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Transferable nonorthogonal tight-binding parameters for silicon
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Nonorthogonal Slater-Koster {"tight-binding" ) parameters have been fitted to linear muffin-tin

orbital band structures of silicon in the hypothetical sc, fcc, and bcc structures at the density of ordi-

nary diamond-cubic silicon. First- and second-neighbor parameters are used for all three structures.

When the eight parameters (H„, . . . , S~~ ) are plotted as a function of neighbor distance, they

describe approximate smooth curves which align well with the values found by Mattheiss and Patel

for diamond-cubic Si, even though local coordination is entirely different. This suggests an approxi-

mate transferability of tight-binding parameters, at least if the volume is constant and coordination

number is four or higher.

The Slater-Koster' tight-binding fitting scheme has
been applied to diamond-cubic silicon many times (Ref. 2
cites ten earlier papers. ) Normally one assumes a basis of
one atomic-like s function and three p functions per atom,
which generates a band structure with four (bonding)
valence and four (antibonding) conduction bands, provid-
ed the following integrals are known:

H„(R)= I dr/, '(r R)HQ, (—r),
s, (R)= f dr/, '(r Rh/r, (r), —

and similarly for the sacr, ppo, and pptr parameters. In
two-center approximation these are functions of the scalar
separation R =

~

R
~

. In practice, the values of these eight
integrals at distances 8; of the first few neighbor shells
are often used as fitting parameters chosen to reproduce
energy bands determined by some other method, There is
no guarantee that these parameters remain unchanged if
the local atomic environment changes. On the other
hand, empirical schemes such as those of Harrison show
that these parameters can be scaled and transferred with
success, and Andersen gives a theoretical framework for
finding these parameters from first principles. ' A.iso
there has been much success in getting approximate total
energies for Si in clusters and surfaces with coordina-
tion numbers (4 by use of empirical nearest-neighbor
orthogonal tight-binding parameters which give reason-
ably good valence bands but less accurate conduction
bands.

We are motivated by the need for a scheme fast
enough to give energy eigenvalues for large unit cells (216
atoms) representing liquid Si with average coordination
-6.5. Also we need a good enough representation of the
conduction band to calculate the optical properties. In
this paper we present empirical tight-binding parameters
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FIG. 1. Self-consistent LMTO density-functional eigen-
values, shown as points, for silicon atoms on a fcc lattice with
a=4.333 A. The solid lines are a best fit to selected data (often
away from symmetry lines) with E &0.8 Ry. The dashed
curves are compromise bands from the polynomial fits of Eq.
(2), Table II, and Figs. 4 and 5.

for hypothetical crystalline structures of Si with coordina-
tion number 6 (simple cubic, sc), 8 (bcc), and 12 (fcc). We
pattern our fits on the work of Mattheiss and Pateli who
studied diamond-cubic Si, by fitting nonorthogonal
Slater-Koster parameters to the empirical nonlocal pseu-
dopotential bands of Chelikowsky and Cohen. 'o Their 24
parameters extend out to the third-neighbor shell and give
an excellent fit (0.1 eV rms deviation) to all valence and
conduction bands up to 6 eV above the valence-band max-
imum. At higher energies it would be necessary to widen
the basis set to include 4s and 3d functions.

Self-consistent linear muffin-tin orbital (LMTO) energy
bands for bcc, fcc, and sc silicon were generated as
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FIG. 2. Same as Fig. 1 except bcc silicon with a =3.439 A.
Fitted eigenvalues were primarily along symmetry lines.

FIG. 3. Same as Figs. 1 and 2 except sc silicon with

a =2.715 A. Fitted eigenvalues were primarily along symmetry
lines.

described in Refs. 11 and 12. The density was chosen to
agree with room-temperature diamond structure Si, which
is close to the density of liquid Si at the melting tempera-
ture. The results along symmetry directions are shown in
Figs. 1—3. All three cases are predicted to be metallic.
States which would be degenerate in a free-electron gas
have splittings of 0—3 eV. These bands would be easily
fitted by the empirical pseudopotential scheme, ii which
often proves very transferrable, "but the number of plane
waves needed for 200 atoms would be prohibitive. We
found that a good tight-binding fit could be obtained only
if the s and p basis functions on different atoms were not
assumed orthogonal. In all three structures the third-
neighbor shell lies at a distance greater than the third-
neighbor distance (4.503 A) in diamond structure; both
first- and second-neighbor parameters were used.

The fcc structure was done first and proved quite easy
to fit. Seven k points were chosen more or less randomly,

mostly not on symmetry lines. The lowest four LMTO
eigenvalues were chosen, and eigenvalues more than 6 eV
above the Fermi level were discarded. Using a crude in-

terpolation of the parameters of Ref. 2 as a starting point,
rapid convergence was achieved using a standard least-
squares-fitting program. The other two structures were
not so easy to fit; in order to get a good fit along symme-
try lines it was necessary to fit to LMTO eigenvalues
along symmetry lines. Eigenvalues more than 6 eV above
EF were excluded. There was a tendency for the S matrix
to develop nonphysical negative eigenvalues. One pro-
cedure which seemed to work was to first fit with S set to
zero and then a1low nonzero S. In all cases the site-
diagonal parameters E„E~ were fixed at the values of
Mattheiss and Patel.

The best fits are shown as solid curves in Figs. 1—3.
The best-fitting parameters are given in Table I. Like the
parameters of Ref. 2 for diamond structure, the signs of

~pp~~spa

TABLE I. Best-fitting Slater-Koster parameters. The values for diamond structure are from Mattheiss and Patel (Ref. 2). All cal-

culations use E, = —8.5277 eV and Ep = —2.2827 eV. The H parameters are in eV, and the 5 parameters are dimensionless.
0

R (A) H Hsp0' Hpp ~ Hpp g

Diamond 2.352
3.840
4.503

—3.2766
—0.4515
—0.0955

3.2668
0.7577
0.1523

1.9548
1.1798
0.3826

—1.0335
—0.1535
—0.0232

0.2705
0.0152
0.0021

—0.3426
—0.0377
—0.0077

—0.3755
—0.1141
—0.0368

0.2614
0.0140

—0.0001

2.978
3.439

—1.578
—1.021

2.057
1.435

2.038
1.653

—0.845
—0.372

0.0883
0.0874

—0.1780
—0.1501

—0.3264
—0.2129

0.0636
—0.0062

3.064
4.333

—1.8325
—0.1601

2.0216
0.3442

l.9763
0.6663

—0.5766
—0.0177

0.1399
—0.0066

-0.1977
—0.0149

—0.3021
—0.0254

0.0804
—0.0038

2.715
3.839

—1.960
—0.276

2.370
0.537

2.151
1.010

—0.739
—0.137

0.1368
0.0044

—0.2156
—0.0107

—0.3629
—0.0245

0.0739
0.0124
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TABLE II. Coefficients of polynomial fits shown in Figs. 4
and 5 and defined in Eq. (2). The coefficient c(p) has units
eV/(AP for energy integrals and (A) ~ for overlap integrals. (p
is the power of R.)

VP

Qjl
OP

C

I.O

0.0

Integral Coefficient c {p)

—4.122 658 5242000
—2.396 319767 7800 X 10'

3.936073 733 500 Q X 10'
—2.668 871 3182000 X 10

9.577 102 602 6000 X 10'
—1.915433 293 5000 X 10'

2.023 045 370 2000
—8.815 148048 7000 X 10
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-4.0
2
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FIG. 4. Energy intervals obtained from best fits are shown as
data points. Polynomial functions (fitted to curves drawn by
hand through the data) are shown as solid curves.

the integrals are all "correct" based on the hypothesis of a
negative bonding potential between atoms. The integrals
are generally monotonically decreasing functions of R.
The data of Table I are plotted versus neighbor distance in
Figs. 4 and 5. The fitted values show a moderate amount
of scatter around smooth curves which have been drawn

4.1024901806119
2.344 982 382 243 3

—1.715432 770 1730
2.690 864 851 0192 X 10

—1.045 077 273 213 6 X 10-'

—2.886 212 669 683 3 X 10'
3.475 260780 885 8 X 10'

—1.418 858 622 994 7 X 10'
2.517 846 736 596 8

—1.688 798 3340189 X 10-'

—5.897096 842 924 8
4.301 604 167 748 6

—1.484 236 366 220 2
2.780333 720148 3 X 10-'

—2.1311678408548 X10-'

0.4

3.695 305 577 8000
—3.226007 343 0000

1.108 631 8404000
—1.782 200 3966000 X 10—'

1.125 796 380 3000X 10
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FIG. 5. Same as Fig. 4 except overlap integrals.

6.067034 560288 7 X 10-'
—1.644 079 3980149

8.478 367 746963 0X 10
—1.604 541 672 1469X 10- '

1.034919019149 7 X 10

—6.493 418 881 575 1

1.056 342 892081 0 X 10'
—7.030 371 163062 7

2.235 554995 3069
—3.376003 8646770X 10-'

1.952 926 064 640 4 X 10

—5.911929 642 757 3 X 10'
1.140229 632 698 9 X 10'

—8.833 054 998 182 5 X 10'
3.553 280455 877 4 X 10'

—7.871 340239 3969
9.135 254011 121 9 X 10

—4.349 677 121 799 9 X 10-'
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H,b or S,t„——pc, t, (p)R»
P

(2)

and the values of the coefficients c(p) are tabulated in
Table II. The solid curves in Figs. 4 and 5 are actually
the polynomial fits of Eq. (2) rather than the very similar
hand-drawn curves. The band structures which result
from using these smooth polynomial representations
differ somewhat from the best fits, because the detailed
scatter of the best-fit parameters has been smoothed out.
The resulting "compromise" energy bands are indicated as
dashed curves in Figs. 1—3. In all cases there are signifi-
cant shifts between the dashed curves and the LMTO
"data. " However, the topology of bands near the Fermi
level is preserved. The shifts tend to become large in the
upper conduction-band region, usually & 5 eV above eF,
where the scheme is certain to fail anyway. For example,

by hand to represent the trend of the data. These figures
provide significant support for the hypothesis of transfer-
ability. It is tempting to believe that the nonorthogonal
scheme is physically realistic and can be used to generate
quantities like charge densities, dipole matrix elements, as
well as eigenvalues.

The hand-drawn smooth curves have been fitted to
polynomials in 8,

the highest state at the M point shown in Fig. 3 for sc sil-
icon has pure d„„symmetry and is not expected to be well
fitted with only s and p basis functions. The best-fit
bands were not fitted to this eigenvalue, and shifted
strongly to higher energy. It is amusing but no doubt ac-
cidental that the compromise dashed curve in Fig. 3 does
a much better job in fitting this d„» state than the best-fit
bands.

In summary our tight-binding fits suggest that there is
fairly good transferability of overlap integrals between
quite different local geometries of Si atoms at constant
density, and should provide a good basis for calculations
on large unit cells representing liquid and amorphous Si.
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