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Model of electronic states at the Si-Si02 interface
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The electronic properties of the interface between crystalline Si and its amorphous oxide Si02
have been studied within the tight-binding approximation by saturating the dangling bonds in three

different surfaces (111},(110), and (100) of a semi-infinite Si crystal with Si02 Bethe lattices. The
locahzed states due to isolated dangling bonds in the interfaces (Pq centers) are found to be roughly

at the same energy, in the Si gap for the (111}and (110)cases, but the (100}interface differs substan-

tially from the other two. It is also found that the value of the site-energy interaction parameter on

the Si defect site is important in determining the energy of the defect state.

I. INTRODUCTION

A basic understanding of the nature of interface elec-
tron traps and defects in the Si-Si02 system is important
for the technological challenge of fabricating metal-
oxide-semiconductor (MOS} devices on the submicrometer
scale. Unfortunately since such defects and traps modify
substantially the performance of these small-scale devices
the most important states are the ones which occur
around the Si gap. These have been investigated by C-V
measurements' and deep-level transient spectroscopy.
The densities of states (DOS's} obtained by properly
deconvoluting the experimental data agree in both sorts of
experiments and consist, around the Si gap, of exponential
tails on each end of the gap from localized states in the
interface and two clearly noticeable peaks at around 0.26
and 0.83 eV from the valence-band edge. The two well-

defined peaks are believed to be the two charge states of a
three-bonded Si (a Si with a dangling bond) at the inter-
face (Pb center). This interpretation has been corroborat-
ed by electron-spin-resonance measurements and by care-
ful examination of different crystallographic orientations
for the interface. A recent review by Poindexter et al.
contains all the relevant experimental information avail-
able so far.

From the theoretical side, there have been various at-
tempts to model the interface. Most of them concentrate
on the highly symmetric Si-(111) surface. There are two
recent papers which emphasize two different points of
view:

(1) A tight-binding approach by Sakurai and Sugano in
which a semi-infinite Si crystal with a (111)surface is sa-
turated with a Bethe lattice in various wrong" ways pro-
ducing Si—Si bonds, Si dangling bonds, and weak Si—0
bonds at the interface. By linearly varying the tight-
binding interactions with the distance between atoms, they
examine the variation of the position of the defect state in
the gap. It is seen that the "weak'* Si—Si bond moves to-
wards the valence band, while the "weak"' Si 0 bond
produces a shift towards the conduction band; and in this
way it is claimed that the exponential tailing of the band
edges is produced in the gap. However, the arbitrary vari-
ation of parameters which is assumed severely restrains

the important conclusions of the theory.
(2) The other is a finite-cluster calculation by Edwards

that is more concerned with the single P~-center peaks.
The electron-electron correlations are introduced in a way
similar to the complete-neglect-of-differential-overlap ap-
proach and the full Hamiltonian is diagonalized for the
cluster. As well as the eigenvalues for the defect state, the
total energy is calculated. This allows the relaxed position
of the defect to be found in the different charge states.
Correlation energies and spin densities are also found and
they agree well with experiment. Unfortunately, this cal-
culation suffers from the usual drawbacks deriving from
the finite size of the clusters used.

It is the purpose of this paper to report a theory that re-
moves some of the constraints pointed out above. In Sec.
II we introduce the basic concepts of the theory and give
the solutions for the three free crystalline surfaces to be
studied, (111},(110), and (100). In Se:. III we present the
solutions of a Si02 Bethe lattice and build up perfect in-
terfaces. In Sec. IV we discuss a Pb center in the three
perfect interfaces and the local DOS at the defmt site.

II. PERFECT SURFACES

A. The tight-binding model

When Si atoms form a solid, the valence electrons rear-
range to form four sp hybrid orbitals directed towards
the vertices of a tetrahedron. The tight-binding approxi-
mation uses a Hamiltonian with a basis of four sp orbi-
tals localized on each atom. Only interactions between
nearest neighbors are considered. In Fig. 1 we show the

Vg

FIG. 1. Diagram showing the nearest-neighbor tight-binding
interactions between sp' hybrid orbitals in Si.
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nature of all the interactions parametrized. With this no-
tation the matrix elements of the Hamiltonian confined to
the site of a given atom form the 4X4 site-energy matrix,

UH V) V] V]

UH

Ua

V) V)

and the matrix for the interaction between two neighbors
along bond 1-1' in Fig. I is

V2 V3 V3 V3

C ( K)= g e 'SJ '8SJ,

where SJ is a 4X4 matrix that transforms the hybrid 1

into the hybrid j and RJ are the relative positions of the
nearest atoms in adjacent planes. Following Falicov and
Yndurain, ' these are

R2 ——o., R3 ——o+t2, and R4 ——u+t&+t2,

where cr= —(a/v 6)(0, 1,0), ti ——(a/v 2)(1,0,0), and

t, =(a /2~2)( —1,~3,0).
It is clear that

V3 V5 V4 V4
B ~

V V V V
e

8 if 5 eveil

C(K) if n odd, (8)

V3 Vg V4 V5

We are interested in studying semi-infinite crystals with
the diamond structure and with a single surface. The
presence of the surface breaks the translational symmetry
of the lattice in the direction perpendicular to the surface;
therefore, it is convenient to use a representation in which
this fact is taken into account,

P (K)= g e "P(R„),
N R

and Hlr( —1,0)=Ha (0, —1)=0.
Equation (4} is solved by defining the following transfer

matrices,

Gx(n, 2m +1)=Gx(n, 2m) Ti(K),

Gx(n, 2m +2)=Gx(n, 2m +1)T2(K),

Gx(n, 2m —1) 6=x(n2m, )Qi(K),

Gx(n, 2m)=Gx(n, 2m +1)Q2(K),

where (()J(R„)is one of the j=1, . . . , 4 orbitals centered
on the atom situated at R„in the plane n from the sur-
face. The vector K is parallel to the surface and N is the
normalizing factor per plane. In this representation we
can define an energy-dependent Green's function that
obeys the equation of motion,

that obey the equations

Ti(K) =C'(K)[EI —A —Ti(K)8]

T2(K)=8[EI—A —T l (K)C(K)]

Ql (K)=8 [EI—A —Q2(K)C (K)]

Q2(K) =C(K)[EI—A —Qi(K)8]

(10)

Gx(n, m)(EI —A) =5(n, m)I+Gg(n, m+1)Hx(m +1, m)

+ Gx(n, in —1)Hx(m —1, rn) . (4)

All quantities in (4) are 4X4 matrices whose elements are
written in the representation (3); thus, for instance,

Gg(n, m)=(+(K) ~G ~f (K)) . (5)

In order to solve (4), one needs to specify the plane-to-
plane interactions H (n, n+ 1), which depend on the par-
ticular crystallographic plane of the structure and hence
give different detailed solutions for the three surfaces con-
sidered.

8. (111)perfect surface

In this case we have two different bondings between
planes. There are neighbor planes that are linked by one
bond per atom perpendicular to the surface and planes
that are linked by the remaining three bonds. %e take the
surface at n =0 to have one dangling bond per atom.
Then,

which can be solved iteratively. All correlations between
planes for a given K can be obtained with (10) and (4}.
Local Green's functions and densities of states are ob-
tained by summing over the E space in the two-
dimensional Brillouin zone (K-Bz). The numerical effort
of performing the sum was minimized by choosing a net-
work of points in the irreducible part of the Brillouin zone
in the way described by Cunningham. '

C. (110) perfect surface

In this case each atom has two bonds connecting it to
atoms in a plane parallel to the surface, and the remaining
two connect it to the adjacent planes. There are two ine-
quivalent positions in the two-dimensional unit cell:
therefore it is convenient to consider 8&(8 matrices in Eq.
(4). The coupling between planes is

iK R)Be
Hx(n, n+1)=

Sz 'BS2e

8 if n is odd ,
H~ fl, n+1

C'(K) if n =0, even,

where 8 is given by (2) and

(6)

(12)
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and the intraplane coupling is

A V
H~(n, n) =

J

The solution is found by defining

Gx(n, m +1)=Gx(n,m)T(K)

that satisfies

T( K)= [EI—Hx(n, n)

—T(K)Hx(n, n —1)] 'Hx(n, n+1) .

The local Green's function at the surface is given by

G(0,0)= g [EI Hx(n, n—) T(K)H—x(n, n —1)]
K-BZ

(15) -6
E (eV)

FIG. 2. Density of valence-band states for bulk Si in the
tight-binding model.

and the density of surface states is

pp(E) = —1
Im TrG(0, 0) . (17)

D. (100}perfect surface

In this case the interaction between adjacent planes
parallel to the surface is by two bonds per atom. These
interactions alternate because the pair of bonds linking
two given planes form a plane perpendicular to the one
formed by the other pair of bonds. Therefore the
mathematical treatment is rather similar to the (111)case,
the only difference being substitution of 8~8'(K) and
C(K)~C'(K), where

8'(K)= g Si 'BSJe
j=3,4

gion of the gap. In the case of the (111)surface we obtain
a surface band that extends from the middle of the gap to
the valence band, with a width of -0.8 eV, in agreement
with previous calculations. ' We notice that these surface
states leak into the backbonds of the surface atoms, and
this effect is enhanced if the surface is allowed to relax. '

In the (110) case there are two dangling bond bands,
one for each type of atom in the unit cell. These bands
are wider than in the previous case due to the direct in-
teraction between atoms in the surface plane. The (100)
surface presents also two bands around the gap region due
to the two dangling bonds per atom in the surface.

(18)
-1-

0
(100)

rr
r

/r
J

E. Results

TABLE I. Parameters used for the Si crystal (in eV).

Vl V2 V3 V4 V5

—D.885 —1.435 —3.531 —0.261 D.549

In Fig. 2 we show the density of states for the valence
band in bulk Si obtained with 64&(8 points in the Bril-
louin zone, using the parameters given in Table I. These
give an accurate reproduction of the valence band and the
gap (cf., for example, Ref. 11), but they predict a conduc-
tion band which is narrower than that found experimen-
tally. Further orbitals must be added to the tight-binding
scheme to give these bands accurately as well. ' In Fig. 3
we show the results for the perfect surfaces around the re-

r

0
W % yP ~

1

(110j

-2-

0
-1.5 -1.0

i L wmwH

0.5 1.0t 1.5 2.0
E(eV&

FIG. 3. Local density of states on the surface orbitals of
three different crystallographic orientations. The orbitals that
correspond to each curve are shown in the insets. The solid
lines refer to dangling bonds which are largely localized states in

the surface. The dashed lines refer to backbonds connected to
the lattice. They are multiplied by a factor of 7.5 relative to the
solid lines showing finite but weak contributions in the surface
bands within the gap.



34 MODEL OF ELECTRONIC STATES AT THE Si-Si02 INTERFACE

III. PERFECT INTERFACES

A.. Bethe-lattice model of SiO2

In order to model a perfect interface between the Si
crystal and vitreous SiO2, we have simulated the latter
substance by a Bethe lattice. The SiO2 Bethe lattice has
been constructed by Laughlin et al. ' and more recently
used for interfaces of the (111) type by Martinez and
Yndurain. However, we think that it is necessary to
give a brief account here of the procedure followed. The
basic unit of Si02 is a Si atom surrounded by four oxy-
gens in the corners of a tetrahedron. These tetrahedra are
joined by oxygen bridges that conserve the Si—O Si an-

gle pretty well. The dihedral angles between adjacent
tetrahedra are believed to be largely random, but if one
neglects oxygen @pm interactions, the Hamiltonian does
not depend on the dihedral angles. With these assump-
tions the problems can be mapped into an effective Si lat-
tice and the Si-Si interactions are the same as (1) and (2)
with effective interactions UH and V which depend on
the energy and contain the oxygen coordinates. The Si-0
interactions are illustrated in Fig. 4. With these parame-
ters the expressions for the effective interactions are

U,ff U
3( T')'+ T 3(v')'+ v

0 H0+ E E +
P S

,p TT'+ ( T') rr'+ (~')
1 10+ E E +

P $

ff T cos8 7

TT cos8

,ff (T') cos8 (r')
E-E, E-E. '

where E~ and E, are the atomic levels for the oxygen p
and s orbitals, respectively, and V~o and UHO have the
same meaning as Vt and UH in Eqs. (19), but for a Si
atom surrounded by four oxygen atoms. In the case of
the Bethe lattice the equations of motion are of the type

(4) with the shell-generation number taking the role of a
plane. (Obviously there is no K vector in this case. ) The
transfer matrix X~ for the Bethe lattice along the bond 1

obeys the equation
' —1

X = El —~"— ~ S-'Xa'"S a'"
j (~1)

(20)

The parameters appropriate for a Si02 Bethe lattice are
given in Table II and the energy bands derived from them
are shown in Fig. 5.

B. Interface

To describe an interface between Si02 and c-Si, an ef-
fective medium, with properties governed by (20), is at-
tached to each dangling bond in the crystal surface. For
example, the Green's function in the (111)interface is

Gx (0,0)=[EI—A' —Ti C'(K) —Xi8' ] (21)

—s 'x 8"s —s 'x 8'f's ]
' (22)

where the site-energy matrix A has been properly renor-

The site-energy matrix A' in the surface layer will differ
from that in the perfect crystal and from that in Si02
The simplest assumption is to interpolate between the
values UH and UHO according to the number of oxygen
neighbors [Eq. (27)]. However, self-consistent calcula-
tions using the Hartree-Fock method described in the ac-
companying paper' suggest that UH may be significantly
reduced as electrons are attracted towards the oxygen by
the bond ionicity.

In the other surfaces, the method follows similarly, ex-
cept that the interactions between the dangling bonds and
the Bethe lattices have to be properly oriented. For in-
stance, the Green's function at the (100) interface will be

Gx(0, 0)= [EI—A —Ti C'(K)

[b)

wU

FIG. 4. Diagram showing the Si-0 tight-binding interactions
considered to construct a SiO2 network. The angle 8 was taken
to be fixed at 144'.

FIG. 5. (a) Densities of states in a Si02 Bethe lattice: on a Si
site ( ) and on an oxygen site ( ———); (b) total density of
states. The parameters used are shown in Table II and were
chosen to fit the position of the Si gap in the Si-SiOq interface.
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TABLE II. Parameters used for the Si02 Bethe lattice (in eV).

—1.6 —20.83 —5.63 —0.65 —0.2

malized to take into account the fact that the Si atom is
connected to two oxygen atoms, through bonds 3 and 4
[Eq. (27)].

The (110) interface is constructed in the same way, ex-
cept that the matrices are now 8&8. The local Green's
function at the silicon atom in the interface has the form
(16) with the addition in the denominator of

and again an appropriate modification of UH and Vi.
The local densities at the perfect interface are obtained

with the Brillouin sum of (21), (22), and (16), plus (23) us-

illg (17). No states ili tlie Si gap were obtained iil ally ill-

terface if the site energies were interpolated as described,
and none were obtained if UH is reduced from —0.885 as
in Table I to —2.37, as suggested by the self-consistent
calculations. If UH is increased by a large amount (3 eV
was used in a calculation), states do appear in the gap, but
this does not appear to correspond. to the physical situa-
tion. Other tight-binding calculations of defects in SiOi
(Ref. 18) use the bulk Si value for the UH when there is a
Si—Si bond and UH+6= Utero when there is a Si—0 ti
bond.

IV. Pb CENTERS

%e now consider an isolated Pb center in an othenvise
perfect interface. The perturbation consists in cutting the
interactions between a single Si atom and its attached
SiOi Bethe lattice. In order to do so we have to work in
real space and let two atoms of the perfect system be af-
fected by the perturbation, which means that the impurity
space is 8X8.

We shall use Dyson's equation to find the perturbed
Green's function

where AJ is the self-energy of a Si atom with j oxygen
bonds. A linear interpolation from the bulk values in Si
and Si02 gives a renormalized site-energy matrix

(27)

A self-consistent calculation of the energy A ' at the ter-
mination of a Si Bethe lattice has been made in the adjoin-
ing paper. This reduces UH by 0.9 eV from the usual
value. In a simple model of a Ps center with double elec-
tron occupancy, the extra repulsion increases the site ener-

gy by 1.2 eV. To illustrate this effect we make calcula-
tions with varying values of this parameter.

The local densities of states in each orbital of the defect
atom are the first four diagonal elements of Eq. (24). In
all three interfaces the form of the equations is preserved,
although the geometry considered is substantially dif-
ferent. In Fig. 6 we show the P& center in the three inter-
faces. We notice that the local environment of the defect
is very similar for the (111) and (110) interfaces, but dif-
ferent for the (100). There could be two types of Pb
center in this latter case; here we only considered the one
marked Pb since the other involves considerable re-
arrangement of the interface.

In Fig. 7 we show the Pb-center local response calculat-
ed using the interpolated value of the site energies. The
dangling-bond response is found to be near the valence-
band edge in the (111)and (110) cases, in agreement with

(«oj

G=G +6 UG,

where the unperturbed Green's function is

G (0,0) G (0, 1)
G(1,0) G(1, 1} (25)

each entry being a 4)&4 matrix of the type (16); the off-
diagonal elements G(0, 1}can be found for each interface
using the appropriate transfer matrices defined in Secs. II
and III.

The perturbation must contain the renormalized site en-
ergies for the atoms with the dangling bond in the Si crys-
tal (site 0) and the first Si atom in the Bethe lattice (site
1); for instance, for a Pb center in a (111)interface,

T

(26)

FIG. 6. Diagram shoveling the local environment of a I'b

center in the three different interfaces considered. Note that the
two Pb centers shown in the (110) interface are equivalent and
similar to the (111) Pb center. The (100) interface has two in-
equivalent centers. The one marked Pb has a different environ-
ment and is not considered here.
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FIG. 7. Local DOS in a I'b center for the three types of inter-

faces considered. The solid curve shows the dangling-bond
response and the dotted curve the backbond response amplified
5 times.

numerical calculations in clusters, ' but in the (100) case it
is found to be practically immersed in the conduction
band. This, we believe, is an important point, since it
could be explanation of the well-known fact that this in-
terface gives very few traps in the Si gap. The local den-
sities in the backbonds belonging to the same defect atom
are shown in Fig. 7. We notice that the impurity state
leaks into the backbonds, and therefore there must be
some relaxation of the defect atoms. These results depend
only slightly on the nature of the site energies used in the
interface.

The energies of the states in the gap are not comparable
with the experimental values for various reasons. First,
the PI, center is split into two different occupation states
that are not taken into account in this one-electron tight-
binding model. Second, relaxation of the defect atom
with a dangling bond will obviously modify the effective
tight-binding parameters and hence the energy of the
states. This variation could be introduced into the model
by extending the impurity space, leading to an adjustment
of the level position, but without any independent way of
determining the parameters, it vvould have little physical
meaning. In fact, the cluster calculations give a level for
the stable relaxed configuration of the defect at the wrong
position and there is an uncertainty of about 0.14 A on
the position of the defect atom. Third, the value of the
site energy of the defect atom could modify the energy of
the level drastically. These effects are demonstrated by
the results in Fig. 8. When U~ at the defect orbital is re-
duced by 0.9 eV, the dangling-bond energy has become a

Ch
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CLI I
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l i
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l
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hs /~aa ~
I ~~~~~~~l~

-1 0 2

E(eVj

FIG. 8. Local density of states around the Si gap in a Si
{111)/a-Si02 interface; the resonance in the valence band is ob-
tained when the site energy UH of the defect atom is decreased
by 0.9 eV. Dashed curve denotes the same, but with UH in-
creased by 1.2 eV.
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resonance in the valence band. If UH is increased by 1.2
eV above the Si bulk value, the dangling-bond state is now
in the gap with an energy increased by -0.6 eV. By a
suitable choice of parameters it is clear that the dangling-
bond states corresponding to single and double occupation
could be located in the gap, as observed experimentally.

In spite of all these problems, we can state that the im-
portant results obtained from this model are the follow-
ing. (1) The Pq center produces a state in the gap in the
(110) and (111) interfaces, but not in the (100) case. If
correct this will result in the improvement of the perfor-
mance of devices that use (100) interfaces. (2) The pres-
ence of oxygen in the interface does not affect the
dangling-bond local response in the (111) and (110) cases
very much, but it is important in the (100) surface because
there the defect atom is also attached directly to an oxy-
gen. (3) A theory that calculates the site energy of the Si
atoin in different environments is essential in order to ob-
tain quantitatively reliable energy levels for the Pb center.
Nevertheless, this does not invalidate the qualitative result
since we have performed calculations varying the site en-

ergy between the clear surface and averaged interpolated
values and, in any case, the energy of the Pb center fluc-
tuated by more than 10%.
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