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Nonequilibrium electron-phonon scattering in semiconductor heterojunctions
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We calculate the energy-loss rate of a quasi-two-dimensional (2D) hot-electron gas at a semicon-
ductor heterojunction due to the emission and reabsorption of nonequilibrium optical phonons. A
kinetic equation for the nonequilibrium lattice excitations (hot phonons) in the spatially inhomo-

geneous field created by the quasi-2D electrons is obtained. The equation is solved by a transforma-
tion that introduces the occupation number for wave packets of phonons that are "localized" in a
spatial region near the electron layer. Our result does not contain the spurious dependence on the
size of the sample that results when the nonequilibrium phonons are represented in terms of decou-

pled 3D plane waves. We apply our results to electrons in a GaAs-Ga„Al&, As heterojunction. We
find that the reabsorption of the emitted hot phonons reduces considerably the electron cooling rate
if the optical-phonon lifetime ~,~&5 psec. Furthermore, the electron-energy relaxation rate, 1/~,
changes from a weakly decreasing function of the electron temperature, T„when ~„p=0 to a in-

creasing function of T„as 7 p increases. This result compares favorably with recent experimental
data.

I. INTRODUCTION

Recently there has been much interest in the relaxation
of quasi-two-dimensional hot electrons at the interface of
semiconductor heterojunctions. ' In these systems the
carriers are dynamically two-dimensional (2D) since they
have quantized energy levels in the direction normal to
the junction plane, while are essentially free in the other
two dimensions. The carriers can be displaced from
equilibrium (heated) either ohmically or optically and re-
lax via inelastic scattering with the lattice excitations.
The relaxation rates reported in some recent experi-
ments'3'" are much slower than those predicted theoreti-
cally. Photoluminescence experiments of steady state'
and the time-dependent distribution of hot electrons in
GaAs-Ga, Ali „As devices show that the distribution
function of the hot electrons is well described by a single
electron temperature, T;. Also, for T, ~ 50 K the dom-
inant energy-loss mechanism from the electrons to the lat-
tice is the emission of longitudinal-optical (LO) phonons.
The relaxation rates reported in Refs. I, 3, and 4 are, how-
ever, one order of magnitude smaller than those of Ref. 2.
The latter is in agreement with theoretical estimates.

It has been suggested that the bottleneck effect due to
the presence of a population of nonequilibrium LO pho-
nons (hot phonons} might be responsible for slowing down
the electron cooling. '* It is well known, in fact, that mu-
tual heating effects of the coupled nonequilibrium
electron-phonon system are important in bulk semicon-
ductors. The description of the coupled nonequilibrium
electron-phonon system in quantum wells is, however, not
straightforward. The theoretical analysis of the interac-
tion between the quasi-20 electrons and the phonons is

usually based on the assumption that the lattice modes are
those of the bulk and are unaffected by the presence of the
electron layer. It was, however, pointed out by Price that
a naive estimate of the nonequilibrium LO phonon popu-
lation in a model where the lattice modes are described in
terms of decoupled 3D plane waves leads to an artificial
dependence of the result on the size of the sample. This is
because this model does not recognize that the coupled
(quasi-2D} electron-phonon system is not spatially homo-
geneous in the direction normal to the electron-layer plane
(z direction). The nonequilibrium "physical" phonons are
not plane-wave states and the corresponding nonequilibri-
um one-body density matrix is not diagonal in the plane-
wave representation. Furthermore, its off-diagonal ele-
ments are not negligible compared to the diagonal ones-
i.e., the familiar occupation number for 3D plane-wave
phonon states —which are of order I/L, with L the size of
the crystal in the z direction.

In this paper we present a description of the nonequili-
brium electron-phonon system where the inhomogeneity is
properly incorporated. We derive a kinetic equation for
the phonon one-body density matrix in the spatially inho-
mogeneous external field created by the quasi-2D elec-
trons. As mentioned, the one-body density matrix is not
diagonal in the plane-wave representation, and the kinetic
equation, even though linear, is an integral equation and
cannot easily be solved in this representation. On the oth-
er hand, both physical considerations and the mathemati-
cal structure of the equation suggest a change of represen-
tation that considerably simplifies the problem. In the
scattering between the quasi-20 electrons and the lattice
excitations there is no conservation law for the z com-
ponent of the momentum. The emitted phonons have no
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well-defined z component of the momentum and are
better described in terms of lattice excitations that are lo-
calized near the layer in the z direction, rather than in
terms of extended plane waves. ' This is achieved in a
natural way by constructing "wave packets" of phonons
with weights that are directly related to the electronic
wave functions in the z direction. If the LO phonons are
assumed to be dispersionless, the phonon kinetic equation
reduces from an integral equation to a finite set of cou-
pled algebraic equations labeled by the electronic subband
indices, in the "wave-packet representation. " Such equa-
tions can easily be solved for the nonequilibrium phonon
distribution.

This approach is used here to calculate the energy-loss
rate of steady-state hot electrons in a GaAs-Ga, Ali „As
heterojunction. We assume that the electron distribution
function is a Fermi-Dirac distribution at the temperature
T, and that the electron-LO —phonon interaction is
described by the Frohlich Hamiltonian. The power emit-
ted per electron can then be written as

exp( —RcoL, /kz T, ),
where Pic@I is the energy of the LO phonons. Equation
(1.1) defines the "energy-loss rate" 1/r.

We find that the power-loss rate 1/r is reduced consid-
erably by phonon reabsorption (see Fig. 1) if the optical-
phonon lifetime r,~& 5 psec. Furthermore, we observe a
qualitative change in the functional dependence 1/r on T,
as ~,~ increases. %hen v,&

——0, corresponding to an equih-
brium phonon distribution, 1/r is a weakly decreasing
function of T, . For v,~& 5 psec, 1/v is always an increas-
ing function of T, since the bottleneck effect due to the
presence of the nonequilibrium hot-phonon population be-
comes weaker as the electron temperature increases. In

GaAs ~,~=7 psec and phonon reabsorption should be im-
portant. In fact we notice from Fig. 1 of Ref. 1 that the
electron cooling rate, 1/v. , is a weakly increasing function
of the electron temperature. Qur theoretical results com-
pare favorably with the measurements reported in Refs. 1

and 3, as will be discussed below. The origin of the
discrepancy between the results of Ref. 2 where "hot-
phonon" effects seem to be negligible, and those of Refs.
1, 3, and 4 are at present unclear.

In Sec. II we briefiy discuss the derivation of a general-
ized Boltzmann equation for the lattice excitations in a in-
homogeneous system. In Sec. III we introduce the change
of representation and obtain a kinetic equation for the
"physical" phonon occupation number. The solution of
this equation is used to evaluate the cooling rate of hot
electrons in a GaAs-Ga„A1~ „As heterojunction. The re-
sults are compared with recent experiments. The paper is
concluded with a brief discussion.

H =H, +Hp+ Vp+ Vpp (2.1)

Where H, and H& are the electron and phonon Hamil-

tonians, respectively, and V,z and V~& denote the
electron-phonon and the phonon-phonon interactions.

The states of the quasi-2D electrons at the interface of
semiconductor heterojunctions have been studied exten-
sively. Due to the confining potential in the direction
normal to the interface, the 3D conduction band is split in
2D subbands. The wave function of a single electron in
the nth subband with 2D wave vector k is

V„i,(r,z)=A '~ g„(z)exp(ik r),

11 PHONON KINETIC EQUATION

The Hamiltonian of the coupled electron-phonon sys-
tern is given by
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where A is the layer area and g„(z) is the envelope func-
tion in the z direction. Its explicit form depends on the
confining potential. It can be generally represented
in terms of variational functions" as g„(z)
= g,". +&'a;„z'e ", for z&0 and $„=0 for zgO. The
parameters a; „and P„, together with the subband energy
levels E„,for n=0 and n= 1, have been given elsewhere'
for a GaAs-Ga„Ali „As heterojunction. In the represen-
tation of second quantization the electron Hamiltonian is
then written as

H, = gE„~„~„i,+ V„,
n, k

(2.2)

50 IOO l50 200 250 300

T~ (K)

FIG. 1. 1/v as a function of the electron temperature T„ for
~=0, 2, 5, and 10 psec and lowest subband ( n=O) occupation.
Dynamical screening is included (solid curves). 1/~ for g,~=O
without dynamical screening is also shown (dashed curve).

where E„g=E„+Rk /2tn, with m the electron effective
mass. Here a ~~ and a„~ are the electron creation and an-
nihilation operators; spin indices have been omitted. Fi-
nally, V« is the Coulomb interaction between the elec-
trons. We do not specify it here, since we are not con-
cerned with the kinetic equation for the electrons. The
latter has been obtained previously. '

In the occupation number representation of 3D plane-
wave phonon states, the longitudinal optical-phonon
Hamiltonian is given by
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H~= gfuuLb QbQ,
e

(2.3)

(2.4a)

where P(R) is the electron density operator and

[—4m V P(R)] is the charge density due to the polariza-
tion of the medium. It is related to the relative displace-
ment of positively and negatively charged ions,

where Q=(q, q, ) is the 3D phonon quasimomentum and

be and be are the phonon creation and annihilation
operators.

For the electron-phonon interaction we use the Frohlich
continuum model, '

V"=' dR R'pR '. --'PR'
u(R) =

Lol pX

1/2

g g.(b eiQ R+b t iQ—R) (2 4b)
g Q Q

e

where iii is the number of unit cells. In second-quantized

representation V,z becomes then

u(R)=u+(R) —u (R), by V P=(e*/U, )V u, with U, the
volume of a unit cell. Here e' is an effective charge given

by

e' =[(pu, /4m. )co t(1/e„—I/eo)]'~2,

with p the atomic reduced mass and e and eo are the
high frequency and the static dielectric constants. The
relative displacement can be represented in terms of plane
waves as

g
Vt = ~ g g g[bQ&i, p+P„„(q,qg) bQ5i, i—, ~G„„(q,qg)]a „~a„i, ,

nkn', k e
(2.5a)

where a is the Frohlich electrons-LO —phonons coupling
constant a=[2me RcoL, (1/e„—I/eo)]', and

the z direction is nondiagonal in the z component of the
momentum in the plane-wave representation. It is defined
as

] +co
G„.„(q,q, ) = dz g„"(z}exp(iq,z)g„(z) .

Q L, —ao
nq (q,q ', t) =Tr[b qz b,p( t) ] (2.8)

(2.5b)

Finally, Vz& denotes the phonon-phonon interaction that
leads to the decay of the LO phonons into acoustic pho-
nons and to their thermalization with the equilibrium lat-
tice. We do not specify this interaction here because we
will use a single relaxation time approximation for the
corresponding contribution to the phonon kinetic equation
and treat the relaxation time as a constant, i.e., wave vec-
tor independent, parameter.

The nonequilibrium state of the electron-phonon system
is described by the density matrixP(t), whose time evolu-

tion is governed by the quantum-mechanical Liouville
equation,

i% =[H,P(t)] .Bp(t) (2.6)

To derive the quantum kinetic equation for the phonons
we use here the idea first introduced by Bogoliubov for
classical systems that, after an initial transient, the none-

quilibrium state of the system is well described in terms of
the expectation values of a reduced number of macroscop-
ic observables, denoted here by the components of a vector
y(t)= (y;(t)],' defined by the expectation value of a set
of operators Iy; I,

y, (t) =Tr[P(t)y, ] .

The choice of the set y(t) depends on the time scale of in-
terest. Here we are concerned with the description of the
kinetic stage of the relaxation. The y(t) are then identi-
fied with the reduced one-body density matrices of the
electron and phonon gas. ' ' The one-body density ma-
trix of a phonon gas that is spatially inhomogeneous in

The average values of all phonon one-body observables
can be expressed in terms of this one-body density matrix.
In particular, the average energy of the phonon gas at
time t is

Ez(t) =Tr[H&p(t)]= g Picot nq(q~, q~, t) .
e

(2.9)

iirt =TrI [F(y'),H]P(t)] . (2.11)

The central assumption is that for times longer than a mi-
croscopic collision time, to, the nonequilibrium density
matrix depends on time only via the time dependence of
the macroscopic observable, i.e.,

p(t) =p(y(t)), for t &&to . (2.12)

For t ~~to the time evolution of the nonequilibrium state
is then described by a set of coupled kinetic equations for
the components of y(t). A closed kinetic equation is ob-
tained from Eq. (2.11} when the nonequilibrium density

The diagonal element, nq(q„q„t}„ is the familiar phonon
occupation number. Similarly, the electron one-body re-
duced density matrix is

f„g(t)=Tr[a „i,a„~(t)] . (2.10)

It is diagonal in the chosen representation and is the fami-
liar electron distribution function. Therefore we choose
y(t) = [n~(q„q,', t),f„z(t)], for the present problem.

The rate of change of any function of y(t), denoted by
F(y(t)) is given by
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matrix P(y(t)) is inserted on the right-hand side of the
equation. To determine P(y(t)) one needs, in addition to
Eqs. (2.6) and (2.12), an appropriate boundary condition,
chosen in such a way to guarantee the irreversible charac-
ter of the time evolution of y(t). The question of the
choice of the boundary condition and its meaning has

I

2

been discussed extensively in the literature and will not be
addressed here. We refer the reader to Refs. 15 and 16 for
a discussion of this point. The kinetic equation can be ob-
tained following closely the method of Ref. 16. Only the
result is given here. To second order in the interaction
potential V= V„+V,P + VPP, one obtains

0=—Tr[H, F(y')]pa(t)+ — lim f dr e"Tr[[V(r), [Vg (y')]]po(t) J (2.13a)

where

V(r) =exp[i (H, +H~ )r/A] V exp[ i (H, +—H~ )rifi]

(2.13b)

and po(t) =Pa(y(t)) is a Gibbsian or quasiequilibrium dis-
tribution, given by

Equation (2.13) is the desired kinetic equation. The first
term on the right-hand side is the streaming term, the
second is the collision term.

The phonon kinetic equation can be obtained from Eqs.
(2.5), (2.8), and (2.13) in a straightforward way. Due to
the assumption of dispersionless lattice excitations, the
streaming term vanishes and one obtains

po(t) =—exp —gB;(y(t))y; (2.14a) d nq (q„q,', t)

c}t

dna (q„q,', t)

c}t

"dnq(q„q, ', t)

Bt

where " is a normalization constant and the functions B;
are determined by the requirement

(2.14b)

(2.15)

The first term, representing the contribution from
electron-phonon collisions, is given by,

z

8n q (qz & qz, t )

c}t

6„„(q,q, )6„"„(q,q,")
X 5ic, i, q .„[5„,+nq(q,",q,', t))

e —l [E„g—E„iz
—fKOL

6„'„(q,q,')6„„(q,q,")
+5i, i, q, , [5 „+nq(q„q,",t)]a+i [E„„E„„fico]— —

6„„(q,q, )6„'„(q,q,")
—5 ~ n( " 't)t, v+q + ~ [E E +~ )

q qz &qz&

6„"„(q,q,')6„„(q,q,")
—t', i:+q . , E,nq(qz&qz «t) (2.16)

where 6„„(q,q, ) is defined in Eq. (2.5b). For the contri-
bution from phonon-phonon scattering we use a single re-
laxation time approximation,

dnq(qz&qz&t)

Bt .PP

nq(qz, qz, t) —5 «ntQ, qg

&I op

(2.17)

where nL is the equilibrium LO phonon distribution at
lattice temperature TL. In the following we will choose
TL ——0. The relaxation time v,p is in general wave vector
and temperature dependent. Some theoretical calculations
and experimental measurements of LO phonon lifetimes
in bulk semiconductors (specifically, GaAs) are avail-
able. ' There is, however, little knowledge of phonon with

I3f„i,(t)
Bt

5f.i (t)
Bt eP

df„i,(t)+
ee

(2.18)

l

lifetimes in semiconductor heterojunctions. A microscop-
ic calculation of r,~ requires a detailed analysis of the
anharmonic effects leading to phonon-phonon scattering
and is beyond the scope of the present work. We there-
fore assume here that r,~ is a constant independent of
wave vector and treat it as a parameter. This assumption
considerably simplifies the discussion of Sec. III.

Finally, a set of kinetic equations for the electron distri-
bution functions, f„i,(t), for n =0, 1, . . . , can be obtained
in the same way. They are given by
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~f.i(t) 2u'
2n. g g g G„'„(q,q, )G„„(q,q,')

. &P g q q'7l, k
g z

X(If„i (t)[1—f«(t)]5i, i+~5(E„ i
—E„i—ficol. )

—f„i,(t)[1—f„i (t)]5i i q5(E„i,—E„i
—~r. ) j[5,+nq(%, %,t)]qq

+ I f'«'(t)[ —f«(')]5k', i -q5(E~'i' —E«+~i )

—f.i (t)[1—f'i (t)]5i,i+q5(E. i
—E'i +~i, ) jnq(q. q' t» . (2.19)

The term arising from the electron-electron collision [Bf„i,(t)/Bt]„ is not specified here, it has been derived before by
other methods and can be found for instance in Ref. 13.

III. ELECTRON COOLING RATE

The objective of the present paper is to evaluate the rate at which the electrons lose energy by inelastic scattering with
the LO phonons. The energy-loss rate per electron, P, (t), is given by

r

fiant Bn (q„q„t)
P, (t)=

N, q Bt
(3.1)

where E, is the total number of electrons in the 2D layer. Inserting Eq. (2.12) for q, =q,' on the right-hand side of Eq.
(3.1), we obtain

P, (t)= %co 2g g f„i,(t)[1—f„i,(t)]
e nk n'k'

X g g g G„*„(q,q, )G„„(q,q,')
q

X [5i, i, q5(E„i,—E„i,
—fin)t )[5,+nq(q, q, t))

5i, i,+q5(E« E—„k +Picot. )nq(q—„q,', t) j . (3.2)

The evaluation of P, (t) requires the solution of both the phonon and the electron kinetic equations. Even when the elec-
tron distribution function is given, the equation for nz(q„q,', t) is an integral equation and cannot be solved easily. We
can, however, perform a simple change of representation by introducing new phonon states as superpositions of plane-
wave states weighted with the electronic subband wave functions, g„(z). We define

g g G„*„(q,q, )n~(q„q,', t)G (q, q,')
qz q,

'

E„„~ (q, t) =
F„„(q)/2q (3.3a)

where F„„~ (q) is the electronic form factor, given by

F„„(q)=2qg G„'„(q,q, )G ~ (q, q, ) . (3.3b)

It is easy to see that the definition of Eq. (3.3b) is identical to the familiar one, given by
iz —zF „„(q)=fdzi Jdzzg* (zi)g (zi)(„*(zz)g„(zi)e

In terms of this effective or physical phonon occupation number, Eq. (3.2) becomes

(3.3c)
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2%'0!
P, (t) = PAL g g F„„„„(q)[I„'+'(q)[1+N„„„„(q,t)] —I„'„'(q)N„„„„(q,t) I (3.4)

I- (q t)= —g gf.l(t)[1—f.~(t)]&1,)+p«.k
—E'I +~1, ) .(+)

nn s + n

The rate of change of N„„m m(q) due to electron-phonon collisions can be obtained by multiplying Eq. (2.12) with
G„*„(q,q, )G ~ (q, q,'), summing over q, and q,', and dividing with the same normalization factor used in Eq. (3.3a), with
the result,

~Nn'n, m'm (q~t)

ep

a' 1 F",i i(q)Fi i, (q)

Fn'n, m m(q')

&& I&It'i+'(q t)[2+Nn', ii(q I)+Nt t, m (q I)] ItIt'I —'(q t)[Nn n, ir(q I)+Nil, (q I)]

1 [J!'1 (q~ I) +Jll' (q~ t) ][Nn'n, l'l(q~ t) Nl'I m'm (q~ t)] I (3.6)

where Ii'I-' is given by Eq. (3.5) and

Jii (q, t) =—g ~ig(t)[1 f (t)]—

X5g 1,+qP . (3.7)
1

kk I'k'+ L

The phonon kinetic equation is then given by

nn' mm' q~

Bt

BNn„m (q, t)

Bt
(3.9)

dNn'n, m'm (St) N„„~ (q, t) —n

7Qp
(3.8)

In Eq. (3.6) we have made use of the symmetry of
F„„,i i(q) and N„„ i i(q) under the interchange of n'n and
I'/. The transformation has reduced the integral on the
right-hand side of Eq. (2.12) to a finite sum. 's This
occurs because the kernel of the q,

"
sum on the right-hand

side of Eq. (2.12) is degenerate. The first term on the
right-hand side of Eq. (3.4) is the contribution from pho-
non emission, the second that from phonon absorption.
Finally, using the same transformation, Eq. (2.13) be-
cornes,

The set of Eqs. (3.4), (3.6), and (3.8) can now be solved
easily once the electron distribution is known.

As suggested by experiments, we assume here that due
to the frequent electron-electron collisions, the electron
distribution function is a Fermi-Dirac distribution at the
temperature T, (t), or f„q(t)=f(E„k,t), with

f(E,t)= I exp[(E Ef )/kti T,(t)]+—1 )

Here Ef is the Fermi energy at T„which is related to the
2D density of electrons n, =N /A by
(2/A) g„zf(En~, t) =n, . The functions I„' „and J„'-„'-
can then be evaluated explicitely, with the result,

I„'+'(q, t}= (E„k,t) 1 — (Enp fiant. ,t)—+QIq ~
q/I+moo„„/Aq

~ [k & ( /2 g /@)2]1/I

mu„, „y@—q g2 (E„k,t)J.'+'(q, t)+J„'. '(q, t)=, dk'k'~2 0 [(mal„„/fiq —q/2)' —k' ]' '
1tl 0P, /Ag +g/2 f«.k»

dkk
IVII q [(mt'„„/fiq+q/2)' k']'/'— (3.10b)

I„'„'(q,t) =II+'(q, t)exp[fauL /ka T, (t)] . (3.10c)

where ton „=(E„E)/nilich LAs expec—ted from the de-
tailed balance condition, one also finds

the electrons occupy only the lowest subband, n=0. In
tllls case, letting fol' slIIlPllclty Noooo(q)=No(q), we ob-
tain

Finally, we will only consider here the steady-state situa-
tion. The nonequilibrium phonon distribution is then ob-
tained by equating to zero the right-hand side of Eq. (3.9).
For simplicity, we also restrict ourselves to the case where

a., /k, r - No(q)+1
e

ding

2,mn, r, (q)

No(q)

r, (q)

(3.11)
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where I/r is defined by Eq. (1.1), and

BNo(q)

at I.oo

l I I l

IIne=5xlO /cm

I = IOGK

with

7 OP

=0, (3.12) Q

0.50 0
O+

1

r, (q)

2

q
Foo,oo(q}Ioo '(q) (3.13a)

1 1
=exp(ficoL /kaT, )

r, (q) r, (q}
(3.13b)

We have evaluated Eq. (3.11) for a GaAs-Ga„Alt „As
heterojunction. We used the following values for the
parameters: n, =- 5 X 10"/cm, Acoz ——36.8 meV„
m =0.072mo, with mo the electron mass, e„=10.91, and

eo ——12.91. We have included the effect of dynamical
screening in the random-phase approximation in the sin-

gle subband calculation. The corresponding equations are
given by Eqs. (3.11)—(3.13) with Foooo(q) replaced by

Foooo(q)/~ @oooo(q, roL ) ~, where @oooo(q,coL) is the ele-

ment of the inverse dielectric matrix corresponding to
lowest subband occupation. Its expression can be found
for instance in Ref. 6, Eqs. (4.67) and (4.68). The calcu-
lated I/~ is shown in Fig. 1 as a function of the electron
temperature T, . The results for r,~=0, 2, 5, and 10 psec
are displayed. We notice that the presence of a population
of nonequilibrium LO phonons not only reduces consider-
ably the electron cooling rate, but also changes qualita-
tively its functional dependence on the electron tempera-
ture. For ~,~=0, I/r is a decreasing function of T, . For
r,~=5 psec the value of I/r is reduced about 8 times and
I/r is an increasing function of T, . This can be under-
stood by describing the nonequilibrium distribution of LO
phonons by the "phonon temperature" T(q), defined by

No(q) = I/[exp[lcoL, /k&T(q)] —1 l .
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The electron energy-loss rate decreases with the difference

[ T, —T(q)]/T, . In Fig. 2, we show T(q) as a function of
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FIG. 3.
~
eoooo(q) (curve a) and A Ioo '(q), with

~1.~ aTe3 =(Herr )/(m kF)e ' (curve b) as functions of q for
T, =100 K.

q for different values of T„with r,~=10 psec. The
difference [ T, —T(ri} ~/T, is particularly small in the re-
gion of q where I~ and I~ are nonvanishing. This
leads to an appreciable decrease of the cooling rate.
Furthermore, [ T, —T(q)]/T, increases as T, increases; at
higher electron temperature the hot-phonon me:hanism
becomes less effective in reducing the cooling rate. Final-
ly, the dynamical screening effect is not very important.
In Fig. 3 we show

~ @oooo(q, roL)
~

and Ioo'(q) as func-
tions of q for T, = 100 K. The behavior of the dynamical
dielectric function is qualitatively different from that of
the static one. In particular ~@oooo(q,roL)

~

is smaller
than 1 in the region of small q: this corresponds to an an-
tiscreening effect. ' Figure 1 also shows I/~ as a func-
tion of T, for r,~=0 without (dashed curve) dynamical
screenin. We see that antiscreening dominates in the
lower T, region where it slightly increases the cooling
rate. At higher T, the screening effect dominates and
leads to a small decrease in the cooling rate. The contri-
bution to the dielectric function from the plasmon pole is
important only over a very narrow q region where
I~ (q)=0.

We now compare our results with the experiments re-
ported in Ref. l. If the T, dependence of I/r can be
neglected, a plot of 1/T, versus lnP, gives a straight line
with slope —RcoL /k~. In analyzing experiments an
"average", i.e., T, -independent, relaxation rate, I/r, „s is
usually defined by the intercept on the lnP, axis of a
linear fit to the data. From Fig. 1 of Ref. 1 one obtains
z,„&-1.2 psec. This value is about 8 times longer than the
value obtained when the emitted phonons thermalize in-
stantaneously with the lattice. Furthermore, the relaxa-
tion rate 1/~ increases with increasing T, . Our results are
in quantitative agreement with these measurements and
attributes the slowing down of electron cooling to the
presence of an appreciable population of nonequilibrium
phonons.

IV. DISCUSSION

FIG. 2. "Phonon temperature" T(q) as a function of q for
50 K & T, & 300 K and lowest-subband occupation.

%'e conclude this paper with a few remarks.
(1} An appreciable population of nonequilibrium pho-
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nons can be maintained only if the time scale for the re-
laxation of the emitted phonons into the heat bath of the
thermal phonons is longer than that characterizing
electron-phonon scattering. In other words when hot-
phonon effects are important the "physical" nonequilibri-
um phonons are mostly determined by the electron-
phonon interaction. The phonon-phonon scattering is
only a small perturbation. This is the central assumption
of our calculation. As discussed in the Introduction, the
LO lattice excitations emitted by electrons confined in a
quantum well are localized in the z direction in a spatial
region of the order of the mean width of the electron
layer. This observation naturally leads to the description
of the nonequilibrium lattice excitations in terms of pho-
non wave packets and to the introduction of an occupa-
tion number for phonon wave packets as defined in Eqs.
(3.3). The choice of weighting the plane-wave states with
functions directly proportional to the electronic subband
wave functions is a natural one for this problem and pro-
vides an exact solution of the phonon kinetic equation
(2.12).

(2) The reduction of the phonon kinetic equation from
an integral equation to a finite set of coupled algebraic
equations only occurs if (a) the LO phonons are assumed
to be dispersionless and (b) the wave-vector dependence of
the LO phonons lifetime, ~,„, is neglected. When either of
these two assumptions is relaxed, the phonon kinetic
equation cannot be solved easily. The introduction of
phonon wave packets that represent the nonequilibrium
physical phonons more closely than plane-wave states
may, however, still be useful. In the plane-wave represen-
tation in fact all off-diagonal elements of the one-body re-
duced density matrix have to be retained to adequately
describe the nonequilibrium lattice excitations and Eq.
(2.12) cannot be decoupled. On the contrary, after
representing the lattice excitations in terms of localized
phonon wave packets one can argue on physical grounds

that in this representation the off-diagonal elements of the
one-body density matrix are negligible compared to the di-
agonal ones. The accuracy of the resulting approximation
can then be verified in detail. Even when a transforma-
tion of the type given in Eqs. (3.3) does not lead to an ex-
act solution, in this new representation one may therefore
still be able to approximately describe the dynamics of the
nonequilibrium lattice excitations by a transport equation
of the familiar (Boltzmann) form for the occupation num-
ber of a suitably constructed phonon wave packet. Work
in this direction is in progress. The description of the re-
laxation of the nonequilibrium lattice modes by a
Boltzmann equation for the occupation number of decou-
pled 3D plane-wave phonon states is, however, simply in-
correct because the system is spatially inhomogeneous.

(3) The phonon kinetic equation (3.5) contains no as-
sumptions regarding the electron distribution function. In
particular, it is not restricted to the use of an electron
temperature model. No analytic solution of the electron
equation is, however, available when electron degeneracy
and scattering with I.O phonons are included. Further-
more, the electron temperature model appears to describe
well the experimental results of interest here. Within this
model it is straightforward to consider the time-dependent
situation that is probed in picosecond time development
experiments, This work is currently in progress. As ex-
pected from previous 3D calculations, preliminary results
indicate that in a time-dependent situation the bottleneck
effect due to the nonequilibrium phonons is even more ef-
fective than in the steady-state case in slowing down the
hot carrier cooling.
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