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%e present a first-principles theory of the band structure of lattice-matched supcrlattices. %e
formulate the one-electron problem of superlattices in the Bloch representation of one of the constit-

uent materials. In this formulation, the symmetry breaking along the superlattice axis leads to par-

titioning and folding of the original homogeneous crystal Brillouin zone onto a thin region sround

the center of the zone. A single homogeneous crystal Bloch function becomes a multicomponent

wave function. Each component represents a superlattice subband. %'e use Lowdin s theorem to
derive series expressions for the subband energies and wave functions, and discuss the relation be-

tween these solutions and the eigenvalues and eigenfunctions corresponding to quantum-well

models. %'e apply the general results to a superlattice composed of two different types of simple

two-band model materials.

I. INTRODUCTION

Since it became possible to grow superlattice crystals in
the early 1970s,' there have been several theoretical ap-
proaches to their band structure. ' These approaches
are generally based on some form of either the envelope
function approximation " or the tight-binding approxi-
mation. ' ' The early empirical results concerning ab-

sorption, luminescence, carrier transport, etc. in superlat-
tices could be explained, at least qualitatively, by means of
simple quantum wells and Kronig-Penney models.
Later experiments revealed the appearance of certain for-
bidden transitions. ' ' To explain these, as well as sub-
band energy dispersions, one needs to go to more sophisti-
cated theories in which band mixing occurs. '

In Bastard's envelope function approach, " one gen-
eralizes Kane's theory'9 for the III-V semiconductor com-
pounds to superlattices, and writes a Kane Hamiltonian
for each type of material composing the superlattice. The
solutions of these effective Hamiltonians are then joined
across layer interfaces by means of boundary conditions
which require continuity of wave functions and conserva-
tion of electron current densities. These calculations ulti-
mately depend on the effective-mass concept. The effec-
tive mass of the electron is assumed to be position depen-
dent along the superlattice axis (that is to say, along the
direction which is vertical to the planes of the superlattice
layers). The space dependence of the effective mass is not
calculated„but is postulated to have a certain form; then
the results are compared with empirical observations to
the extent that this is possible.

Tight-binding calculations of superlattices can, in prin-
ciple, be more accurate than calculations based on the en-
velope function approximation, but involve extensive and
complex numerical computations. In a tight-binding cal-
culation, one uses superpositions of large numbers of elec-
tronic orbitals to solve for the eigenvalues and eigenfunc-
tions of a tight-binding Hamiltonian. Band mixing can
be directly incorporated into these computations and opti-
cal spectra of superlattices can be reproduced reasonably

where n is the band index, k is the electronic momentum
confined to the Brillouin zone, G's are the reciprocal-
lattice vectors, and P„ is the momentum Bloch function.

r is the macroscopic volume of the sample, which we
assume to be parallelepiped and set F" r ——W„WsW, .
Just as the set of the ordinary Bloch functions is com-
plete, the set of the momentum Bloch functions is also
complete. (b„'s obey the closure and orthogonality rela-
tions" "

g p„*(k—G)p„(k—G') =5GG, (2a)

g P„*(k—G)P„(k—G) =5„„.
G

(2b)

One consequence of these relations is the fact that the
crystal potential can be written as (see also the Appen-
dix)

V( x)= g E (0)4 (O)4 o(x)

accurately. '

In this paper we develop a new one-electron theory of
superlattices. We assume that the homogeneous crystal
band structures of the composite materials are completely
known, and derive a superlattice Hamiltonian which
expresses all of the effects of symmetry breaking in terms
of the quantities and parameters related to the homogene-
ous crystals of the composite materials and the superlat-
tice geometry. We obtain series expressions for the super-
lattice subband energies and wave functions, which can be
evaluated systematically with increasing accuracy. More
importantly, the new formulation provides conceptual
clarity and pliability for analytic manipulation.

Our formulation relies heavily on the properties of the
momentum Bloch functions. It is well known that the
Bloch functions of a homogeneous crystal can be written
as

i(k 6) x—1
n&

—(~ )i/2 n
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where E„(k) is the band energy. Alternatively, if we de-

fine the Fourier expansion
Gz ——G~ ——G (reciprocal-lattice vectors) . (4b)

V(x)= g F"oe'
G

(3b)
We assume that the Bloch functions of the homogeneous
crystals of these materials are completely known:

then (Sa)

~o——g E„(O)P„(0)P„'(—G) . (3c)
H~ a ~

nk) „g——E„"' (k)
~
nk) „~,

& x
I nk&~, a =f."i (»

(sb)

We use these relations in Sec. II to express the matrix
elements of the one-electron Hamiltonian of a superlattice
in the Hilbert space representation defined by the Bloch
functions of a homogeneous crystal. We start with a fi-
nite number of layers of one type of material embedded in
a different type of material. In the limit of a superlattice,
a fixed number of foldings of the homogeneous crystal
Brillouin zone occurs, and a single homogeneous crystal
band wave function becomes a many-component wave
function. The different components correspond to super-
lattice subbands. In our formulation, the subband forma-
tion is intimately connected with the symmetry breaking
along the superlattice axis and the corresponding foldings
of the homogeneous crystal Brillouin zone. In Sec. II we
obtain a superlattice Hamiltonian for the subbands and
discuss its simplified form under certain assumptions.

In Sec. III we discuss the solutions of the superlattice
Hamiltonian. We use Lowdin's theorem ' to obtain
series solutions for the energies and wave functions of the
subbands. These expressions allow exploration of theoret-
ical issues, as well as providing suitable expressions for
numerical analysis. The results include band mixing in a
natural way. There are no ad hoc assumptions concerning
effective masses of the subbands. These can be obtained
from the analytic expressions given for the subband ener-
gies. Actually, our formulation proves for the first time
that the concept of effective mass can be defined for a su-
perlattice, by providing explicit expressions for the sub-
band energy dispersions. We discuss the relation between
the superlattice subbands and the states of a quantum
well. For an example, we apply our results to a superlat-
tice composed of two-band-model materials.

In this paper we ignore spin-orbit coupling in order to
keep the discussion simple. This is a serious shortcoming
in view of the fact that present-day superlattices are com-
posed of materials in which spin-orbit coupling is signifi-
cant. We hope to return to this problem elsewhere.

Consider now the geometry shown in Fig. 1. The layers
of material A of width I.z are sandwiched in between the
layers of material 8 of width I.z. We initially assume
that a finite number M of A layers are embedded in 8.
At a later stage of the calculation we let M become infin-
ite, making the composite structure a superlattice. Keep-
ing M initially finite avoids some minor mathematical
problems. We let the z axis be vertical to the layers (the
superlattice axis). We pick the origin of the coordinate
system as symmetrically as possible for the convenience of
evaluating certain sums later. If M is an odd integer, the
origin is in the middle of an A layer as shown in Fig. 1(a).
If ~ is even, the origin is in the middle of a 8 layer as
shown in Fig. 1(b). In the superlattice limit, whether one
starts with odd or even M does not matter; the results are
independent of the initial configuration. We will choose
our initial configuration to be the one shown in Fig. 1(a)
with odd ~. The layers of A and 8 are assumed to have
perfectly sharp plane interfaces.

The one-electron Hamiltonian of the composite crystal
of Fig. 1(a) can be written as

II. FORMULATION IN MOMENTUM SPACE

Let us begin the discussion with two types of materials,
3 and B, ~hose homogeneous lattice structures rnatch:

Rz ——R~ ——R (lattice translation vectors), FIG. 1. Origin of the coordinates for odd (a) and even (b) ~V.
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2 ( ~ -1)/2
H = + Vs(x)+[V~(x) —Vs(x)] g [8(z sL—+ , L—g) —8(z s—L —,'Lq—)]

2@i s = —(. & —&)/2

+ Vs(x)+Hga (x),P
2'

where 6's are the step functions, and L is the superlattice
period along the superIattice axis:

tion. The step function 8(z —zo) can be written in the in-
tegral form

We now determine the matrix elements of this Hamiltoni-
an in the representation defined by the Bloch functions of
the 8-type crystal. This is legitimate, since the set of the
Bloch functions of a given homogeneous crystal is com-
plete. First, consider the matrix elements of a step func-

iQ{z—zo)

8(z —zo) = f dQ
2m —~ (Q i a)—

where a is a positive infinitesimal quantity. Its matrix
elements in the representation of the 8-type Bloch func-
tions become

—iQzio

s(nk
~

8(z —zo)
~

n'k'}s —— J dg . J dxg„i, (x)e'q'*g„ i, (x),

where Q= zg. Using (1), one can perform the spatial integrations in (9):
iQzo-

s{nk
~

8(z —zo)
~

n'k')s —— J dg . g (()„(k—G)(I)„(k'—G)5(k —G —k'+G' —Q)
W„WyWz —~ (Q —ia) oo,

(9)

g 5i(k —G, k' —G')P„(k—G)(()„(k'—G')
Q,Q'

—igzox,—6,—,'+6,'— (10)

27r 2

5i(k G k G ) 5(k 6 k +6 )5(k» Gy ky+Gy)

Note that because k and k' are restricted to the Brillouin zone, the transverse 5 function can be factorized as

5ifk G, k' —G—')=5i(k, k')5ioo .

Performing the integral over the 5 function in (10), one finds

(12)

s (nk
~
8(z —zo)

~

n'k'}s ——— (13)
I

g 5 (k —G, k' —G')(()„' (k —G)((„'.(k —G )
& G,G' k, Gz kz+ G—z i a— —

Using (13), the matrix elements of the sums of the step functions in the Hamiltonian become

( &—1)/2
[6(z sL + 2Lq ) —8(—z sL —,'Lq—)] ~

n'k'}s-—
s =—(.+"—1)/2

s(nk~

I.et us define the function

sin[( k, —kz —6,+6,' ) —,Lg ] sin[A L (k, —kz )/2]g 5i(k —G, k' —G')iI)„(k—G)$„(k'—G'), . (14)
(k, —k,

' —6,+6,' i a) sin[L (k, —k,')/—2]

h(k —G, k' —G') = sin[ —,L„(k,—k,' —G, +G,')] sjn[~L (k, k,')/2]
5i(k —G, k' —G')

(k, —6,—k,'+ 6,' —ia) sin[L (k, —k,')/2]
(15)

Equation (14) is then given by
(M —1)/2

s(nk
~ g [6(z sL+ 2L~) —6(z —sL —,'L—~)] ~

n'k')s———g —P„(k—G)i))„(k'—G')b(k —G, k' —G') .
s =—( +—1)/2 G, G'

(16)
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The folding of the Brillouin zone of the homogeneous
crystal arises from the last factor in (15), which is just the
Gegenbauer function:

sin(LK/2)

This is an even, periodic function. Its period is 2n. /L, and
its maxima are at

p= =const,

which is the density of the A layers per unit length of the
sample. In this limit, the Gegenbauer function becomes a
series of 5 functions located at k, —k,'=2m. d/L. Thus,
for a superlattice, 5 becomes

h(k —G, k' —G') =pL„5g(k —G, k' —G')

x g 5(k„k,'+2~8/L)

where 8 is equal to any integer. Let

Kg ———(m/+5), 5(&1.2
I.

Then

sin(LKq/2)=( —1) 5,
sin(MLEp/2) ( —1 r"~5 .

Therefore,

sin(~LED/2)
lim =~(—1) '-'

s o sin(LEq/2)

(19)

(20a)

(20b)

sin[ —,
' L„(2m 8/L —G, +G,')]

X
[ ,' Lg (2—m8/L —G, +G,')]

Let us now consider the matrix elements of Vz —V~.
It follows from (1) and (3b) that

= J dx p„g (x) g e'o'*(F o—p o)p„g (x) .
cF

(23)

(Since M is odd and ~—1 is even. )

%e can now pass into the superlaitice limit by letting~—+ 00, W,~ 00, but keeping the ratio

Expressing the ordinary Bloch functions in terms of the
momentum Bloch functions, one can do the space in-
tegral:

y' (k —G)y'. (k' —G )(m"- —m'-) f dxe-""-o-o"-"'+o""
G,G', G"

xe

=5(k,k') g (P o o—P o o)P (k —G)P (k' —G") . (24)

Let us define the energy parameter g(nk
i Hgg i

n'k')g —— g W(G" —G')

W(G)=P o—&o
= y„[&."(0)(()„"(0)y„"( —G)

G Ql Gll

x &(k—G", k' —G')

XP, (k —G)(()„(k'—G') .
—&„(0)P„(0)$„(—G)] . (25)

,(nk~(V„—V, ) ~n k ),
=5(k,k ) g IV(G —G)y'„(k —G)y'„(k —G ) .

G, G'

(26)

Finally, inserting a complete set of states between
( V~ —Vz ) and the step functions in Hz ~, we obtain

g(nk
~

H
~

n'k')~ ——5„„5(k,k')E„(k)

+ a(nk ( H„~
~

n'k'&, , (27a)

The last line follows from (3c) and shows that W is relat-
ed to the band offsets between the two materials. Equa-
tion (23) becomes

Gg —— M, M =0,+1,+2, . . . . (28)

a is the fundamental lattice constant of the homogeneous
crystals of A and 8. &e define

I.
a

which is equal to a positive integer. Using (22), the ex-
pression for the matrix element of H„@ can be more ex-
plicitly written as

(29)

(27b)
Let us assume that the reciprocal lattice is a simple-

cubic lattice with one of the principal directions along the
'R axis. This is a minor simplifying assumption; the re-
sults are easily generalized for arbitrary lattice orienta-
tions. The reciprocal-lattice vectors 6, can then be writ-
ten
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sin[(irL& /L)(P P—OM)]
ii(nk ~Hgii

~

n'k')ii pL——g g 5 k, k'+ z
7

X 8'(G' —G)P„(k—G)f„k—G' — z+ z (30)

Next, consider a superlattice eigenstate
~
g). Since the

set of 8-type Bloch states is complete, one can write

~
g) = pa„(k) ~

nk)s .
n, k

Note that the sum over k is confined to the Brillouin zone
of the homogeneous crystals. This important fact should
be kept in mind; in the sums below, the argument of a„

must be confined to this Brillouin zone. The time-
independent Schrodinger equation for

~ f) is

H
I
0&= g a '(k')(Ha+HAw)

I
n k )B E

n', k'

Taking the scalar product with
~
nk)z and using (30), we

find

isn[(n' Lq/L)(P'+80M)]
[s—E„(k)]a„(k)— pL&

(/"'i k+(2 8'/L)"cazj ~=—

x g W(G' —G)(j)„(k—G)g„k—G'+ z+ z a„k+ z =0. (33)

The condition on integers 8 makes this equation awk-
ward to work with in its present form. It can be put into
a more convenient form by separating k into two parts.
Define

(34a)

kx =&a ~

ky =Ky

&&z &

8=0, +I,+2, . . . , +(80—1) .

(34b)

such that Equation (33) becomes

T

2nd 2nd
E —E K+ z a K+ z —pI.&n fl

+" sin[(m'L~/L)(P —8' —EOM)]

[(gag /L )(8—8 ' —/0M) ]
T

)]s 2nd g, 2nM„2nd' 2nd' =0.

Note that both 8 and 8 '
vary over the integers in the interval

—So+1 & P, P' & Ep —1 .
One can therefore introduce 280—1 dimensional spinors (that is to say, column vectors) for each a„. Define

(36)

2m/
a„q(x)=a„ it+ zI. (37a)

(37b)

+ ~ sin[(nLq /L)(P —8' FOM)]-
[(mL~ /L)(P 8' —/0M)]—

2aM 2nd '
(37c)
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Equation (35) becomes

[e —E„»(a)]a„»(a). —$ V„».„.» (ir }a„»(a ) =0 .
n', 1'

(38)

k's inside the zone. W(0) is simply given by the spatial
average of the potential difference over a macroscopic
volume:

Let W(0)= J dx[Vg(x) —Vii(x)] .I
(42)

a„(~)=

a„»,(x)

a„» q(a)

a„,+,(~)

En», 2(i—r)

(39a)

It is therefore related to the difference between the elec-
tron affinities of the two materials.

The fact that W(0) is the largest value permits one to
approximate W(G) by 5Gp W(0), and to derive an approx-
imate form of V„».„» which is free of explicit reference
to the momentum Bloch functions. To obtain this form,
consider the matrix element of the position operator in a
homogeneous crystal:

8'„(ir)=

»,+i«)
d x p„'kxp„k —— &5—„„crystal , 5(k, k')

(39b)

where

+5(k,k')X„„(k), (43)

[~.n«)l»» =V.»»«) . (39c) X„„(k)= g P„'(k—G) i P„(k—G) . (44)

Equation (38) can be written in terms of the 2»'p —1 com-
ponent spinors a„and (28p —1)X (2»'p —1) matrices &„„

+[8'„(ir)5„„+W„„(n)]a„(~)=ea„(ir) .
n'

(40)

~.»;n» «) =E.»«)5- 5»» + Vn»;. » «) .SL 8 (41)

We should note that a, =+a./L represent identical
points in the superlattice Brillouin zone, since they are re-
lated by the momentum 2 zir/LOne needs to include
only one end in the superlattice Brillouin zone, for exam-
ple x, =+a/I. .

Before we discuss the solutions of (38), a few remarks
about W(G) are in order. It is clear from the defining
equation (25) that W(G) is related to the band offsets of
the A and 8 materials. Its maximum value is expected to
be at G=O because of the weighting factors of the
momentum Bloch functions, which are expected to be an
order of magnitude smaller at the values of momenta out-
side the homogeneous crystal Srillouin zone than at finite

This is just a more compact notation.
Equation (38), either in expanded or compact form, is

the fundamental equation of this paper. It shows that a
given band of the homogeneous crystal splits into 2/p —1

components in the superlattice. These components are the
superlattice subbands, and as we shall see below, there is a
correspondence between them and the bound states of
quantum wells. The splitting arises entirely from the
symmetry breaking along the 0 axis. The original Bril-
louin zone of the homogeneous crystal is partitioned into
28p —1 sections. The central piece for m/L &a, & m/—L
becomes the new Brillouin zone for the superlattice. The
subbands of a band n arise from the folding of the origi-
nal E„onto the superlattice Brillouin zone. Furthermore,
the Hamiltonian which determines the subband energies
and subband states (in the representation of I ~

nk)~ I ) be-
comes a supermatrix given by

The diagonal elements of X can be set equal to zero, since
they are gauge dependent. The off-diagonal elements of
X are given by

—iirip„„(k)

m, [E„(k}—E„(k)] ' (45)

where p„„are the matrix elements of the momentum
operator, m, is the bare electronic mass. Note that X is
periodic in the reciprocal-lattice space:

X(k+G) =X(k) . (46)

Using the closure property (2a), one can convert (44) into
a set of differential equations for the momentum Bloch
functions:

8
P„(k—G) = i g P„(k——G)X„„(k).

n'
(47)

(P U )= i(P U )X—
aa (50)

where P =(Pi,$2, . . . ). Equation (50) is readily solved in
the neighborhood of kp.

PT() )
U't yT(k ())Ui' —ik x

Consider a fixed kp and a small neighborhood around
Assume that X can be taken constant in this neigh-

borhood. For this neighborhood Eq. (47) becomes

8
„P„(k+kp—G) = i g P„(k+k—p —G)x„„(kp) . (48)

n

Since X is Hermitian, there exists a unitary matrix U(kp)
which diagonalizes X:

U(k, )X(k, ) U'(k, )=XD(k, ) . (49)

One can write (48) in matrix notation as
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Multiplying both sides of (51) by U from the right, we
find

continuous operator I, with a piecewise constant opera-
tor. Define the matrix operators

P„(k+ko—G) = Q P„(ko—G)(e )„„. (52)

We can use (52) to express the momentum Bloch func-
tions in V„z.„z [Eq. (37c)] in terms of the matrix ele-

ments of the operator X. Suppose that 80 is sufficiently
large such that, in each section of the partitioned homo-
geneous crystal Brillouin zone, we can take X to be con-
stant in the 0 direction. In other words, we replace the

—1

D+~gl( )
.27r~s + 21'

. i=o

for finite integer 8, and

no
~nn' —nn'

It follows from (52) then that

nn'

(53a)

(53b)

&—G+ z = g[D t(ic)]„„P„(ic G), —I (54a)

z —G'+ z+ z = g(I)„-(ic—G)t[D (ic)] I„-„D„„(x).2' 8 ~ 21TM ~ s fo M

I. Q tl

(54b)

W(G' G)D„„-—(lc)p„(K G)p„-(i—c G')—
In (54b), D is multiplied by itself M times. Thus V„q.„q can be approximated by

sin[(m L& /L)(P —8 ' —EOM ) ]~ „sin[(~L„/L)(r —~ —e~)]

X [(D 0(~)"D'(~)]„„.

Replacing the band offset factor W(G' —G) by W(0)5oo and using (2c), we find

+~ sin[(irL&/L)(P —8' —/0M)]
V„q.„q (ic)=pL& W(0) g, tD t(lc)[D '(a)] D (ic)I„„.

cog /L
(56)

Because of the sine factor, the most important contribu-
tion comes from the M =0 term. Taking just this term,
V„~,„q is further simplified to

4nFa(x)= g un'c" (+W ' (2
(nE) 8

n', c"
(59)

V„q,„q (a)=pLq W(0)[D "(ic)D~ (ic)]„„

sin[(irL& /L)(P —8 ')]
X

[(mLg /L)(P —8')] (57)

Expressions (56) and (57) have no direct reference to the
momentum Bloch functions. Instead they express
V„q,„~ essentially in terms of momentum matrix ele-
ments and energy-band separations which are directly
determinable from measurements of radiative transitions
in homogeneous crystals.

Other indices may be used if the eigenvalue is degenerate.
To discuss the diagonalization of the superlattice Ham-

iltonian, we can make use of Lowdin's theorem, "which
is concerned with the determination of a small number of
eigenvalues and eigenvectors of a Hermitian matrix
without diagonalizing the entire matrix. Given a Hermi-
tian matrix U, its basis states can be separated into two
sets S and R. Define

U. (E)=US

,~~ E —U„

III. SUBSANDS AND SUBBAND ENERGIES

When the folding of the homogeneous crystal Brillouin
zone is taken into account, a superlattice wave function
bccoGlcs

O',
, U,', U,

'

,, „,~s (E —U..., )(E —U..., )

(60)

«")= & '«(")&n.+(2.~n ~x(x»
n, E,x

(58)

which is obtained from (31). It is obvious from the super-
lattice Hamiltonian (41) that its eigenvalues can be desig-
nated by s„~(ic); the corresponding eigenfunction is given
by

where U~ ~ =(1—5~ )U~~. If the matrix M is such
that M~ =U~. for s,s'ES, then the theorem states that
the eigenvalues of U corresponding to the set S are the
roots of the equation det(M —E)=0. Furthermore, if E,
is a solution of this equation and if g*' is the correspond-
ing eigegvector, thea it is given by
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gp," if m eS,
U~ «s)

''es E —U

(61a)

The theorem yields the method of approximation, which
is used, for example, in Kane's theory of III-V semicon-
ductor compounds. ' The standard Schrodinger perturba-
tion theory is a special case of this more general method.

To proceed, we define

D SL~nE ~nE;nf ~ (62)

() () U~ «s»~-«s)1+ Pgs P
s',s"ES rgb «» —U~)

V'~ v =(l —& 4e)I'r v. (63)

We further define the matrix function N„q „z (. E) in
terms of the infinite series

nF;n&f
&

n&c'&, n 8V'
~

V'

„p (E. )=A „g„p + g' n +
n(, p( (E ~n) p() n(, 8(,n2, »'2

(64)

where the primes over the summation signs mean that the
sums exclude the nP terms. Consider an eigenvalue of
(38) which is not degenerate. In Lowdins method, it is
given by the solution of the equation e„p(»r)=2'„».„»(P „p)=X„s.„p . (67)

In the Schrodinger perturbation theory, the same nonde-
generate eigenvalue is given by

e„q(»c) =N„q.„q(e„q(ir)) .

The solution of this equation must be such that

lim e„q((r) =E„q(a) .
8'~0

(65)

(66)

In the following discussion we will set an overbar on H
whenever E is replaced by A . I,et us now consider the
eigenstate corresponding to en». Define

r)„s if n =n', P=P',
(,ac')a„» —— ~„p,„p(e„» )

if n&n', or E&P', or both,
(e„p—P „p)

' —1/2
n'8';nE ~nE n'F';nf &nc'l+ ' '

D(e„p P„p—)2

The nondegenerate eigenstate corresponding to c„~ is then given by
8~n Y', n/(en»')((tn n+(2»ss''/'L)(X)

Onion(X)='Qn»' |fnn+(2 S yL, )z(X)+ g, , Dn'c" ' (e„p—P„s )

(68a)

(68b)

(69)

E„(»r+(2~/iL)z) =E„(0)+
2pFl g~

2
2m/K+ Z

2' fi 8'
2m)in ma„L,

It is more common that there are degeneracies, because
of the band structure of constituent homogeneous crystals.
An important instance of this is the degeneracy between
the —

~

8
~

and
~

8
~

components for finite P. Consider a
homogeneous crystal band n that is parabolic:

where mz„ is the effective mass of the band n of the B
type material. One can see from this expression that the
leading term in the subband energy becomes degenerate
for +c' and»(, =0 as W—+0. The degeneracy also shows
itself by the divergence of the series for V obtained from
(64). Thus, the two subbands n+

~

8
~

are strongly cou-
pled and must be separated from the other subbands. We
again define a N matrix as in {64), except that this time
the sums exclude both n+

~

8
~

. This prevents the diver-
gence of 3 . We further define a 2 &( 2 matrix M„~ q

~

.

2n PA+ X K,
my„L

(70)
~n)E~;n)s'~ ~n)/);n —)E~

~a~r~ = ~ n —~s'~;n)E~ ~n —)F~;n —)E~
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The eigenvalues are the solutions of the equation

det(M„ i/ i

E—) =0 .

This is an extremely complex algebraic equation which
cannot be handled without further simplification. To a
good approximation, one can replace N's by V's in (71).
Designate the resulting matrix by M„}~

I

. Kith M„
I
~

I

replaced by M„ i/ i
in (72), one has a much simpler quad-

ratic equation to solve. The two eigenvalues are

+ 1

2 (+n i/i;» i/!+~» —i/i;n — /I )

2—Yf(~ n i/i;n i/i ~ n —i/i;» —i/i )

+4~»
i /i; n—i/i~n —i/i;n i/i)

1/2

The normalized eigenvectors of M„ /i corresponding to
+

~n }c"J»

u« } ~}+} g+ u« l~'I+)
nlrlu =~n}r}u

I&}+) (74)

« Iql+) I~}Q

(n
I
F

I

+)

are also readily obtained:

(n }~I+) ~ + 2 ~ 2 —1/2+I
(n If" I+) + 2

—
2 —1/2+

I +n i/i'n —i/I I

(n}E
I

—) 2 2 —1/2+» —i/i;» —i/I )(
I

sn i/ —~ n ! /i—;n —!/ +
I
~n — /i;n i

c

Ip} ~ n —lf};n jan}& I
n III~ n —lEI;n —IF} f

+ I n —I8};n lrl I

The coefficients of the expansion in (59) become

(75a)

(75b)

(75c)

(75d)

{n }PI+}
Q lyj:vgn

(n Ii I+)a

(n
I
P', +)

~}+u
(n }Wj+)

}~I+"—
} el

(76a)

(76b)

(n
I

t' I+)
9n III+

+ s (n It('I+}
/"n, np: "(s i/n1~/'"

+ D(s„-/ —4 „/:)
for n'&n and/or 8'&+

I

8
I

(76c)

~here g„}~
I

+ is the normalization constant:

In }K}+

nrem,

F', ~'"=+

(n i'j+)+ (n
I
8'i+)

+
+ D 2

~ n( /', (n(/nei/ i
)~ n(/(n/ "(~n, i/ i

)
(&n ~/i —~n / )'

' —1/2

(76d)

The prime in the first sum means that ni 8) cannot be equal to n+P. From (76a)—(76c), one obtains the new subband
states

(n Irl+) a (n }rl+)
@n I/'ln+(x) I» '/I+ "il' ~»»+(2»i/i/L)z + —it'i ~nn (2» ' /L)z—

+ (n
I

c'}+) (n
I
Fl+)+~n'/'n —i/I s» i/'I)" —i/I+ + D

(En i/i —~»/ )

«Iz~
+n'K+(21rt" /L)z

If there are further degeneracies, they show up by mak-
ing the present expression for X blow up. The above dis-
cussion makes it clear how to handle this problem. These
degenerate states are also excluded from the sums in (64),
and new matrices M are defined. If there are other states
degenerate with n+

I
8 I, then the dimension of M in (71)

is increased to include these states. If the new degenerate
states form a separate group among themselves, a new
matrix M is defined and diagonalized just for these states.

The above discussion is based upon the matrix func-
tions H and V, and therefore on whether the infinite
series in their definitions are well defined and convergent.
It is clear that for the series for X to be convergent, the
matrix elements of V' must be such that

I
zf I ptp zz

n . ;n
D D~nP ~n'c'

(78)

If the series for 2 is slowly convergent, or not convergent
at all for some states, one needs to use N(E) for arbitrary
energy E, and solve complex algebraic equations of the
same type as (72).

The preceding discussion has been rather abstract. Let
us consider a superlattice crystal composed of two-band
materials, and apply the preceding formulas to this ex-
trernely simple case. %%at we mean by the two-band
model is that we assume that the position operator in (47)
has nonvanishing matrix elements just for two bands, one
conduction and one valence band. %e further assume
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that it is a constant independent of momentum. Its z
component can be written in terms of the Pauli matrix o~
as

Let us also define

2+I'g,„
m, L (E, E„)—

T

exp — (8—8')X,

cos[g(E—8 ')] —sin[/(P —8 ')]
sin[/(8 —i")] cos[g(8 —i. ')]

Thus, from (57) we find

V,i', i' ——V„p.„i' =pLw W(0) cos[g(P —8')]
sin[(irL& /L)(8 / '))—

X
[(irLg /L)(8 8')]— (82a)

From (53a),

D D =exp — (8—8')X, (8 la)

V, p „p . ———V,p.,p = pLq —W(0) sin[/(i' —8')]
sin[(n L„/L )( 8—8 ') ]

[(nLq /L)(P —8')] (82b)

Consider now the nondegenerate e,o(ir) and e,o(K).
From (64), (67), and (82), we find

(1 5')p2L„W—2(0) cos2(8$) sin2(mL& /L)
e,o(K) =E,()(ir)+pL~ W(0)+

[E,() (ir ) E,p (ir) )—(irL„P/L) 2

(1 5qo)p L„—W (0) sin (i'g) sin (mL& 8/L)
[E~o(&) E~o(&))—(i'~ e/L )2

Interchanging c with U yields e„o(ir).
For finite 8, we use (73). I.et us take just the leading terms in X. For parabolic n =c:

E, (0)+pLg W(0)+ + +
mg mg I
sin(2m PL„/L )V +

~
p

~

—
~
p

~

pLg W(0) c—os(28()
2n'PLg /L

Thus

(83}

(84a)

(84b)

g2~2 2 2g2P 2

s, ~p(ir)=E, (0)+pLg W(0)+ + +
mac

2m fi P~, 2 2
sin (2irPLq/L)+p2L„W (0) cos (28$)

iiiiieL (2mPLg /L)
(85)

For the convenience of writing the vectors u" ' ' +-', define

2' f 8/R
(86a)

W=pLg W(0),
sin(2m'& /L)

2mPLg /L)

Cz ——cos(28$) .

The vectors u" j j
+-' are then given by

(e jf j+) —8'CpSp
Q

[WC S +~ —A'Ua+(fiu a+WC S )'~
~

]'

fivp~, +(fr Ups;+ W CpSp)'~—2

[W CqSq+
~

fiute, +(fi Uq~ +—W C S )'
i

]'
(c j&j —) (e jFj+)
j~j

(e jrj —)
—j~j j~j

(86b)

(86d)

(87a)

(87b)

(87c)
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2n iri 82 )Ii mP

2~Bc LA
(88)

This is identical to the standard expression for a rectangu-

Sinular expressions are found for e+-„I /
I

an
Consider e;I/I given by (85). The erst two terms de-

fine the position of the energy band, taking into account
the band offsets between the two materials. The third
term gives mainly the dispersion in the transverse direc-
tions. The fourth term comes from the folding of the
Brillouin zone and describes the partial localization of the
electron. For L„=LE L /2——, this term becomes

(e jPj+)
+

I

/'
I

(89a)

(e j/j —)
+

I

/'
I

(89b)

Thus for small ii„ the first two terms in (77) are propor-
tional to

lar well of width L„(for an infinitely deep well).
The same relation can be discerned in the subband wave

function (77). In the limit that ~,~0, Eqs. (87a)—(87d)
yield

(c I/I+) JB x)+u(c I/I+) ia
&ca+(2n

I /I /L)x ' —
I

/'I ascii (2~—
I
/ /L)z

i(i, -o) x —1
e ' exp i ki—

Q 2 L
2)—G + exp i— , ki+

&2

(90)

(91a)

If we neglect the P-dependent terms in the arguments of the momentum Bloch functions, then Eq. (90) is approximately

—iv2sin(2~

Similarly

~8K+(2mI/I/L)x x +"—I/'I~~ca—( ~2I/I/L)z " ' 2co 2~l ~lz/L)~«J(x) . (91b)

Equations (91a) and (91b) are instructive in showing the
connection between (I(),„I/I+ and odd and even parity rec-
tangular potential-well states.

We should point out one major difference between our
theory and the quantum-well model. In a potential-well
problem, even and odd eigenstates correspond to different
quantum numbers

l
8

l
. In the above expressions, howev-

er, they correspond to the same integer
l
8 l. Evenness

and oddness for the superlattice subbands appear to be as-
sociated with another quantum number which can take on
only two values, plus or minus (or 1,2). Clearly, in the
present theory the assignment of quantum numbers to the
superlattice spectrum differs from the assignments based
on quantum-mell states.

E, (k)=E, (0)+
l
a k

l
. (92a)

The folded conduction-band energy then becomes

E,/(x)=E, (0)+
l
a.ir+2mda, /L

l
.

Using (73), (84), and (86b)—(86d), we find

(92b)

The above comparisons with the quantum-well model
depend heavily on the fact that the homogeneous crystal
bands are parabolic. If they are not parabolic, it is much
harder to make comparisons, For some narrow-gap semi-
conductors, conduction and valence bands can be approxi-
mated with linear dispersion relations. For example, let

&. I/I«)=E'(0)+ z( la &+Z~ea, /L I+ la'a 2m/a, /L
l

)

+[-,'(
l
a-~+2~~a, /L

l
—

l
a.~ 2~~a, /L

l
)'+ W 2C2S—2,~)/2. (92c)

The dependence on
l
8

l
here is quite different than in (88).

Let us return to Eq. (85) again. The last term, which is a square root, makes the subbands nonparabolic in the 2 direc-
tion. In the x,y directions they are still parabolic. Because of nonparabolicity, one must be careful in assigning an effec-
tive mass for a subband. The effective mass can be quite different for v, =0 and v, finite for nonparabolic bands. For
8~0, we find from (85) that the effective masses as i~, ~0 are given by

2+
1 ~ ~ejFj

a~,'
4m fi 82 (2+PL/i /L)]+

m~, L pL„ l
8 (0)cos2gP

l
sin(2~PL„/L) (93)
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For t'=0, we use (83):

cos sin +
mA

(94)

Note that

~~ i~I &I
P?g~

Plgl fl ~1.
Ply~

(95)

Force %eapons Laboratory, and Sandia National Labora-
tories.

APPENDIX
For large e', the difference of m,

~
r

~

lmii, from unity be-
comes more pronounced.

A final comment concerns band mixing. Even with the
lowest-order approximation for V, as in (84), band mix-
ing occurs throughout the formulas. In the subband ener-
gies, band mixing is associated with the parameter g. If g
is zero or some multiple of n, then band mixing does not
occur [the matrix (81b) becomes + identity]. In the sub-
band wave functions given by (77), the last set of terms
under the summation sign represents the band-mixing
terms. These terms are responsible for the modification
of the selection rules for radiative transitions.¹teadded. We recently became aware that M. Jaros
and his collaborators ' have also used momentum Bloch
functions in their numerical pseudopotential calculations
of superlattice state energies.

The Schrodinger equation for the momentum Bloch
function of the band n can be written as

iri k'
p„(k)=E„(k)(b„(k)—g ~G p„(k—G') . (A 1)

2fPl

Multiplying (Al) with P„(k—G), summing over the
bands, and using (2a), one finds

7 o= g E„(k )(b„(k —G )(b„(k ) — 5o p .
2@i

The k dependence of E„'s and P„'s must be such that the
right-hand side is independent of k, since the left-hand
side is. Setting k=0, one obtains (3c). Setting
u„i,(x) =e'"'"P„ (1)x, one has, from (1) and (A2),
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Again, the k dependence must cancel out in the overall
expression on the right-hand side. Setting k='0, one finds
(3a).
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