons (doping) into the
system, so that E,, is a function of the dopant density.
The requirement that E,, should be stationary with
respect to the small variation of A(x) just gives the self-
consistency condition [Eq. (3)]. Calculations of E,, with
Eq. (4) as a function of doping density for different
structural distortions were carried out, and the creation
energy per excess electron for each configuration was ob-
tained as follows:

Ece=[E(A(x),N)—E¢}/N , (5)

where E| is the total energy of the dimerized configura-
tion without doping and N is the number of excess elec-
trons. E. for different configurations is plotted in Fig.
(1), where curve a represents the creation energy per
charge for the soliton lattice calculated by Horovitz,*
curve b for a polaronlike lattice, curve ¢ for an undimer-
ized lattice, and curve d for a dimerized one.

It is interesting to note that although the soliton lattice
is favored at all densities in this model, the energy per
particle as the undimerized lattice (curve c), polaronlike
lattice (curve b), and soliton lattice (curve a) converges
above an 8% doping level. As Kivelson has noted, this
implies that small perturbation outside the TLM model
may reorder these energies. Since we are particularly in-
terested in which polaronlike lattice might be favored over
the soliton lattice, we have also considered the influence
of a screened Coulomb pinning potential (due to an or-
dered impurity lattice) on these energies. We have found
that for reasonable estimates of the pinning potential the
soliton lattice remains energetically favored over the pola-
ron lattice at all densities considered. While this implies
that the polaron lattice is unstable against the soliton lat-
tice at all densities even in a more realistic model, we
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FIG. 1. Creation energy per charge for several structural
configurations. Curve a refers to the creation energy for the
soliton lattice, curve b is for the polaronlike lattice, curve c is
for the undimerized lattice, and curve d is for the dimerized lat-
tice.

should note that the relaxation from the polaron lattice to
soliton lattice proceeds along a zone-boundary phonon of
the polaron lattice. This means that like the soliton lat-
tice, the polaron lattice can describe an equilibrium field
configuration, if we constrain the system to be transla-
tionally invariant with a primitive translation vector
R =a /c, where c is the dopant concentration and a is the
c-c bond length. With the constraint, the zone-center
modes all have »?>0, while one obtains an unstable
branch at the Brillouin-zone boundary which describes the
relaxation to the energetically favored, lower symmetry,
soliton lattice. Since the zone-center modes are important
for the infrared conductivity, we will use this constraint
on the translational invariance of the system in order to
explore properties of the polaron lattice. A detailed dis-
cussion on the calculation of the dynamical conductivity
was given by Ito and Ono,!! so we will not go through this
theory in detail. The idea, however, is to calculate the
electron current density in the presence of a small pertur-
bation 8A(x,t). The current density in the TLM model is
given by
Jx,t)=—evp W, (x,0)03¥,(x,1)
n,s

= —evp 3 [8W; (x,1)03%5 (x)

n,s

+ W (x)038¥,(x,1)] , (6)

where W\"'(x) is the eigenfunction of the unperturbed
Hamiltonian equation (2) and we have used the fact that
no phonon-assisted current exists in the ground state [we
dropped j'9(x)=¥"?*(x)o;¥'?(x)]. The deviation of the
wave function due to 8A is (we will drop superscript O for
convenience):

W, (x,0)=T,

m

¥ (x) ( SA(w) | n) )
E _E +o m|o8A(w)|n). (7
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We Fourier-transform Eq. (6) and substitute into Eq. (7),
to get an expression for j(x,w). Since we are interested in
the response of our system to a long-wavelength external
field, we extract the ¢ =0 portion of the induced current
by an integration on x. Then

_evp (n|o8A@)|m){m|os|n)
J@)=="2'2 E,—En+o

ns m

(m|o8A(w)|n){n|oy|m)
E,—E,—o ’
(8)
and thus the real part of infrared conductivity is given by

(evpg)?
Reo(w) = — —2 | M, (0) | 780 —0,) , )
20l A
, (n|ow, |m){m|os|n)
“”-;?; % E,—E,+o

(m oy [n){n ay|m)
E,—E, —

4a)(n{o‘uy|m)(mla3ln)

(10)

—-3'S

ns m E E )
We drop »? in (E, —E,, )’ —»’ (adiabatic approximation),
to obtain
(2ev (n|ow,|m)(m|oy|n) |?
Reo(w)= Fg 22 | 1y1 2| 3
n m (En—"Em)
X2md(w—w,) , (11)

where L is the length and 4 is the cross section per chain
in the polyacetylene bundle which we take to be 10. 5A2
and u,(w) is the phonon mode corresponding to w,.

B (=8, (x) A, /M [ dx'8A(x

Cz),,Q

We expand 8A,(x) in terms of u,(x) as
8A,(x)="Y Apqtto(x)

and use orthogonality

f U o (XU (x)dXx =840
to get
An@ng (
M)ZQ

(0 —wpg)Ang= 0= 09) D Apqg -
<

If we introduce electron phonon coupling constant g,
which is given by g2=mvpA, a),,Q, then

(Anwng /A0gy) *=g, /g .

NJug(x) |— —

In order to take into consideration the internal degree
of vibrational freedom of a (CH)_, unit, we consider the
Hamiltonian with several A,(x).'? Then the Hamiltonian
describing this system is generalized to

N

H:E fdx

17TUF n

Al(x,t)+ Al(x,1)

nQ

+ 3 [dx W0 |~ ivpos o AG) W),

(12)
with
Alx,t)=3 A, (x,2)

n

and
A=A,

We expand H up to second order in 8A,, to have from
Hamiltonian’s equations of motion

——8A, =84, (x,0)+mvph, [K(x,x")8A(x")dx",
C’JnQ

(13)

where K is the dynamical matrix which can be represent-
ed in terms of normal modes as

2
®
—1+—
)
where w, is the ath normal frequency and u,(x) is the

corresponding normal mode. We substitute Eq. (14) into
Eq. (13), to obtain

TUpAK (x,x") = D u4(x) uy(x'), (14)

uk(x') . (15)

We can make the matrix symmetric by transforming 4,,
to B,, with
A,a Apg

Bpa= = .
(Moo /Awy) " (8n/8)

Then, we finally have

(w? —~w,,Q)B,,a—2(g,,/g (gn/8 )@ —wQ)B . (16)

For this to have a nontrivial solution
det[(whg — )8, i+ (8, /8 )(8n /8 N Wi —H)]=0.  (17)

Given three bare optlcal frequencies w,p and coupling
constants A,, listed in Table I,'* we can solve Eq. (17) for
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TABLE 1. Bare optical frequencies and coupling constants
for the continuum model of polyacetylene.

n ©ng (cm™") An /A
1 1234 0.07
2 1309 0.02
3 2040 0.91

particular normal frequency w, to get three eigenvalues
w;, (the new normal frequencies) and their corresponding
eigenvectors which incorporate the internal structural de-
gree of freedom B,,,. Then the contribution to dynamical
conductivity from this internal vibrational mode with nor-
mal frequency w;, is given by
2
Rw(m)=2(2—i’iﬂ2w5(w—w,~a) 1P, |2

i,a

where
(Iowg|m)(m|as|1)
e (Ej—Ep,

a=

= [dx ug(x)jax) (19)

and jy(x) is the dynamical charge.

We can note that for a given a the set of modes (i =1
to 3) have a common spatial part P, which involves
u,(x) so that they are modulated only by the sum over
B,,,. Since all A,’s are positive definite, the strongest in-
frared active mode in each symmetry allowed subspace
are always the lowest branches in which the B’s are all in
phase.
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FIG. 2. Order parameter for the soliton lattice at (a) 2.37%
and (b) 6.85%.
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FIG. 3. The electronic bands for the soliton lattice at (a)
2.37%, (b) 5.14%, and (c) 12.3%.

III. RESULTS

The equilibrium static displacement fields are plotted
for the soliton lattice at a 2.4% doping level in Fig. 2(a),
and at a 6.9% doping level in Fig. 2(b). In Fig. 3, we plot
the corresponding electronic energy bands. It is interest-
ing to note that both the amplitude of the static displace-
ment field and the size of the gap in the electronic spec-
trum decrease monotonically as the dopant density in-
creases in the continuum model. For the polaronlike dis-
tortion, the equilibrium static displacement fields are
shown in Fig. 4 for a 1% concentration of polarons. At
this density this is an equilibrium displacement field for
the period shown. In Fig. 4 it is compared with the
sech?(x) shape expected for an isolated polaron. Compar-
ing the two curves, we see that even at 1% concentration
the structural distortion does not closely resemble that
constructed from a superposition of isolated polarons at
this density. Instead there is a tendency for the trapped
charges to delocalize, increasing the spatial extent and de-
creasing the amplitude of the structural distortion away
from the uniformly dimerized lattice. The electronic en-
ergy bands for this density are given in Fig. 5. It shows
narrow polaron band split away from the conduction
states with E(k)> A, At still higher density, the equili-
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FIG. 4. Order parameter for the polaronlike lattice at 1.03%.
The solid line represents the order parameter after relaxation,
and the dashed line represents the superposition of the isolated
polarons.
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FIG. 5. The electron bands for the polaronlike lattice at
1.03%.
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brium amplitude of the distortion decreases significantly
for the polaronlike lattice, so that the system is well ap-
proximated by the undimerized lattice for density p > 6%.
This can be seen from the total-energy data plotted in Fig.
1, where the polaron lattice and the undimerized lattice
energies converge for p > 6%.

Using the expression for the phonon-assisted conduc-
tivity given by Eq. (18), we calculate the absorption spec-
tra. The infrared conductivity can be experimentally
probed by the measurement of absorption coefficient a(w)
given by

( ):4—#Rea(m)
c
| 2
dir  (2evpg) IRy
= a - Bina
c i,za LA | l ,21 g I
X2m8(w—wjy) , (20)

where P, is given by Eq. (19). The three bare optical fre-
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quencies w,p and coupling constants A, for continuum
model for trans-(CH), are given in Table I. In Tables II
and III we list the normal mode frequencies w, for the
one-component theory for soliton lattice and polaronlike
lattice at two doping densities, respectively, along with the
overall parity of the mode. The overall parity of a normal
mode is obtained by multiplying the parity of the envelope
function describing the normal mode and the parity of the
internal ion displacement describing an ir-allowed mode.
The field variable A(x) describing the envelope function
of the staggered displacement field is an odd parity field
for the soliton lattice but an even parity field for the po-
laronlike lattice. Only the normal modes which have odd
overall parity are the modes which have the correct sym-
metry to induce a net oscillating dipole moment in the
system. The envelope function describing the infrared-
active mode has the opposite parity to the static displace-
ment field A(x). The simplest example of this is the en-
velope function for the Goldstone mode wug(x)
=dA(x)/dx which clearly has the opposite parity to
A(x).

As can be seen in Egs. (19) and (20), the oscillator
strength in a particular infrared active mode is given by
the square of the overlap between j;(x) and normal mode
u4(x), modulated by the square of the dot product of
{Bine} and {g,}. It is interesting to note that j;(x) looks
very similar to the Goldstone mode (the mode that has
zero frequency due to the symmetry breaking), so that al-
most all oscillator strength is found in the Goldstone
mode. At higher density, or for the lattice distortion with
less localized charge distribution, the excess charge densi-
ty tends to delocalize so that we expect more oscillator
strength to leak into the higher-lying internal modes from
the localized vibrational modes. Strickly speaking, these
are not localized because the soliton lattice or polaronlike
lattice is periodic, but what we mean here by “localized”
is that the vibrations around defect sites are much larger
than those of interdefects region. The charge also tends to
be more delocalized for the isolated polaron than for the
isolated soliton, so that we expect an enhanced ir activity
for the internal modes of the polaron compared to those
of the soliton lattice. The numerical calculations demon-
strate this trend. Figure 6 contains the absorption spectra
calculated for both the soliton lattice and the polaronlike
lattice at low density, and Fig. 7 contains the spectra at
high density. The polaronlike lattice has more fine struc-

TABLE II. Normal-mode frequency for soliton lattice in one-component theory.

Density 2.37% 6.85%
a wl/w) Overall parity wi/wd Overall parity
1 0.000 - 0.377 -
2 0.019 + 0.507 +
3 0.721 + 0.518 +
4 0.777 + 1.094 +
5 0.964 + 1.136 +
6 1.013 — 1.570 +
7 1.035 + 1.584 -
8 1.547 + 1.922 +
9 1.548 + 1.926 +
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TABLE III. Normal-mode frequency for polaron lattice.

Density 1.03% 6.16%

a wi/w} Overall parity i/} Overall parity
1 0.000 — 0.320 +
2 0.691 + 0.875 —
3 0.880 + 0.959 +
4 1.153 + 1.764 -
5 1.168 — 1.767 +
6 1.479 + 2.327 —
7 1.491 - 2.328 +
8 1.627 +
9 1.634 —

10 1.695 +

11 1.697 —

12 1.784 +

ture in the absorption spectra than the soliton lattice and
this comes from the fact that the excess charges are more
delocalized as can be seen from the order parameter A(x)
in Fig. 4. The interesting result about the soliton lattice is
that we have found three localized modes in the one-
component calculation, two of which are ir active [T and
A~, T stands for translational mode (or Goldstone mode)
A~ stands for soliton-width oscillation mode]. In the
three-component model for Tables IV and V, the T mode
contributes to the three large peaks at 0, 1280, and 1350
cm™! and the 4~ mode to two additional small peaks at
1080 and 1460 cm™! (a small peak at 1300 cm™! from
A~ is imbedded in the large peaks from the T mode and
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FIG. 6. Absorption spectra for the soliton lattice and the po-
laronlike lattice at low dopant density. (a) refers to the soliton
lattice at 2.37%, and (b) to the polaronlike lattice at 1.03%.

is invisible). These small peaks from the 4 ~ mode were
usually thought to be characteristic of polaronlike distor-
tion.®!* We should point out that there is a controversy
about this; the third bound mode (4 ~ mode) was first ob-
served in the one-component calculation by Ito et al.,
who carried out the calculations for a very small coupling
constant for which the continuum model should be most
accurate. In our calculation we have developed a general
scheme’® which allows an accurate calculation of the non-
local kernel in the continuum model for an arbitrary cou-
pling constant. Here we take A=0.38, which is represen-
tative of the situation for trans-(CH)_,. We believe that
the previous calculation of Hicks and Blaisdell, who ob-
tained two bound modes, results from a slightly less accu-
rate treatment of the ultraviolet cutoff in the momentum
sum in the calculation of the kernel. We should note that
the more recent calculations of Hicks and Gammel'® in-
troduce a lattice cutoff in this theory and also recover the
third bound mode. For polaronlike lattice we have found
six localized vibrational modes, two of which are ir active
(T and A~ modes). This explains why the ir absorption
spectrum for the polaronlike distortion looks similar to
that for the soliton lattice. But for the polaronlike lattice
the higher-lying modes are more ir active than for the sol-
iton lattice, which causes more pronounced fine structure
in the absorption spectra.

There is one important additional effect which we have
to take into consideration for the polaronlike lattice. Be-
cause the polaronlike lattice has a half-filled band, we
have to consider intraband transitions which will also con-
tribute to the absorption spectra around w=0. In the
presence of impurity (dopant) pinning, the Goldstone
mode will be shifted to have a finite frequency, but the
(damped) intraband transition will still peak around o =0.
This intraband transition is not allowed in the soliton lat-
tice because the soliton band is completely filled. We did
not incorporate this intraband transition in our calcula-
tion. We argue that this will not be important at very low
density because the polaron band is very flat leading to a
large effective mass for the free carriers. At high density,
the intraband term also makes a negligible contribution,
which can be understood in the following way. The
high-density polaronlike distortion is well approximated
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TABLE 1IV. Ir-active-mode frequency for soliton lattice in
multicomponent theory.

x10°8
30 T T T T

(a)

T
1

24
1.8 .

l.2r .

a (em )

0.6

T

0.0

(+10)

00

x107°

8000
w (cm)

1600.0

a wl/w} i w;q (cm™1)
Density: 2.37%
1 0.0 1 0
2 1279
3 1354
6 1.013 1 1080
2 1293
3 1464
Density: 6.85%
1 0.377 1 708
2 1283
3 1373
7 1.584 1 1191
1301
3 1651

by the undimerized lattice, for which the eigenfunction in
spinor representation is just a plane wave for one com-
ponent and vanishes for the other component, so that
(I|oy|m) in Eq. (19) will vanish in the high-density lim-
it. At intermediate density it may be important to include
the intraband contribution to the polarizability. It must

TABLE V. Ir-active-mode frequency for polaron lattice in

multicomponent theory.

a a),z, /co%

i

;e (cm™1)

Density:
1 0.0

5 1.168

7 1.491

9 1.634

11 1.697

Density:
2 0.875

4 1.764

6 2.327

1.03%
1
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W N =
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FIG. 7. Absorption spectra for the soliton lattice and the po-
laronlike lattice at high dopant density. (a) refers to the soliton
lattice at 6.85%, and (b) to the polaronlike lattice at 6.16%.

also be included in the calculation of zone-boundary
modes in the present model, where the intraband transi-
tions destablize a branch of the phonon spectrum of a po-
laron lattice at zone boundary.

An interesting point to be noticed in the calculated ir
spectra shown in Fig. 8 is the doping density dependence
of the integrated oscillator strength [= f dwa(w)] in the
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FIG. 8. Comparison of the integrated oscillator strength of
the soliton lattice and the polaronlike lattice. The open circles
refer to the soliton lattice, and the open triangles to the polaron
lattice.
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various structural distortions. As we track the integrated
oscillator strength in the spectra (shown in Fig. 8) calcu-
lated for the soliton lattice, the integrated strength tracks
roughly linearly with dopant density for low concentra-
tion, becoming sublinear as the solitons overlap above
p=4%. The integrated oscillator strength for the pola-
ronlike lattice is larger than that for the soliton lattice by
the factor of 10 at small density. In Horvitz’s theory* this
is attributable to the small inertial mass of the polaron rel-
ative to the soliton. However, this decreases much more
rapidly as dopant density increases. By 6% the integrated
strength nearly vanishes for the polaronlike lattice. This
result occurs as the amplitude of the order parameter is
suppressed at high concentration. This result makes sense
in the limit of the undimerized lattice [A(x)=0], for
which we can prove that j;(x)=0 as follows. If the order
parameter has even parity or A(—x)=A(x), as is the case
with the polaronlike lattice, then it follows from the fact
that the dynamical charge has the opposite parity to the
structural distortion, that j;(—x)= —jz(x). However, if
A(—x)=—A(x), then it follows that j;(—x)=j,(x).
Therefore, for the undimerized lattice of A(x)=0, which
satisfies both A(—x)=A(x) and A(—x)=—A(x), we
have j;(x)=0. The polaronlike lattice at high density has
a very small structural distoration, i.e., A(x)=0 is roughly
satisfied. This rationalizes the small oscillator strength of
polaronlike lattice at high density.

In summary, the main differences between the soliton
lattice absorption spectra and the polaronlike lattice ab-
sorption spectra are, first of all, the difference in the mag-
nitude of absorption spectra; at low density the magnitude
of polaronlike lattice is larger by a factor of 10, and at
high density, the polaronlike lattice has a vanishingly
small strength. Secondly, the polaronlike lattice has more
fine structure than the soliton lattice, and finally the po-
laronlike lattice will have a stronger (though broader) ab-
sorption spectra around w=0 than the soliton lattice due
to the electronic intraband transition.

IV. CONCLUSION

We have studied a continuum model of a coupled
electron-phonon system in polyacetylene including the
coupling of several relevant structural degrees of freedom
to the m-electron density, to calculate the phonon-assisted

absorption spectra. Our results show that there are two
ir-active modes for the soliton lattice and the absorption
spectra for it look similar to those for the single polaron
calculated by several groups.!® The polaronlike lattice has
more fine structure in the absorption spectra than those of
soliton latttice at 1—4 % density and has vanishingly
small oscillator strength at > 6% density, which is not
consistent with the experiments. It is found experimental-
ly that the oscillator strength is roughly proportional to
the doping density, and that the absorption spectra does
not have much structure in addition to the 7 modes. As
expected, the crossover from soliton lattice to polaronlike
distortion is not found in our strictly one-dimensional cal-
culation. Moreover, it should be noted that the polaron-
like distortion at high doping density is unstable against
the undimerized lattice (even in the presence of Coulomb
interaction with dopant ions), which causes the oscillator
strength of polaronlike lattice to be very small. Since ex-
periments, as noted above, do not show this behavior,
there still remains the question of what derives the abrupt
onset of Pauli magnetic sucseptibility while the electric
conductivity remains roughly the same. There was a pro-
position that this might be caused by the disorder induced
by the doping procedure.'® Some interactions neglected in
the Su-Schrieffer-Heeger or TLM Hamiltonian such as
three-dimensional interaction and electron-electron
Coulomb repulsion might be important at this point.
Among these, we think that the commensurability effect
in the discrete Hamiltonian may play an important role.
Once the system has been brought to the continuum limit,
the possible locking with other commensurabilities like
the 3, +, %, .. .-filled band has been removed. We be-
lieve that the description in terms of soliton lattice is good
provided that the deviation from the commensurability +
(half-filled band) is small, but that if the deviation gets
larger the possibility of locking into another commensu-
rate value might play an important role. We are currently
studying this problem.

ACKNOWLEDGMENTS

This work was supported by NSF through Grant No.
DMR 84-05524. E.J.M. gratefully acknowledges addi-
tional support from Alfred P. Sloan Foundation.

IW. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett.
42, 1698 (1979); Phys. Rev. B 22, 2209 (1980); 28, 1138(E)
(1983).

2]J. Chen, T. C. Chung, F. Moraes, and A. J. Heeger, Solid State
Commun. 53, 757 (1985).

3S. Kivelson and A. J. Heeger, Phys. Rev. Lett. 55, 308 (1985).

4B. Horovitz, Phys. Rev. Lett. 46, 742 (1981); S. A. Brazovskii,
S. A. Gordyunin, and N. N. Kirova, Pis’'ma Zh. Eksp. Teor.
Fiz. 31, 486 (1980) [JETP Lett. 13, 456 (1980)].

SH. Takayama, Y. R. Lin Liu, and K. Maki, Phys. Rev. B 21,
2388 (1980).

6H. Ito, A. Terai, Y. Ono, and Y. Wada, J. Phys. Soc. Jpn. 53,
3520 (1984).

7A. Terai, H. Ito, Y. Ono, and Y. Wada, J. Phys. Soc. Jpn. 54,

196 (1985).

8J. C. Hicks and G. A. Blaisdell, Phys. Rev. B 31, 919 (1985).

9H. Y. Choi and E. J. Mele (unpublished).

10E. J. Mele and J. C. Hicks, Phys. Rev. B 32, 2703 (1985).

ITH. Ito and Y. Ono, J. Phys. Soc. Jpn. 54, 1194 (1985).

12B. Horovitz, Solid State Commun. 41, 729 (1982).

13B. Horovitz, Z. Vardeny, E. Ehrenfreund, and O. Brafman,
Synth. Metals 9, 215 (1984).

14Z. Vardeny, E. Ehrenfreund, O. Brafman, J. Tanaka, H.
Fujimoto, and M. Tanaka (unpublished).

15J. C. Hicks and J. T. Gammel, Phys. Rev. Lett. 57, 1320
(1986).

I6E, J. Mele and M. J. Rice, Phys. Rev. B 23, 5397 (1981).



