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Carrier transport through electrically active grain boundaries is studied under high-electric-field
conditions. Electrons trapped at the interface and screened by ionized shallow and deep bulk defects
are responsible for the formation of double Schottky barriers which reduce the carrier flow by
several orders of magnitude. At large applied bias, electric fields up to 1 MV/cm can build up near
the interface, leading to the generation of hot electrons and to the subsequent production of holes by
impact ionization. This process is studied in a realistic model, taking the inhomogeneous field as
well as longitudinal-optic and -acoustic phonon scattering into account. The hot-electron distribu-

tion function is calculated as the solution of a Fokker-Planck equation in energy space. With a
reasonable estimate for the pair-creation rate we determine the yield for hole production near the in-

terface. These minority carriers are swept back to the grain boundary where they serve as an addi-

tional screening charge for the electrons. %e determine the steady-state and dynamic behavior of
the barrier, including the holes in our calculations. The accumulation of holes at the interface can
lead to the breakdown of the barrier which, in its most dramatic form, can even result in a bistabili-

ty. The dynamic behavior of the barrier reflects the presence of holes through the development of a
negative capacitance, in agreement with experimental observations. The negative capacitance is ex-

plained by the finite recombination time of the holes at the interface. In a model where the recom-
bination is substituted by hole emission, a realistic current-voltage characteristic but no negative
capacitance is found.

I. INTRODUCTION

The physics of grain boundari~ in semiconductors is of
interest both from a fundamental as well as from a techni-
cal point of view. ' In recent years the understanding of
many basic problems as, e.g., the atomic and electronic
structure ' of such interfaces has increased significantly.
The growing number of technical applications which take
advantage of polycrystalline materials (electronic devices
and solar cells based on poly-Si, ZnO varistors,
boundary-layer capacitors} asks for a more thorough
knowledge of the underlying structural and electronic
phenomena.

Carrier transport through grain boundaries, in particu-
lar, is a vital aspect of the physics of grain boundaries, as
the electrical properties of the polycrystalline material can
be vastly different from those of the constituent crystal-
line bulk. Therefore the electrical properties of grain
boundaries have been extensively studied experimentally
as well as theoretically. ' ' Measurements of the static
I Vcharacteristics, the -dynamical response [deep-level
transient spectroscopy (DLTS}, admittance], and optical
spectroscopy have been used to gain information on the
microscopic parameters of grain boundaries as, e.g., densi-
ty„energy position, and trapping cross sections of inter-
face states and defect states in the adjacent bulk mate-
rial. Models describing the electrical properties of grain
boundaries have been developed by Seager and Pike '
and by Werner" and a complete description, including the
effects of deep bulk trap states, has been presented recent-
ly by Blatter and Greuter' (hereinafter denoted as BG).

The electrical behavior of grain boundaries is governed

by double Schottky barriers resulting from electrons
trapped at the interface and screened by ionized shallow
and deep bulk defects. In BG it has been shown that the
interface density of states, the shallow bulk defects, as
well as the existence of deep volume traps, have a strong
infiuence on the static and dynamic properties of the car-
rier transport. In particular, the additional screening
charge provided by the deep bulk defects tends to destabi-
lize the barrier, and the finite response time for their
charge transfer contributes to the small-signal behavior of
the junction.

In the present paper we generalize the model by includ-
ing the new phenomena observed in the high-field regime.
In this electrical breakdown region, the generation of
minority carriers by hot electrons has to be included. The
importance of these effects has been proposed by Pike. '

At large applied bias V, electric fields up to 1 MV/cm can
build up near the interface, leading to the generation of
hot electrons and the subsequent production of holes by
impact ionization of valence states. Holes diffusing back
to the interface compensate part of the trapped negative
charge and thereby lower the potential barrier. This re-
sults in a steep increase of the current density j and in a
large nonlinearity coefficient a =d(lnj)/d(lnV) as ob-
served in the experiments. The finite recombination time
of the holes at the interface produces an additional
dynamic capacitance with an opposite sign. Thereby it is
possible to explain, within the framework of this model,
the experimentally observed overall negative capacitance
at breakdown. Direct confirmation for the presence of
minority carriers at grain boundaries is given by the ob-
servation of band-gap electroluminescence in GaAs (Ref.
16) and ZnO (Ref. 17).
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In the original paper by Pike, ' the br~down mecha-
nism is discussed under simplified assumptions in order to
illustrate the correctness of the model. It is the aim of the
present paper to give a detailed and complete description
of the carrier transport through grain boundaries includ-
ing deep bulk traps and minority carrier effects. This in-
cludes (i) a realistic description of the distribution func-
tion for hot electrons in large inhomogeneous fields, (ii)
the caIculation of the hole production as a function of ap-
plied bias, and (iii) a self-consistent description of the stat-
ic and dynamic properties of the carrier transport. We
will show that, depending on the details of the model,
very different behavior of transport can be found: In the
case where all holes diffusing back are trapped at the in-
terface, the barrier becomes unstable as a result of the
barrier contr-olled aualanche breakdown. This leads to a
negative differential resistance (or bistability) in the
current-voltage characteristic —the most extreme case of a
nonlinearity with a divergent a at breakdown bias.

A stabilization of the barrier is obtained by the intro-
duction of a finite density of hole traps at the interface,
such that only a fraction of the minority carriers diffusing
back are trapped For. the case where hole recombination
is the dominant process in determining the density of
holes at the interface, we can find a stable breakdown,
high 0,'values, and a negative small-signal capacitance.
For the situation where hole emission is the dominant pro-
cess (no recombination) we again find a stable barrier
breakdown but no negative capacitance. This shows that
the pair recombination process at the interface is crucial
to the understanding of the negative capacitance observed
at large bias.

The paper is organized as follows. In Sec. II we discuss
the main ideas and the results of a calculation for the
pair creation in the high electric fields near the grain
boundaries. Details of this calculation will be published
in a separate paper, as the method can be applied to a
variety of similar problems. In Sec. III we use the results
of Sec. II for .the description of the steady-state properties
of the interfacial potential barrier. The time-dependent
properties of the carrier transport are discussed in Sec. IV
and the main results are summarized in Sec. V. For sim-

plicity we use a single-level density of interface states to
illustrate the calculation. The general case of a continu-
ous density is discussed in the Appendix, where two
models of interface relaxation (strongly localized traps or
perfect relaxation among the interface levels) are handled
as in our previous paper. '

For the numerical results we use material parameters
appropriate to ZnO, as doped polycrystalline ZnO prob-
ably represents the most thoroughly studied system con-
cerning these breakdown effects. However in the present
paper no effort is made to fit a particular type of ZnO
varistor. The direct comparison of the theoretical con-
siderations (including BG) to the actual experimental data
will then be given in the final paper of this series.

II. HOT ELECTRONS AND PAIR CREATION

As a result of broken translational symmetry, deep-
lying energy states may be formed at the boundaries of

semiconductor grains. These states may be viewed as dan-
gling bounds or other interfacial defect states like, e.g.,
levels derived from impurity atoms trapped at the inter-
face. The width of such an interfacial region typically
amounts to approximately 10 A (Refs. 2 and 18) and
therefore the idealization as an infirutely thin charged in-
terface, with trapping levels of acceptor or donor type, is
well justified. We restrict the discussion to a negatively
charged interface in an n-type semiconductor.

The potential felt by the charge carriers near the plane
interface is easily calculated in the Schottky approxima-
tion (energy-band diagram, see Fig. 1). Assuming for sim-
plicity only one homogeneously distributed, shallow bulk
defect with density No, we have to solve the Poisson equa-
tion
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FIG. 1. Energy-band diagram for a double Schottky barrier
at a grain boundary under large applied bias V. The mecha-
nisms of hot-electron transport and pair creation are sketched.
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for the potential 4(x},given the charge distribution p(x),

p(x)=eN [8(x+xi )—8(x —x,o}]—Q;5(x) .

Here Q; denotes the interface charge, e is the static dielec-
tric constant, eo the permittivity of the vacuum, and e the
unit charge [e =

~

e ~, e@(x)=potential energy of the
electron]. The boundaries of the screening charge are
denoted by —

xylo and x„o,and 8(x), 5(x) denote the
Heaviside unit step function and the Dirac 5 function,
respectively. Using the boundary conditions

@(—~ ) =@( xio) =—0 and 4( oo ) =4(x„o)=—V,
the condition for continuity at x=O, as well as charge
neutrality,
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C (0-)=e(0+)=a b, e'(0-) —e'(0+) =Q, /e, e,
the solution is found immediately:

Vo 2(x+x(0), —xlo&x (0,
4(x)= '

Qo
(x —x,o) —V, 0&x &x„o,

with yo eNo——/roe and the boundaries
' 1/2
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V
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The barrier height 4b depends on the interface charge Q;
and on the apphed bias V,

4b ———„'V, 1—
V'

V,

Here g; is the quasi-Fermi-level at the interface which de-
viates from the bulk Fermi level g for V & 0, ' "' '

hg=g —g; =kiiT ln
2

1+e

The shift b,g is determined by the detailed balance condi-
tion for charge trapping and emission by the interface. g,

"
is the Fermi level of the neutral interface.

The behavior of the barrier 4b as a function of applied
bias V for different forms of the DOS N~(E), and for the
general case including additional screening by deep bulk
states, is thoroughly discussed in BG. Here we focus on
the new phenomena introduced by the generation of hot
electrons at large applied bias and the production of holes
by impact ionization.

The main part of this section is organized in the follow-
ing way. After a short review of the phenomena involved,
we discuss the different scattering mechanisms which we
have considered to be the most important in this problem:
longitudinal optical phonons, acoustic phonons, impurity
scattering, and electron-hole pair creation. We then deter-
mine the distribution function for the hot electrons with
the help of a Fokker-Planck equation in energy space. Fi-
nally the total amount of pairs created in the depletion re-
gion is calculated.

and disappears smoothly as V~V, . The remaining free
parameter, the interface charge Q;( V), is determined by
the interface density of states (DOS) N~(E). Q; has to be
determined self-consistently, as N~ (E) is fixed with
respect to the valence band at x=O:

Q [@b(V)]=ef dEN, (E)f;(E), (2)
t

with

1
(z —I )zk T '

t B

In a first step we consider the transport of the electrons
injected thermally over the barrier into the positively
biased grain. For the case of a pure ballistic transport, all
the potential energy of the electron is converted into ki-
netic energy Ek (see Fig. 1).

As Ek overcomes a threshold energy E,h, the electron
can impact ionize a valence state and thereby create a
hole. The threshold E,b is determined by conservation of
energy and momentum during pair creation, and a
straight-forward calculation with parabolic valence and
conduction band yields

lulu +2mc

Plv+mc

1 =-1 1
E

Pl~
CX =

4m' fi 2')I p

(e„is the high-frequency dielectric constant) is of inter-
mediate strength and the rate of phonon emission typical-
ly is approximately 10' s '. (We can neglect corrections
by stimulated emission and by absorption for the tempera-
tures considered here, T &400 K.) The calculated LO-
phonon contribution to the scattering rates (per unit time:
I, per unit length: I/A. ) as a function of kinetic energy
Ek is shown in Fig. 2. Frohlich scattering is most effec-
tive at low electron energies (Ek (0.5 eV) and decreases

Here m„and m, are the effective masses of the valence
(heavy hole) and the conduction band, respectively, and

Es is the (direct) energy gap.
Since the depletion region, in which the electron is ac-

celerated, typically extends over approximately 10 A the
transport is not ballistic in general: assume an electron is
travelling through the depletion region starting at the in-
terface at x=0. The amount of kinetic energy picked up
by the electron is equal to the potential-energy difference
between x=0 and its momentary position x. This energy
does not depend on the path of the carrier since the field
is stationary and conservative. The trajectory of the elec-
tron depends on the scattering events suffered in the de-
pletion region. Elastic events do not cost energy, however,
they have the tendency to lengthen the trajectory of the
electron. This enhances the probability to undergo an in-
elastic event, which costs energy, and thereby the kinetic
energy of the particle arriving at x is reduced. (Note that
this situation is somewhat different from the one encoun-
tered in avalanche breakdown in insulators by laser radia-
tion, where the electric field is time dependent. ) We
then have to study two types of events: (i) elastic scatter-
ing which changes the particles trajectory„and (ii) inelas-
tic scattering which costs energy besides changing the
path of the carrier.

At this stage we have to restrict the discussion to a cer-
tain type of material. Here we treat the case of ZnO
which is a very polar material. Therefore scattering by
longitudinal optical (LO) phonons (Frohlich scattering ') is
the dominant energy loss process. ZnO has wurtzite
structure with only one LO phonon (energy ficoLo 72——
meV) which generates a macroscopic polarization field
and therefore couples to the electrons. The dimension-
less coupling constant a (Ref. 23)

' 1/2
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FIG. 2. Scattering rates per unit length (1/I, ) and per unit
time (I ) as a function of the kinetic energy Ek of the electrons.
The rates for optic and acoustic scattering and for pair creation,
are shown.

slowly for increasing energy. The scattering geometry
also depends strongly on energy: For low energies the
momentum of the scattered particle is distributed isotropi-
cally, with respect to the incident momentum, whereas the
scattering becomes forward directed at higher energies.

Next we consider scattering by longitudinal acoustic
phonons. For low electron energies we can calculate the
deformation potential scattering once we know the effec-
tive coupling constant. Here the literature presents
values ranging from 3.6 to 18.9 eV. We have performed a
very simple microscopic calculation for the momentum-
(q)-dependent scattering potential, based on the ionic
screening from the nearest neighbors. For q ~0 we find a
deformation potential of approximately 5 eV which is
reasonable. Unlike the behavior for LO phonons, the
acoustic scattering rate is low at small energies (Ek &5
eV) but increases strongly and is dominant at high ener-

gies (see Fig. 2). Note that with increasing energy Ek,
phonons with large momenta ( k & knz/2, knz is the wave
number at the Brillouin zone) and finite energies (approxi-
mately 50 meV} play the major role (large phase space}.
Despite the low rate, compared to the LO phonons, the
acoustic phonons are very efficient scatterers because of
the large momentum transfer involved (umklapp scatter-
ing). The geometry of the scattering can be reasonably
approximated by an isotropic ansatz for the scattering an-
gles. High-energy electrons moving along the field direc-
tion are therefore deflected away and suffer a considerable
path lengthening. Hence these electrons are efficiently
cooled on their way through the depletion region.

As the energy of the electron increases even further
(Ek &25 eV), the scattering becomes forward directed
again, but these energies are beyond the region of interest
for the present problem.

Let us now turn to impurity scattering. The rate of this
Rutherford-type scattering is immediately calculated.
Since there is a lack of free-electron screening charge for
the ionized donors in the depletion region, we use the con-
cept introduced by Conwell and Weisskopf for the deter-
mination of the long-wavelength cutoff: no scattering
momenta q ~ 4+No are taken into account, as these long
wavelengths correspond to the smooth space variation of

j (Ek,x)=—
8x k

(aE, }j (Ek,x)

+—
z j (Ek,x)

2 &Ek2 Ax

the electrostatic potential incorporated already in 4(x).
For the present situation (No-10' cm ) the scattering
rate is of the order of 10' [Ek/(1 eV)t' s ' which is
quite large at energies in the eV range. However, the fol-
lowing two properties keep the role of impurity scattering
in electron cooling small compared to the other processes:
Impurity (Rutherford) scattering is (i) elastic and (ii) high-
ly forward directed for energies above approximately 0.1

eV. Taking into account the energy dependence of the
rate (I ~0 as Ek~0), we find that the electrons are ac-
celerated without scattering to energies where they are
predominantly forward scattered by the impurities.

Finally let us consider the process of electron-hole pair
creation. The correct expression for the rate, given by
Fermi's "gold rule, " amounts to the calculation of a
twelvefold integral. ' We circumvent this laborious
task by resorting to Kane's random-k approximation,
which has been proven to be very accurate and useful in
practical applications. ' Within this approximation, the
rate is not determined by energy and momentum conser-
vation but rather by the phase-space volume open for the
process. The pair-creation rate then has the energy depen-
dence I -(Ek Es) e—(Ei, E,i, ),—with a prefactor de-
pending on the densities of states of the conduction and
valence bands involved, as well as on the matrix element
for the transition. This matrix element is very difficult to
calculate and therefore we use Kane's data for silicon as a
first estimate. A plot of the pair-creation rate obtained
within these approximations is given in Fig. 2.

As to other scattering processes, we have not taken into
account (free-electron-like) plasma oscillations, as their
energies are much too high (approximately 19 eV). Nei-
ther did we consider low-energy (approximately 40 meV)
plasmons due to the finite carrier density in the conduc-
tion band, as these carriers are repelled from the depletion
regions. By the same reasoning we also can neglect
electron-electron scattering.

After the study of the scattering processes, we turn to
the transport properties of the electrons in large electric
fields. Many models for the calculation of ionization
rates as a function of applied field have been published in
the past. ' Most of these studies however apply to
nonpolar semiconductors as Si or Ge, where scattering is
treated isotropically. Dumke has calculated the distri-
bution function and the ionization rates for hot electrons
in polar semiconductors (InSb and InAs) under homo-
geneous field conditions, including the polar forward
scattering. Here we have studied the general case of inho
mogeneous fields and have also taken the energy depen-
dence of the scattering rates and the scattering geometry
into account. Following the ideas of Uhlenbeck and Orn-
stein" we describe the distribution function j (Ek,x)
(spectral current density) by a Fokker P/anck equation-in
energy space,
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At the interface x=O the thermal distribution of injected
electrons represents the starting (initial) condition. The
boundary conditions for x~0 are the following: (i) tun-

nelling current entering at Ek ——0 and (ii) free boundaries
for Ek ~ ao. The two coefficients ( &Ek ) /bx and
((l5Ek ) ) /M describe drift and diffusion in energy space,
respectively. They depend on both position x (electric
field) and energy. We have performed a path-integral-like
calculation for these two quantities, taking LO-phonon
scattering into account. Here we just give a heuristic ar-
gument for the calculation of the dominant drift term and
postpone the details to a forthcoming publication.

The drift (b Ek ) /M consists of a gain in energy by the
electric field, e8'(x) = —e b,4/du, and a loss due to LO-
phonon scattering, ficoio(b, n )/lac. Here (b,n ) is the
average number of LO phonons emitted by the electron
over a small distance M. For an estimate of (bn )/M
we calculate the distance M which the particle travels,
emitting exactly hn phonons on its way:

h, n an e 8'(x;)
b,x = g u;z;t;+ ,' g —'t

I =1 i=1 m

Here z; =cos8;, where 8; is the angle of the momentum of
the particle after the phonon emission, taken with respect
to the field direction. For M small enough the velocities

u; and the field values 8'(x;) can be taken as constant.

Performing the (independent) averages over angles and
scattering times t; we find

(bx) =A, (z)+ bn,e 8'(x)A,

with the mean free path k=u/I . Instead of averaging bx
for a given An, we should calculate the average (b,n ) for
a given distance &. The result of the path-integral calcu-
lation, which does this average properly, agrees within a
few tenths of a percent with the above result and we
therefore write

a very delicate problem. For a donor density of Eo 1——0'
cm the initial field strength at the interface amounts to
approximately 1.35 V/(100 A) and the maximal loss at
Ek-0.2 eV to -0.15 eV/(100 A). For a lower density
&u ——10' cm the gain lowers by a factor of 10 [approx-
imately 0.135 V/(100 A)] and the maximum loss rises to
approximately 0.4 eV/(100 A). The consequence of the
change from dominant gain to dominant loss in the drift
term is best illustrated by Fig. 3. Here we have plotted
the distribution function for the (hot) electrons as a func-
tion of kinetic energy Ek for different positions x in the
depletion region. The result for low donor density Nu,
Fig. 3(a), shows that nearly all electrons are trapped in en-

ergy at the onset of LO-phonon scattering. As soon as the
electrons pick up a tenth of an eV in the field, they fall
back in energy by LO-phonon emission; hence, the elec-
trons just roll down the potential hill. In Fig. 3(b), the
electric field is large enough to overcome the bottleneck of
large energy loss at small energies and all the electrons be-
come hot. By suffering about ten scattering events they
lose an energy of the order of 1 eV which is small com-
pared to the gain of 4.5 eV in the field.

The second term in Eq. (3) describes the diffusion in en-

ergy space, i.e., the deviation from the average electron
behavior discussed above. This diffusion leads to a
broadening of the structure in the distribution function.
The coefficient ((bEk)2)/M is calculated by the path-
integral method.

In the calculation we have taken account of acoustic
phonon scattering and pair creation in the following way.
The nature of acoustic phonon scattering allows for the
idealization that scattering is negligible at low energies
(small rate) but highly efficient in cooling at large energies
(umklapp scattering, high rate). We are most interested in
the high-energy tail of the distribution function, as this
governs the total amount of pair creation. Electrons

0.)0 -&"b 2 7
(0) V+ 4b = 4.5V, T = 400K

The scattering rate per unit length, 1/k (see Fig. 2), is
corrected by a geometry factor which can be very large
for the case of isotropic scattering (at low electron ener-
gies) in small electric fields.

For the calculation of the average (z ) we need the dis-
tribution function of the scattering angles with respect to
the field direction. However, we only know the distribu-
tion function for the scattering angles with respect to the
incoming momentum of the electron. Yet at low energies
the scattering is isotropic with respect to the incoming
direction of the particle —and therefore also with respect
to the field. At large energies the particles are forward
directed and hence the incoming direction coincides
roughly with the field direction. Taking the relevant dis-
tribution function to be the one known for the scattering
angles should thus be a reasonable approximation.

At this stage we see that the balance between gain of
energy by the field and loss by emission of LO phonons is

C)
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FIG. 3. Distribution function j (Ek,x) versus kinetic energy

Ek for different positions x in the depletion region: a, x=0; b,
x =xo/25; c, x =xo/10; d, x =xo/5; e, x=2xo/5; f,
x=3xo/5; g, x=4xo/5; and h, x =xo. The injected tunneling
current j~~q(Ek, x) was calculated in the WKB approximation
and the transmission coefficient for the purely thermionic
current was taken unity. At the higher doping level, a fraction
of approximately 0.3—0.5 of the electrons undergo an acoustic
scattering event before arriving at xo.
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FIG. 5. Yield g for hole production versus donor density No
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FIG. 4. Yield g for hole production as a function of the total

potential drop V +4b for two values of the donor density No.

from the right-hand side of Eq. (3). Similarly, electrons
which have created a pair lose more than E,z of their ki-
netic energy and are eliminated from the distribution
function by subtraction of the term

1

4«k) (4)

Finally integration of the term (4) supplies us with the
desired yield g for the hale production

Jholes

jin

1 I dEk I dx j (Ek,x),1

Jln I k

which have suffered an acoustic (umklapp) scattering
event generally lose a larger amount of energy due to a
significant path lengthening. Therefore they are taken out
of the distribution by subtraction of a term

1

A,g(Ek)

III. STEADY STATE

J =gJr =g(J Jil+ 2Jem) . (5)

The results of Sec. II show that it is possible to create
holes within the depletion region of the grain boundary.
These holes drift-diffuse back to the interface where they
are trapped in the potential well. The holes do not be-
come hot as easily as the electrons since: (i) their mobility
is roughly a factor of 10 lower than the electron mobility
for most II-VI compounds and (ii) the electrons start
with the maximum field at the interface which helps them
to overcome the large loss at low energies, whereas the
holes start in a region of low field. In the latter case the
energy picked up in the field is then readily dissipated by
the loss processes and it is much more difficult for the
holes to get beyond the intense scattering region at low en-
ergies.

The hole trapping at the grain boundary must be bal-
anced by a process in which holes disappear from the in-
terface This c.an occur either by recombination and/or by
emission of holes over the barrier ebb to the negatively
biased side of the junction. Note that a recombined hole
is lost as a screening charge for the negative interface
charge, as the empty electron trap is immediately refilled.

In the calculation of the steady-state barrier 4b we
must substitute the electronic interface charge Q;, Eq. (2),
by the total charge of electrons and holes. The total hole
current arriving at the interface is proportional to the
electron current j, injected into the positively biased grain,

where j;„is the total incoming electron current. A plot of
the yield g as a function of total potential energy

equi, +eV at the interface (see Fig. 1) is shown in Fig. 4
for the two donor densities No ——10' cm and NO=10'
cm . The yield depends strongly on the field strength in
the depletion region (donor density No). This is illustrat-
ed in Fig. 5 where we plot g as a function of density No
for a fixed runway eC&&+eV. For No) 10' cm the
yield rises steeply as the gain in the field starts to dom-
inate the loss by I.O-~honon emission. Note that g be-
comes large (g ~10 ) only for e@i,+eV considerably
larger than E,h which is approximately 3.7 eV in our ex-
ample (m, =0.26m„m„=1.5m„Es=3.2 eV, m, is the
free electron mass, Ref. 44).

Here j is the thermally activated current
—(e4b+a~)/k~ Tj=A Te

and j,~, j,'are the (electron) currents trapped at the inter-
face,

jt'I ——j dEc ES;E 1—;E
and emitted out of the interface,

j,'= I dE b(E)e N;(E)f;(E), (7)

respectively. ' The capture cross section c(E) and the
emission rate b (E) are approximated by constants, which
are related to one another by the detailed balance condi-
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tion at V=O (b=2Ac, A =A*T, A'=Richardson con-
stant). The position of the bulk Fermi level relative to the
conduction band is denoted by c~, and Eb is the top of the
barrier, see Fig. l. (We use the same notation as in BG
throughout this paper. )

For the moment we assume with Pike' that the incom-
ing hole current j" is fully trapped and balanced by
electron hole-recombination only. This of course affects
the electronic interface charge Q', which we calculate
now by determining the new quasi-Fermi-level at the 1n-

terface. The rate equation for the electrons is
~ e e e e

JI' =J~ —Jem —Jrec =0

and the corresponding equation for the holes (no emission
of holes) becomes

~ h h h
Ji =J —Jre =0 .

Using these two equations and the equality of the two
recombination currents j', =j„,=j, , we obtain the bal-
ance condition

2.5

2.0

1.5

1.0

0.5

I I I I
/

t I 1 1
1

I 1

j~ —Jem —J =0 0.0
0.0 0.5 10 (V)

Inserting Eqs. (5)—(7) we find the new expression for the
interface Fermi leuel g;„which is lowered by the recom-
bination processes:

Ag=g —g;= kgT ln

with

2+g
—eV/k~ T1+8 ' —g,

e 7 f

Using Eqs. (5)—(9) leads to the result

Q"=gi r, (10)2+g
The total interface charge Q; =Q' —Q" must be calculat-
ed self-consistently with the barrier 4b. This is a rather
tricky numerical problem which was solved in the follow-
ing way. For a given applied bias V across the grain
boundary we start with a guess for the barrier
[~g =g(V+4&)]. In an inner loop we determine self-
consistently the interface charge Q' which depends on the
trapping probability c(Q ) through the quasi-Fermi-level

g, =g, c=c I dEN;(E)[1 —f;(E)] .
C

Inserting this new expression for g; into Eq. (2) the elec-
tronic interface charge Q' can be calculated.

The above calculation works for the single-level inter-
face DOS as well as for the continuous DOS in the per-
fectly relaxing model, where the occupation of the inter-
face traps is described by a Fermi function. The model
with localized interface states needs some additional ideas
which are described in Appendix A.

Next we have to calculate the steady-state hole charge
Q" present at the interface. The latter is determined by
the hole rate equation (g) and the ansatz for the recom-
bination current j„„

FIG. 6. Self-consistency plot for the barrier 4b for different
values of applied bias V. Comparison is made for the two situa-
tions with (solid lines) and without (dashed lines) hole creation.
Without holes, only one solution for 4b exists for a given bias
V. The accumulation of holes bends the curves down at large

bias, such that two values for 4b are found for a given V.
These two solutions are the barrier heights before (large 4q ) and
after (small 4q) breakdown. No self-consistent value for 4b can
be found for a bias Vexceeding the breakdown voltage V~.

g;, Eq. (9). In the outer loop we then improve the value
for the barrier 4b. This second iteration is illustrated in
Fig. 6 where we plot the new barrier 4b as a function of
the old value of 4b for the two cases with and without
hole generation.

In order to discuss the complete model we always show
the results for the general case where deep bulk traps are
present. The inclusion of these traps into the above for-
mulas is straightforward [only 4b, Eq. (1), undergoes a
shght change]. The same data as in our previous paper
(BG) have been used. A Gaussian interface DOS, posi-
tioned 2 eV above the valence-band edge, with a trap den-
sity X;= 10' cm and a width of DE=0.15 eV; a shal-
low donor 20 meV below the conduction band E, with
density 10' cm and three deep bulk traps at energies
0.2, 0.4, and 0.6 eV below E, with densities 5)&10'
em, 1X10' cm, and 2&10' cm . The capture
cross section of the interface states is c =10 ' cm and
the values for the bulk states are all 10 ' cm . The tern-
perature has been chosen T=400 K and the dielectric
constant is @=9. Further, we have used a grain conduc-
tivity of 10.8 S/cm for a grain size of 15 pm. The Fermi
level is at c~——67 meV below E, and the Richardson con-
stant amounts to 30 A cm K

The most prominent feature in Fig. 6 is the rapid decay
of the barrier 4b in the presence of holes. A reduction in
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FIG. 7. Barrier height 4&i, and interface charge Q; versus
external bias V~„;„.%e compare the calculation without holes
(dotted lines) with the situation where holes are accumulated us-
ing a finite ( Np, ——10' cm ) and an infinite hole density. In the
latter case a pronounced instability is developed. The break-
down of the barrier depends on the recombination parameter r
as well as on the capture cross section cq (cq ——10 ' cm ).

4~ enhances the injected electron current j,' and conse-
quently also the hole charge Q" exponentially. This leads
to a barrier-controIIed aoalanehe breakdown manifested in
the fact that the grain boundary bias V cannot exceed a
critical value V~. After reaching this value from below,
the grain boundary bias V shrinks again such that
g(V+4i, ) is reduced sharply, thereby compensating the
growth in j,'. Consequently we find a negatiue differential
resistance up to the point where the current flowing across
the grain boundary is limited by the finite conductivity of
the grains. This new type of bistability has not been re-
ported in the literature before.

In Fig. 7 we illustrate the behavior of the barrier 4b
and of the total interface charge Q; as a function of the
applied external bias Vs„;„=V+ Vb~k ( Vb„ik is the poten-
tial drop within the bulk of one grain}. Again we com-
pare the situations with and without hole generation. At
about 3.6 V the critical bias V~ is reached where the
barrier-controlled avalanche breakdown sets in as
described above (g-10 ). The breakdown voltage V~
depends on g and on the recombination parameter r for
which we have chosen the value r =10 ' cm /s. This
leads to a recombination time v„=lms, a value well
within the range of e-h recombination times reported in
the literature (values are found ranging over several or-
ders of magnitude from picoseconds to seconds}. A de-
crease of ~„bya factor of 100 leads to an increase of the
breakdown voltage V~ by approximately 0.5 V, see Fig.
7. A comparison of V~ with the experiments can be used
to get an estimate for the recombination time v; at the in-
terface, a quantity which is not easily accessible by experi-
ment otherwise.

The collapse of the barrier in the presence of holes is
completed by a relatively small reduction in interface
charge: after a decrease of Q; by roughly one-third, the
further decay of the barrier is limited by the finite con-
ductivity of the grains. This reduction of Q; is due to the

accumulation of holes Q" alone. The lowering of the Fer-
mi level, as a consequence of the recombination processes
described by Eq. (9) is only of minor importance; al-
though, in the present case, b,g increases by a factor of 4,
this growth is more than compensated by the decrease of
4t„such that the electron states are always nearly filled
(note that g, approaches 1 but is always bounded by 1).

We have tried to modify the model described above in
order to find a way around the instability created by the
strong hole accumulation. A first possibility is the intro-
duction of a finite density of hole states Nq at the interface
in close analogy to the finite number of electron traps.
The total hole flux is then divided up into a fraction
trapped at the grain boundary

(ci, is the capture cross section and f& is the occupation
probability), and a second part which is emitted into the
negatively biased grain. 4'e will neglect this latter contri-
bution to the total current as its magnitude is small.

The hole rate equation is changed to

~ h ~ h h
J] =ChJ J I'ec

In the shift of the interface Fermi level g;, Eq. (9), we
simply have to substitute g by g =gch.

The hole charge Q", Eq. (10), takes the new form

ch 2 —c
Q = eEI„A,=gjv„1+k ' '

e 2+I

The result of a calculation using the density Xq =10"
crn and the capture cross section ch ——10 cm is
shown in Fig. 7 for two values of the recombination pa-
rameter r. The limitation of the hole charge Q" prevents
the barrier from becoming instable. The old results are
reproduced in the limit of an infinite density of donor
StateS Xh ~ 00, Xhch ——1.

A second way to eliminate the instability is to assume
thermal emission of hoies over the barrier 4b into the neg-
atively biased grain. We have performed a model calcula-
tion which treats electrons and holes at the interface iden-
tically. The recombination rate was set equal to zero and
substituted by the emission process which increases ex-
ponentially as the barrier 4b is lowered. This leads to a
rapid and stable decay of the barrier 4t, which we illus-
trate in Fig. 8 for a reasonable set of parameters (single-
level densities Nh ——10' cm, 10' cm at Eh ——0.2 eV,
0.4 eV above the valence band, and charge emission rate
bi, ——10 A). The exponentially growing hole production
with decreasing barrier 4b is compensated by the ex-
ponential rise in hole emission from the interface. This
compensation reduces the sharp growth in Q" which oth-
erwise mould lead to the instability.

The emission-only model however suffers from the de-
ficiency that it cannot explain the negative small-signal
capacitance at large bias found experimentally (see below).
In a complete model probably both effects, hole recom-
bination and emission, must be taken into account. We do
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FIG. 8. Barrier height 4b and interface charge Q; versus

external bias V~„;„for the emission-only model. Comparison to
the case without holes is made (dotted lines). Again two hole

densities, Nq ——10' cm and NI, ——10' cm (cd%„=1),are
considered. The dependence on the trap position Eq is studied.
An increase of Eq corresponds to a reduction in hole emission

and the breakdown of the barrier is initialized at a lower bias.

FIG. 10. dc current jd, versus applied bias V~„;„.The stable
behavior for the cases where no holes are present (dotted line),
or where the hole density is limited (dashed line—hole recom-
bination; dashed-dotted line—hole emission) is contrasted with
the instability found for the model where all holes are accumu-
lated at the interface.

)0 I 1 I

not think, however, that performing this very involved
calculation (the dynamics becomes very complicated) will

bring many new insights, besides adding also more param-
eters to the model.

In the upper breakdown region the current across the
sample is limited not only by the grain-boundary barriers
alone. This is shown in Fig. 9 where we plot the voltage
drop V across the interface as a function of the total ap-
plied (external) bias Vs„;„for the various models present-
ed above. As the barrier decays beyond approximately 0.2
V the finite conductivity of the grains becomes dominant.

The behavior of the external current jd„which is
thermally activated over the barrier, is illustrated in Fig.
10.

—eV/k~ T
jdc j(1—e '

) 2Jem+—Jrt

=j 1 ——
2

V~kII T

2+g .

Again we compare the new results with the case where no
holes are generated. An S-shaped instability is formed
when the growth of the hole charge Q" is not limited by a
finite Nq. This leads to a divergence of the nonlinearity
coefficient a=d(lnj)/d(lnV) at V= Vbd. For the case of
a finite hole density JIlq the current j rises steeply as the
barrier decays, but remains well behaved. The nonlineari-
ty parameter a shown in Fig. 11 develops a sharp peak
when the holes accumulate at the interface. a values well
beyond approximately 100 are reached, depending on the
model parameters. The fine structures in Figs. 6—11 are
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FIG. 9. Voltage drop V across the grain boundary (GB)
versus external bias V~„;„for the models (i) with no holes (dot-
ted line), (ii) with a small hole density Xq ——10' cm consider-
ing both, hole recombination or hole emission, and (iii) with a
large hole density XI, ——10' cm or Nq~ oo, considering again
hole emission or hole recombination. As the barrier drops below
approximately 0.2 V the total applied bias V~;„is divided up
into a voltage drop V across the junction and a potential loss
through the ohmic grain V~„;„—V.
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FIG. 11. Nonlinearity parameter a versus applied bias Vg„;„
for the grain-boundary models of Fig. 10. For the bistable case
(not shown) a diverges as V approaches V~, and becomes nega-
tive and diverges again as the negative differential resistance
turns positive for the second time.
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due to the neutralization of the deep bulk traps as dis-
cussed in BG.

In the calculation of the electrical response we describe
the transport over the barrier 4» by the thermionic emis-
sion model. The results of Sec. II show that a true
description should take into account the scattering pro-
cesses in the depletion region. However the small number
of scattering events renders the thermionic emission
model reasonable. Furthermore the description of trans-
port by a diffusion model only changes the prefactor in j
but not the exponential dependence on the barrier 4~.

IV. TIME-DEPENDENT PROPERTIES

In this section we calculate the time-dependent proper-
ties of the carrier transport in linear-response theory. As
an illustration we treat the simplest case of a single-level
DOS for the electronic interface traps and no deep bulk
defects. The number of holes at the interface is deter-
mined by e-h recombination. The density of hole traps at
the interface is taken as finite, since it is easy to generalize
the results to the case where all holes are trapped. The
models with a continuous DOS for the interface are treat-
ed in Appendixes 8 and C.

The calculation runs along the same lines as in the pre-
vious publication (BG). The application of a time-
dependent bias across the grain boundary,

V(t)= Vo+ Ve'"', eV &~ksT,

leads to the variation of the interface charges Q' and Q",
as well as of the screening charge in the depletion regions.
This (time-delayed) response results in a modulation of
the barrier 4s which in turn exponentially modulates the
current measured across the junction. A second contribu-
tion to the total current flowing through the interface is
the displacement current generated by the charge transfer
between the two depletion regions. The study of the
time-dependent current can be used to determine the mi-
croscopic parameters of the states involved in the current
transport.

We start with the calculation of the dynamics of the
hole charge Q", which is determined by the rate equa-
tion

~ h ia)t ~m II & ~ & ~ h icoti~Q e = =Jr Jrec =(J t J rec)e
dt

By expansion of the hole current trapped at the interface
we rind"

and the expansion of the recombination current j", leads
to

+ro

Qo-+ f, I (13)

gai o'rr o e

I+Q+icov, o kzT

go 2 CO+ (V—@i )
go 2+go

Co+ 1-fo
1 —Co f

In a next step we calculate the modulation of the electronic
interface charge Q', which is governed by the rate equa-
tion

~~e
~ ~ e idiot dW e e .e ~ e ~ e ~ e isn'tiOiQ e = =jr Jem jrec=(J r J em J rec)e

dh

Expansion of j,'—j,' leads to the result

eCO —e V0/kB T
J r j=jo—

i 7.(1+e
8

V
eV /k T0 B

kgT l 2+
„

f;
1 —f;o fo 2+go

and j,'„=j,"„=j„,is given by (13). The dynamics of the
total interface charge Q; then is given by the solution of
the equation

(15)

We first use Eq. (15) to determine the modulation f;,

The index "0" indicates the steady-state value of this
quantity. We have introduced the derivative go of the
yield g at Vo+4so. Note that the hole charge Qo may
still be expressed as [compare Eq. (10)]

2 —Co
Qo =gojoTro

2~go

also in the case of a finite hole density.
Inserting of Eqs. (12) and (13) into the rate equation

(11) determines Q ",

Co CO 1 gpc+ +
„

f;
1 f o fio Z+go—

I
go 2 —co+ (V—@b)
go 2+go

f =
k Tf.o(1 fo)—

8

(1+8,—g, )C, —8„+ V
1+e' '

1+@+ld)vi

Here we have introduced the abbreviations

A, 1
gtx:f got:

l ~ ~
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kgT 2 —co
@.=g o

2+go 1+Ag+ icos„O & —goer e co
C (co)= f 0

ckg T 1+p+lco7]

1
IJ =gOr & —~ s gor =go

)
J

The expression for the interface relaxation time v; is'

efi0 1 i&'bbp+&))lkb&
Pg —eV /k T i Ori

A

C; (oi)=C,"(co) 1+Apg~, —gp, —+rO gor

co

~r0+ 8i 1+ +lc07pp

The exponential dependence on 4bp( Vp} allows r; to vary
over several orders of magnitude.

Inserting the result for f; into Eq. (15) we find the
modulation of the interface charge Q;,

Q;=C; (oi)4b —C; (co}V,

with the capacitances

We proceed with the calculation of the time dependence of
the barrier height 4b. %e can relate 4b to the variation
of the screening charges Qio=eNoxi0 alld Q 0 eNOxip

Qio Q o —V
Cr C

where we have introduced the capacitances Ci =eoe/xiii
and C„=epe/x, 00. All charge modulations Q;, Qip and

Q„pcan now be expressed as a function of 4b and V. The
charge-neutrality condition

Q (r) =Qio(t)+ Q.o(t)

allows one then to relate @b to the known amplitude V

C, +C; (oi)
4b ——

C„+Ci+Ci(co)

Finally we determine the current through the junction,
which is made up of an injection part and a displacement
part. We calculate the thermionic injection current (on
the left-hand side of the barrier)

C; (co)=C (pi)
I +ro+@„1+ + i c07 ~ pl+e' 0

—eV/kB T
jib =j(1—e )+i~ — J

in linear response and find the result

Jtb =&O
2/ icr—0 1

—eVo/kB T—e
2/rico —1

+e
—eV0/kB T

V

+o;(co) ( I + &, )@b—&,+
0 B

The conductance o 0 is a slight modification of the zero-bias dc conductance (where 11= 1),

e co
ao=jo

kgT 2
1— (1—gp, )(1—g, )

1+go/2

and o;(co) is

i'(oi )=j 0 1)C; (co) (I+io)r,') e(1 ice—r,')+-C —eV0/kB T, p,

2e io

The displacement current jid =—Qio adds the contribution

jgd
——imCI@b .

The total ac small-signal current finally is

with the admittance o;
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1 ——
2/geo —1

—e~olk~ T C, +Ci (co)—e ' ' cro+(I+&, )~;(~)+&~CI
C„+C,+C, (~)

—e vo/k~ T 1

2/geo —1 1+8
(16)

before discussing this main result, let us say a few
words concerning the generalizations of Eq. (16): If all
holes produced in the depletion region are trapped at the
interface, we can simply use (16) after taking the limit
%phoo, cgNI, ——1. This corresponds to setting ejI, o

——1

and A&)
——0.

The presence of deep bulk traps is taken into account
very easily by substituting the depletion region capaci-
tances CI and C, by their updated values including the
deep traps. Some care has to be taken, as the denominator
of 4b/V picks up an additional capacitance whenever a
deep trap gets neutralized completely as it drops below the
quasi-Fermi-level. For details we refer to our previous
publication BG.

The behavior of the admittance o as a function of ap-
plied bias V, frequency co, and temperature T has been
thoroughly discussed in BG. Here we will concentrate on
the new phenomena introduced by the presence of holes at
the interface. Most of the g-dependent terms in cr are
only minor corrections to the previous result in BG. The
major change is introduced by the terms
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parameters given in Sec. III, including the deep bulk
traps. } As all interface states become filled at large bias,
the capture probability co approaches zero and the inter-
face capacitance C (r0) disappears. However, when holes
are present, an additional relaxation process is introduced

~ro gor—go-
Co

in the interface capacitance C; (co).
The total capacitance

1C =—Imo.
M

(17) 2.0
oJ

E
U

LL

Q ~

Yo = 5,0V

1 ' l

of the junction consists of a contribution from the dis-
placement current jid and a second contribution which has
its origin in the time-delayed response of the interface
charge. This time delay is transferred to the barrier 4&
and therefore the injected current is shifted in phase,
hence generating a capacitive component.

The displacement current part is given approximately
by the high-frequency (hf) capacitance

6'oE
C)r(VO)=

x(00( Vo)+x Oo( Vo)

(plus smaller corrections when deep traps are present).
The second part (injected current) depends strongly on

bias Vo and frequency co: For cov;(Vo) & 1 the interface
charge does not follow the apphed ac signal and no capa-
citance is developed. As Vo increases the relaxation time
~;(Vo) decreases and rue;(Vo) falls below 1. The time-
delayed charging and discharging of the interface then in-
troduces a large capacitive effect which we illustrate in
Fig. 12. (Throughout all plots, we use for the junction the

Q, Q
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5.5 j
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10 'l0 (08 )010
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FIG. 12. {a) Capacitance C versus external bias V~„;„for the

model with a fmite density of hole traps and hole recombination
(NI, ——10'2 cm, r =10 'o cm'/s, steady state see Figs. 7 and
9—11). We take a continuous (Gaussian) interface DOS and as-
sume perfect relaxation among the electron traps. The capaci-
tance becomes negative at a bias V~„;„-3.3 V considerably
lower than the voltage needed to suppress the barrier,
V„,„-3.6 V. For comparison we also show the result for the

same DOS, but treating the electrons at the interface as com-
pletely localized (dashed line). (b} Capacitance C versus fre-
quency co. At low frequencies the time-delayed charging and
discharging of the interface produces a large capacitance which
disappears when the interface cannot follow the signal any
longer. At high bias V~ the hole dynamics dominates and the
capacitance turns to negative values. The dashed lines are the
comparison to the model with localized states.
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by the e-h recombination. The latter does not disappear
when the interface is filled [the terms in (17) are both pro-

portional to I/co] and has an opposite sign as its origin is

the hole charge Q in Q;. With increasing bias Vo, the

term

+rO gor

grows in magnitude (decrease of r,'}and finally, when the
dominant relaxation process has shifted from the elec-

trons to the holes, the capacitance C; (co) becomes nega-

tive. As C; (co} is much larger in magnitude than the de-

pletion region capacitance Ci+C„,the sign of the total
capacitance C is reversed simultaneously. Since go, de-

pends on co, the whole process is frequency dependent.
An increase in u shifts the sign reversal of C to larger
bias values [see Fig. 12(a)].

The frequency dependence of the capacitance is illus-
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FIG. 13. (a) Conductance 6 versus external bias Vg„;„.The
presence of deep bulk traps leads to the large zero bias disper-
sion. The sharp decay of the barrier around V~, .„-3.6 V is re-

sponsible for the strong increase in G. At large bias the conduc-
tance is dominated by the ohmic grains. (b) Conductance 6
versus frequency co. The voltage-dependent resonances at low

frequencies are due to the interface. For Vo ——3.5 V the hole
dynamics leads to a resonance with a reversed character Copen

circle). At large frequencies the displacement current dominates
and the bulk trap resonances are clearly visible. For ~ & 10 s
the finite conductivity of the grains cannot be neglected: The
balance between conductance and capacitance is altered in favor
of the conductance. The dashed line is again the comparison to
the model with localized states.

trated in Fig. 12(b). For large bias Vo the capacitance be-
comes negative at small values of co.

For the sake of completeness we also present plots of
the conductance 6=Reer as a function of bias Vs„;„[Fig.
13(a)] and as a function of frequency co [Fig. 13(b)]. A
sharp rise in G( Vs„,„)indicates the hole-induced break-
down. At low bias the large dispersion added by the deep
traps is dominant [Fig. 13(a)]. In Fig. 13(b) the decrease
in G for Vo ——3.6 eV is due to the resonant electron-hole
recombination process (note the reversed sign of this reso-
nance as compared to the electronic interface resonance at
small bias values). The high-frequency part of the plot
differs from the result previously published, (BG) as we
have included the finite conductivity of the grains in the
present calculation.

The above calculations treat the case of a single-level
DOS for the electron traps at the interface. The formulas
experience only minor changes for the more general case
of a continuous DOS in the relaxing model (compare this
to the results in Appendix 8). The case of perfectly local-
ized states is much more complicated to calculate and the
final results look quite different. A numerical evaluation,
however, proves that the differences between the two re-
laxation models for a continuous DOS are only of minor
importance (see Figs. 12 and 13), a result which we have
already discussed in BG.

Finally we also performed a calculation where the holes
disappear from the interface by emission processes instead
of recombination with electrons. This model suffers from
the drawback that it does not lead to a negative capaci-
tance for a meaningful set of parameters, although the
steady-state breakdown looks reasonable (see Fig. 8). The
main reason is that the leading parts of the hole creation
and emission currents are in phase and of equal magni-
tude (detailed balance) in this model, because both pro-
cesses are governed by the same barrier 4i, . Therefore no
large (negative) hole capacitance is induced.

V. CONCLUSION

We have calculated the steady-state and time-depender. t
behavior of majority carrier transport through grain boun-
daries for the case where large electric fields at the inter-
face play a dominant role. We have shown that electrons
can pick up a large amount of kinetic energy if the field is
strong enough. The main hindrance for the electrons to
become hot is the strong, isotropic polar optical-phonon
scattering at low carrier energies. Once the electrons have
overcome this bottleneck, the scattering becomes forward
directed with increasing energy and the electrons become
hot. Increasing the doping concentration leads to a higher
electric field at the interface, thereby favoring hot carrier
generation and the subsequent production of holes by im-

pact ionization.
The holes, which drift-diffuse back to the interface,

have a severe effect on the stability of the potential bar-
rier. Trapping of all holes at the interface leads to a
barrier-controlled avalanche breakdown and a negative
differential resistance region in the current-voltage
characteristics, as long as electron-hole recombination is
the only process of hole-charge regulation at the interface.
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If the total hole charge is limited by a finite trap density,
it becomes possible to get rid of the bistability. Another
way to find a unique barrier 4b at breakdown is to substi-
tute the electron-hole recombination by hole emission,
however in this case no negative capacitance could be
found.

The present calculations show a negative small-signal
capacitance at large bias, where the modulation of the
barrier is dominated by the hole-charge dynamics (model
with e-h recombination at the interface). This negative
capacitance is interpreted in the following way: At
moderate bias values, where the electron interface states
play the dominant role, a lowering of the barrier is fol-
lowed by an increased electron trapping (dQ;/dV&0), as
empty electron traps are shifted below the Fermi level g;.
This stabilizing charge accumulation lags behind in time,
thereby giving rise to a (positive) capacitive component in
the modulated over-barrier current. %ith increasing bias
the interface states for the electrons are filled and the sta-
bilization effect dies away as the electron charge Q'
remains at its maximum value —the capacitance de-
creases. ' As the barrier is lowered further, holes are
created in the depletion region and a positive interface
charge Q" is built up. A lowering of the barrier is fol-
lowed by an increase in hole production and therefore in
Q". The barrier is destabilized (dQ;/dV~O) and the
capacitance goes in the opposite (negative) direction.
Such a negative capacitance has indeed been observed at
ZnO (Refs. 13, 15, and 52) and GaAs (Ref. 16) grain
boundaries. The above theoretical considerations give a
deeper understanding of this phenomenon.

With the complete model presented here, it now be-
comes possible to thoroughly analyze the experimental
data. Some care must be taken at very large bias (upper
breakdown region) where only pulsed measurements and
no admittance data are available. On the experimental
side it becomes difficult therefore to identify a bistability.
On the other hand, at these high voltages (i.e., for Pb ~0),
both effects, electron-hole recombination as well as hole
emission, probably should be considered simultaneously
for an accurate fit. However, we do not expect to find
new insights from such a calculation. Both, theory and
experiment yield reliable data in the prebreakdown and
the lower breakdown region: steady-state characteristics
and dynamic response as a function of bias, frequency,
and temperature. These data allow the verification of the
model and the determination of the underlying microscop-
ic parameters.
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electrons are localized within the interface. The interface
is then in thermal equilibrium only by exchange with the
bulk. No equilibration among the interface states is al-
lowed. The detailed balance condition has to be evaluated
for each level separately. The rate equation for each elec-
tron level is

.e e .e .e
Jt =Jt —Jcm —Jr~

and the analog equation for the holes is

h
Jt' =Jt —Jree (A2)

The two recombination currents j', and j, are not iden-
tical any longer as we have to take j', for a single level
only,

j:..= , Q'Q"—,

whereas the holes recombine with all electron states,

b Qb J' dE Qe(E) QAQe, t

bg=g —g;=k, Tln 2
—ev/kB T1+e

and the parameter X, which has to be determined self-
consistently,

g, —c +—

The solution for X then is

e 2 —cX=g
&Q" 2+g

and hence the electronic charge Q" can be determined.
The expression for the hole charge coincides with the re-
sult in Sec. III,

ch 2 —c
Q = eN„, a=gj~,1+k e 2+g

for the case of a finite density Nb.

Analogously the hole current j"contains a contribution of
all electron states,

j"=g j(1—c)+ ,'b I dEN—tfe

Evaluation of the detailed balance condition in the pres-
ence of holes,

~ e e e
Jt =Jem+Jrcc

leads to the result

1

(F. —g; ))/kB T1+X+e
with the Fermi level g; defined by

APPENDIX A

%e determine the steady-state occupation statistics for a
continuous interface DOS N~(E) in the limit where the

APPENDIX 8

The small signal response of the junction for the model
with a continuous interface DOS is determined for the case
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where the interface is in thermal equilibrium (relaxed in-
terface). The calculation proceeds along the same lines as
in Sec. IV above.

The currents trapped and emitted by the interface ac-
ceptor states are

j,'=j(1+e )[co cN—&(ebb+/;)e'"']

and

j =2jo&p[co+cNg(ec b+(; }e'"'],
—eV(, /k~ T

—h,g'0/k~ T 1 +e
Ng=Ãi(g;) .

2+So

In the calculation of the hole charge Q" we need the
response of the trapped current,

—.I, . e 1 —goo
J ~ =gojo (1—co)@b+cNg 1+ „(e@b+0;)kgT 2+go

go 2 co ~ ~ go+ „(V@—b) — Q ",
2+go +r0

and of the recombination current,

2 —co
Q +goJ'o (ebb+/;),

+ro cX—co 2+go

N= f dEN (E) Q =eNg(ebb+/ )

to find

gojo+r 0 e — go 2 —co 1 —go 1 2 —co
(1—co)4b+ (V—4b)+cNg 1+ — (e4b+g )1+g+itpr, p kttT gp 2+go 2+go c& —co 2+go

We then use the rate equation for the total interface charge Q; to determine first

eco

2cktt TN

(1+&r g~r )C—'b &r+-
1+e' '

1+1Q77] +@~

gor
pq

—— [2cp —1 —(Ao+l Q7%„p)U],
2co

cX —2co 2 —co

c& —co 2+go

and using this result we find

Q; =C; '(tp) 4b —C; '(cp) V,

with

C; '(cp)=C '(tp) I+~ogpu. —goo

[1+(1—go, )U]
co

e co 1C '(tp)= Tf 27)
2ckg T 1+LM +l co%i

All the results for the injected current and for the admit-
tance 0 can be easily adapted to the present case by mere-
ly substituting the expressions above for the correspond-
ing quantities in Sec. IV. In o;(tp) the term iJ, /f;p is then
changed to 2p [fo~f o(g o) = z ].

The comparison of the present results with those of See.
IV reveals only minor differences and the discussion of
the negative capacitance applies equally well to the
present case.

+ro go+5, 1+ 1 — U +itprp
~l 2co APPENDIX C

C; '(tp)=C '(tp)
1+e' '

1+ 1—
2co

+&n)&ro

We outline the calculation for the small-signal admit-
tance o, taking the model with a continuous interface DOS
where the electrons are localized within the interface. The
steady-state properties of this model have been discussed
in Appendix A. The two rate equations for the electrons
(Al) and for the holes (A2) each possess a different
recombination current j', and j, , and this renders the
calculation more difficult than in the previous case.

In the calculation of the hole current j"=g (j„'
—j,' +j", /2) we have to insert the expansions for the to-
tal trapping and emission currents,
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j"=gojo (1—co)4b+ (1—Xo)Q "+-
kg T 2e 2 1+AD+ceo%„o kBT

I

go 2 —co
+ (V—@b)

o 2+go

go 2 —cp+ (V—@b)
go 2+go

with

Q"=e f dEN;(E)f;, C=c f dEN;(E) f; .
io

+ 1—
2e

2+go
&0 Q "+-

go 2

The expression for the modulation of the hole charge Q" We then determine the dynamics of a single-electron level
at energy E by expansion of the electronic rate equation:

—evo/k~ T 1 — . e —eV()/ka T — —&Vp/kg&-
i coeN~ +jocÃi ( 1+e ) fi =Jo cNi(1 —f;0)[(1+e )Ceb —e V]

fo ' kBT

Qo e „—go 2—co—go.jo,, , (1—Co)@b+ „(V @b)—
Qo' kB T go 2+go

+ —+ 1 — Xo Q"2+fo

2 2e go
(C 1)

This supplies us, on the one hand, with an expression for the electronic charge modulation,

N f o(1 fio) e-
I+&cp&ifio

2Nfo e
for

1 + i co'rIf( 0
ge&t

C e2 —co—+ 1 ——
C C Qo'

@b
eVO/kg T

11+e

2
Nifio e co e

goe k T @b+e~0 (V @b)
+irifio c B Qo

g e, t

e

with

e 2 —co, e 1

Cge&& 2+~ ' ' j C
—eVP/kBT (C2)

Integration of (Cl) over energy, on the other hand, leads to an equation for C,
e

eco
(1—go )@b-

1+go„/2 kB T
co — — c gor e 2 co—g0„(V 4b ) —— —1 —— +i cow,' Q ".

e 2 c go'

(C3)

The integration over energy of Eq. (C2) is more difficult
to perform. We have to determine the integral

e' Nifi0(1 —fi0) 2

f dE ' ', ' =C"(cp)+ XDA,1+ TIifcoio B

A= fdE
1+cur,'f;0

kgT
C"(co) —XDA +2

Q'o' —scot -A

with

and

C"(co)=e N~

l Q)'TI.

ln 1+
1+To

From the last equation we find for A

Qo' 1 (kB T/e)(1/Qo')C"(co)—
e 1 +go+ l Ngpo

Qo'

e
(C5)

Equations (C4) and (C5) allow us now to perform the
integration of (C2) and after elimination of C with the
help of (C3) we find for the electronic charge modulation
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Q"=, C"(co)
1+P'

V
eVo/k~ T +

1+e

2e+o~ e ~o+ l ~&ro — g or
4b — (V—4b)

2+go„kiiT 1+++EN'r~o go

gor e 2 —~o —1637)
2+go. . c Qo'

The result for the total charge dynamics finally is

Q; =C; ' (co )4b —C; ' (o) }V,4, 1 V, l

with

C; ' (co)=C (co}+
go„e(2 co—) ++icos,o

2+go, ii 1+go/2 1+P'

Cv, i( ) Cg, i( )
1 ~orQ0 1+p /p

1+e' ' ' 1+go,/2 1+P'

p, rro 1

p &orQo ~ 1+p /p'
P' 1+g,„/2 1+P'

The calculation of the current injected into the neighboring grain is a rather tedious but straightforward task. By a clev-

er arrangement of terms, the expression simplifies considerably, such that we can put the final result for the admittance

into a reasonable form:
V, l—evo/k~T' C„+Ci (Oi ) i —eV&fk& T

rr =[(1—0„—e ' )cro+o (a))+ieoCI) + (&r+e )o'o—
C„+Ci+C;' (co)

1
eV/k T0 8

with the modified zero-bias dc conductance

1 . e co1— go

2+go

and the correction by the interface dynamics

o;(co)=jo C,"'(oi)
2e 1+p'

X (1+i~r,') e—(1 ioir,')——e Vo/k~ T

gor+ (1 icos')—
2+gor

The dependence of the yield g an the barrier parameter
4~+ V introduces the term

g' or 1

&+gor 1+go

kg T C,"'(co)

Qt, t

e go 1 &ro
+go~ W Q+ i c01 ~o+ 1+' ck~r go ~ &o

The results for the model treating the interface states as
localized states, which exchange their particles only with
the bulk, are very cumbersome. The complication of dif-
ferent recombination currents j', and j,"„(note that
j,"=j," } renders the calculations far more difficult than
in the other cases. A numerical check shows, however,
that the above results differ only slightly from those of
the equilibrated interface (see also the discussion in BG).
Note that the interface capacitance C; '(co) contains a
negative term similar to the other models,

2

C; (~)=—C; (~)—g, „

4, 1 e, l e ~r0

"ekgT ~,'.
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