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We present a proof of the closure property of the momentum Bloch functions directly from the
Schrodinger equation. We derive from this property several new relations involving the crystal po-
tential, energy-band values at a fixed point in the first Brillouin zone, and the momentum matrix
elements. These relations determine the crystal potential from the energy-band values and the Bloch
functions at k=0, and permit application of the k-p method to the momentum Bloch functions.

I. INTRODUCTION

In this paper, we present a new proof for the closure
property of the momentum Bloch functions. We derive
from it certain new and useful relations involving the
crystal potential, energy band values at a fixed point in
the Brillouin zone, and the momentum matrix elements.

It is well known that the Bloch functions can be written
in the form!

Uni(X) =D 8, (k—G)e' k=G x| (1
G

where G’s are the reciprocal-lattice vectors, and ¢,’s are
the momentum Bloch functions. It is also well known
that a set of Bloch functions {¢,,} is complete and can be
chosen to be orthonormal:?

> Un(X) Y (x') =8(x—x') , (2)
nk
S O 2) =8, Bk ) 3)

Here k’s are restricted to the first Brillouin zone (BZ), n is
the band index, and 6(k,k’) is such that

Sy if k’s are discrete ,

ok, k') = 4)

(2m)*V5'8(k—k’) ifk’s are continuous .
(Vo =crystal volume). It is somewhat less well known
that the momentum Bloch functions satisfy the closure
and orthonormality relations given by

2¢:(k_G)¢n(k_G’)=8GG' 5 (5)
365 (k—G)ppk—G) =5, . 6)
G

The orthonormality of ¢,’s, Eq. (6), readily follows from
the orthonormality of v¥,,’s, Eq. (3). To prove the closure
property (5), however, one has generally relied on the
properties of the Wannier functions and the relationship
between the Wannier functions and the Bloch functions.’
The reason is that Egs. (1) and (2) cannot be used directly
to demonstrate (5). The difficulty arises from the sums in
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(1) and (2). Equation (2) involves a continuous sum over
k’s that belong to a finite BZ. The sum in (1) involves an
infinite number of discrete G’s.

In the literature, Egs. (2) and (3) are treated as the most
fundamental building blocks of the crystal band theory.
We believe, however, that Egs. (5) and (6) are more funda-
mental. Our belief is motivated precisely by the difficulty
of passing from (2) to (5). The reverse route has no diffi-
culties. If one assumes (5) and (6), then all of the proper-
ties of 1, ’s are derived in a trivial fashion. It is therefore
desirable to have a proof of (5) and (6) directly from the
Schrodinger equation, without reference to the Wannier
and Bloch functions. In Sec. II we present such a proof.
We also give the closure and orthornormality relations of
the momentum Bloch functions when the spin-orbit in-
teraction is taken into account.

In the subsequent sections we discuss some interesting
consequences of the closure of the momentum Bloch
functions. In Sec. III we derive a set of equations relating
the crystal potential to the momentum Bloch functions
and the band energies. In Sec. IV we obtain a set of dif-
ferential equations in the momentum space for the
momentum Bloch functions. This set permits application
of the k-p method* directly to the momentum Bloch
functions.

II. A NEW PROOF
Neglecting the spin-orbit coupling for the moment, the

one-electron Hamiltonian and the corresponding time-
independent Schrodinger equation can be written as

2 2
H:_p_ — A~ iG-x
m + V(x) o +§% Ge , (7a)
and
# :
— o V243 7 g0 |Yy=Ey . (70)
m G

To determine the eigenvalues and eigenfunctions of (7b),
we first express ¥(x) in terms of its Fourier transform

o(k):
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Y(x)= 3 d(kle’k™ . (8) vector ™. One is free to normalize these eigenvectors,
k and we assume that they are orthonormal:

Note that in this expression k is an arbitrary momentum.
It is not restricted to the first Brillouin zone. It can be
discrete or continuous. If the crystal is of finite size, for
example a rectangular slab, then k’s are discrete and the
sum in (8) is over k,=2mn/L,, ky,=2mm/L,, and
ky=2mp /L3, where n, m, and p are integers and L, L,
and L are the dimensions of the slab. If this macroscop-
ic volume is periodically extended to the entire space, then
k’s become continuous and the sum in (8) should be inter-
preted as (2m) ">V, [ dk, where Vo;=L,L,L;. Further-
more, the basis functions exp(ik-x) are orthonormal and
complete in either case:

[ pua®x €™ e K =800k, %a)
SN Zg(x—x) (9b)
k

From now on we assume that Vj, is of unit size:
L,L,L;=1.

Using (8), (9a), and (9b), one can transform (7b) into an
eigenvalue equation for ¢:

2
A
2m

d(k)+ ¥ 7 gd(k—G)=0. (10
G

This equation couples ¢ at different values of its argu-
ment. It can be recast in the form of a linear system of
equations:

SMg oo k—G)=Edk—G), (11a)
~

or, in matrix notation,

MP=EQ, (11b)

where the column vector ® has components ¢(k—G),
¢(k—G'), 6(k—G"), etc., and the matrix M has elements

#(k—G')
2m
The matrix M is Hermitian, since the crystal potential
V(x) is real and therefore 7" _g=2"¢. Because M is
Hermitian, it has real eigenvalues E, (k) equal in number

to the dimension of M (some of these eigenvalues may be

degenerate). To each E,(k) there corresponds a column
J

Mg g = d¢.6+7 _G+a - (11¢)

#(k—G)?

¢n(k_G)ei(k—G)-x
2m

Hl/’nk: Vd’nk'*'z
G

((P(n)t)T(P(n’)=5nn, . (12)

When this equation is written in component form, it
yields

365 (k—G)d,(k—G)=5,, . 6)
G

The Hermiticity of the matrix M also means that the set
of {®'™} is linearly independent and thus complete. This
follows from the fact that the matrix U formed from @),
U=(®"M,®?) ), is unitary and therefore det(U)-£0.
The unitarity of U, that is, UU 1:1, means that

So(@m)T=r, (13)
n

or in component form:

3 65(k—G)g,(k—G')=8gg . (5)

So far k is an arbitrary vector parameter carried along
(10)—(13). If k is not small enough to fall into the first
Brillouin zone (1BZ), then there is a reciprocal-lattice vec-
tor G such that k=k'+G and k'€ 1BZ. When the equa-
tions above are rewritten in terms of k', everything
remains the same except for relabeling of the components
of ®™ and the elements of M. This relabeling has no ef-
fect on a given eigenvalue E,. Therefore E, is periodic in
the reciprocal-lattice space: E,(k)=E,(k+G). For this
basic result of the band theory, our line of reasoning pro-
vides a different method of proof than those usually en-
countered in textbooks. From now on, in order to fix the
labeling, we assume that k is confined to the 1BZ.

As a side note we point out that it is the periodicity of
the energy eigenvalues that justifies the writing of the
Bloch functions in the form (1). To verify this statement,
we rewrite (10) as

#2(k—G)?

5 0n(k—G)=E, (K)$,(k—G)

-3 7 6o, (k—G-G'), (14)
<

making use of the periodicity of E,. Next we operate on
Y, With H and use (14):

=Viue+En(KW— 27 e’ | 36, (k—G—G')e!k—G-C)x
G’ G

=E,(K){p -

Thus, the periodicity of E, plays a crucial role in demon-
strating that the superposition of ¢,’s in (1) yields an
eigenfunction of H.

When the spin-orbit interaction is taken into account,
the Hamiltonian acquires the term

ﬁl

Hoo=7"53 DS 7 6oxXG)V]. (16)
G

4m

The Bloch functions in the ordinary space, as well as in
the momentum space, become two-component spinors.
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The Fourier transform relation (8) is modified to

Yu(x)= S, (ke*™, (17
k

where p=1,2 refer to the spin-up and spin-down com-

ponents. The Schrddinger equation corresponding to (10

becomes

2
K g+ S 7k, G)(k—G)=0, (182
2m G
J
Moy,ow = TSGG"SW"*' 7 _G+a |Suu— i

Because o’s are Hermitian, M is again Hermitian, and the
previous argument for (12) and (13) still holds. The only
new feature is that the number of eigenvalues and eigen-
vectors are doubled. For each previous single component
é,(k—G), ™ has now a two-component column vector.
Furthermore each band designated by » is no longer pure-
ly spin up or spin down, but is a superposition of the
spin-up and spin-down states. This mixing arises from
the spin-orbit coupling. Writing (12) and (13) in com-
ponent form for the spin-orbit case, we find

> bnuk =G, (k—G)=3,, (20a)
G,p
and
S bnulk—G)p(k—G')=8,,8cc - (20b)
One can readily show that
2D

Vniu(X) =3 Bk —G)e' k=%
G

is an eigenfunction of H=p?/2m+V+H,, with eigen-
value E,(k), using the periodicity of E,(k) with respect
to reciprocal-lattice vectors. The argument is exactly
analogous to the one accompanying Egs. (14) and (15).

III. CRYSTAL POTENTIAL AND MOMENTUM
BLOCH FUNCTIONS

The closure property of the momentum Bloch functions
yields several new and interesting relations concerning the
crystal potential. To derive these relations we again ig-
nore the spin-orbit interaction at first and set G=0 in
(14). Multiplying the resulting equation with ¢,(k—G),
summing over n, and using (5), we find

7= ZE (k) (k—G),( k)_TSGO (22a)

Clearly the k dependence of E,’s and ¢,’s must be such
that the right-hand side must be independent of k, since
the left-hand side is independent of k. Setting k=0, Eq.
(22a) reduces to an even simpler form:

7 6= 3E,(0)$,(—G)$,(0) . (22b)

In other words, crystal potential can be obtained from
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where

it
7 wk,G)=2"g 5p,,’~m[a-(k><G)]m,' , (18b)

o=%0,+Yo,+20, , (18¢)

and oy, ,; are the Pauli matrices. We again rewrite (18a)
in the matrix form (11b) by defining the matrix

{o-[kX(—=G+G)]} (19)
r
band energies and Bloch functions at k=0.
One can use (22a) to write V'(x) in terms of u,(x):
hzkz
Vix)=— +2E (K, (K)u (x (23a)

Again, the k dependence must cancel out in the overall
expression on the right-hand side. If we set k=0, (23a)
simplifies to

V(x)—ZE (0)y (0o (x) . (23b)

Equations (23a) and (23b) are consistent with the fact that
the set of functions {u,, |k=fixed} is complete with
respect to periodic functions.” Any periodic function
such as V can be expanded in terms of the members of
this set. Equations (19a) and (19b) give the coefficients of
this expansion. Remarkably, the coefficients are just
products of the energy eigenvalues and the momentum
Bloch functions at a fixed k.

We note that the energy eigenvalues appearing in Egs.
(22) and (23) are the actual energy values of the crystal
relative to the vacuum, which is clear from the proof of
the closure in the previous section. We also note that not
all bands contribute to V. From (22b), we see that for a
band to contribute to 7 g its Bloch function must be such
that the periodic part of the Bloch function,
Up=e ~“*y,., has a nonzero average over the primitive
cell. The last statement follows from the fact that ¢, and
u, are related by

¢,,(k—G)=?ll- fndxeiG"u,,k(x) , (24)
where Q is the volume of the primitive cell. Thus, ¢,(0)
is nonzero only if | dxu,yx)=£0.

Equations (23a) and (23b) impose self-consistency con-
ditions on ¥, E,, and ¢,, which can be useful for per-
forming approximate calculations of the band structure.
In such calculations one can start with some reasonable
guesses for ¢,’s and use the experimental values of E,’s at
a fixed point in the 1BZ to obtain #"g’s. These 7 g’s can
then be used in the Schrodinger equation to obtain a new
set of ¢,’s, and the procedure can be repeated until the
convergence of ¢,’s is achieved. E, versus k in the rest
of the BZ can be determined directly via
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#(k—G)? which is obtained from (6) and (10).

E, (k)= 2”_5_‘ |$n(k—G)|? When the spin-orbit interaction is taken into account,
G Egs. (22a) and (22b) are slightly modified. The new rela-
* G tions can be derived from (14), appropriately modified for

+ %'y6»¢n(k~G)¢,,(k G-G"), (25) the spin-orbit interaction:

J
2 2

#k-G) (1‘2 G) 4 k—G)+ E 7 1 (k.G (k —G—G')=E, (K)$,,(k—G) . (26)

Setting G =0, multiplying by ¢,,“~(k—G), summing over n, and relabeling, one finds

B2 P
S 0850k~ G) = B b b+ 7 | B~ o kX Gy @1
One can now multiply both sides by 8, + (i#? /4m Zcz)[o-(kXG)]yww and use the identity
(0-A)P=A?, (28)
to find
#* 2 #k?
8 ? G |1+ 16m4c4(kXG) +6g, 08,,“—5———— EHE,.(k) s + 2 2[0 (kX Gy |Snp k) (k—G) . (29)
nu
Setting i =pu’, one obtains
2
L SEK) (Bt [0 (kX Gy |80 KI5k —G)
#ik nu” (4
= 30
7s 36,0 m + . (30)

16m*c

This equation must also hold for k=0:

7 6= E,(0)$,,0)4,,(—G) . 31

From (31), one also finds that

V(x)= 3 E,(0)d,,(0)ut,(x) . (32)

IV. k-p METHOD WITH MOMENTUM
BLOCH FUNCTIONS

The closure property (5) yields a set of differential
equations in the k space, relating ¢, to the interband ma-
trix elements of the position operator. This set permits
direct applications of the k-p method* to the momentum
Bloch functions.

The matrix elements of the position operator are given
by?

fcrySt 1 l/}"kxw" K= ’m akl 8(k k’)
+06(k,k") X, (k) , (33a)
where
X (k)= Z1(k—C) [ 9 }qﬁ,, (k—G) . (33b)

1+—ﬁj(kXG)2]

r
The diagonal components of X are gauge dependent, and
can be set X,, =0 for appropriate choices of k-dependent
phases for the Bloch functions.? The off-diagonal com-
ponents of X are related to the interband matrix elements
of the2 momentum operator and to the energy band separa-
tions:

"iﬁpnn'(k)
mlE,(k)—E,(k)]

X, (k)= for ns£n' . (33¢)

Thus the interband components of X are related to direct-
ly measurable quantities such as light-absorption coeffi-
cients and effective masses in different bands. These
components also indicate the sttength of coupling between
dlfferent bands, for example, in the k-p perturbation
theory.*

Equation (33b) can be converted into a linear system of
differential equations for ¢, by multiplying it with
¢.(k—G) on both sides, summing over n, and using (5).
After relabeling the band indices, one has

Eaftﬁ,,(k—G):—i2¢,,:(k—G)X,,',,(k) . (34)

Equation (34), together with boundary conditions at a
fixed k, determines ¢,’s in terms of X,,. Its form per-
mits a method for approximate construction of ¢,’s, and
therefore ¢,,. In III-V and II-VI semiconductor com-
pounds, there are small numbers of conduction and
valence bands that are strongly coupled among them-
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selves. Their coupling to other bands can usually be
neglected, as in the k-p method.* With the same philoso-
phy, if one restricts (34) just to these bands, then one has a
finite and small number of differential equations which
can be solved for ¢,. The corresponding approximate
s are obtained from (1).

When the spin-orbit interaction is taken into account,
Pnn in Eq. (33) is replaced by the 2X 2 matrix operator

dx P (o XVV e .

crystal

(k)= (k)+——
Tpn(K)=Ppn( )+4mc2

(35)
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X,»v in (34) becomes a 2 X2 matrix operator. As before,
¢,(k—G) becomes a two-component spinor. The form of
(34) remains unchanged otherwise.
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