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Localization and phase coherence length in the Lloyd model
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The coefficient for exponential attenuation of the averaged Green function

[lims p(G oR(E +i 5) ),„-e ""I is calculated for several infinite lattices in one, two, and three di-

mensions with a diagonal Lorentzian disorder of site energies (Lloyd model). In the limit of extend-

ed states, I =~ coincidences with the phase coherence length and with the mean free path associ-
ated with

~
k) states In. the opposite limit, that of strongly localized states, the inequality tt) y is

almost satisfied as an equality where y is the inverse localization length. Our results for ~ are the
same as those calculated by Johnston and Kunz who associate their results with y, that is, with the
localization length. This leads us to reinterpret their results and to conclude that„when the dimen-

sionality is higher than 2, there is still a strong possibility of a mobility edge in this model.

INTRODUCTION

1
y( E)= lim ——lim ln

~
Go R(z)

~R~oo 8 5—+0
(2)

where z=E+i5 with 5&0. It must be notixl that the
dispersion of the term in parentheses, for different
members of an ensemble, tends to zero as E~ oo. Thus
y(E) is a self-averaging magnitude. Then, different forms
of averaging of this term gives the same result.

Even when analytical expressions for y(E) are difficult
to find in the general case, a reliable expression for y(E)
has been given for Lorentzian disorder in one dimen-
sion. ' Recent results for higher dimensions are contro-

Tight-binding Hamiltonians of the form

~= g eR
~
R) (R

~
+ g v

~
R) (R+aR ~,

R R, h,R

with a Lorentzian distribution of site energies
P(e) =n 'I /(e +I' ) have been intensively studied since
their introduction by Lloyd, due to the simplicity in find-
ing various averages. However, conclusions as to the lo-
calization of states in this model have been extensively
variable. ' After the original statement of Lloyd that all
states would be extended here, regardless of dimensionali-
ty, other authors predicted a mobility edge using the
I.(E) method. Finally, quite recently Johnston and
Kunz (hereafter JK) find that all states are localized„ in-
dependently of the dimensionality d. Even when this re
suit is in agreement with the predictions of the scaling
theory of localization for the case of d= 1 and d=2, for
higher d it does not provide the expected mobility edges.

Localization of states is characterized by the inverse lo-
calization length y(E}. As has been shown, y(E) gives the
smallest Lyapunov characteristic exponent for the growth
of the product of random transfer matrices. This ex-
ponent also describes the asymptotic exponential decay of
GoR(E)=(0~ (EI—4 )

'
~
R) as R~00, ' and it is

usually defined as

versial and will be discussed further ahead.
In this work we study the function tt(E) defined by

r

tc(E)= lim ——ln
~

hm(GQ it(z)),„~
1

R-+co R 5—+0

y(E) (tt(E}, (4)

which follows from the Schwartz inequality.
The usefulness of the expressions for tc(E) arises be-

cause it has a clear physical meaning for very weak disor-
der and very strong disorder. In the limit of weak disor-
der, /(E)=it '(E) is the length over which the phase
coherence of GpR is maintained. Then, closed expres-
sions for tc(E) can be used to heuristically associate a
value of I to a system with the mean free path of a weak
disordered system. This is also the length at which (ac-
cording to Anderson et al. , ) one should begin to see
universality in the scaling process. In the opposite limit
of strong disorder, one has a near equality y(E)=tc(E) for
strongly localized states; thus in calculating x, one obtains
an approximate expression for y. These properties make
it worthwhile to obtain exact expressions for tc(E) and
compare them with known results for the inverse localiza-
tion length for this model.

JK have calculated the Lyapunov characteristic ex-
ponent for 1-dimensional hypercubic systems of finite
transverse cross section with Lorentzian disorder. In the
limit of infinite cross section, they found analytical ex-
pressions in which the localization length (y ') is always

Due to its defuution, tt(E} does not directly describe lo-
calization. This is because not only the localization of
states, but also the phase incoherence of Go R(E) for dif-
ferent members of the ensemble, contribute to tt(E).
Mathematically it can be shown that there is an inequality
between y(E) and tt(E), because their definitions are simi-
lar except by the nontrivial order of taking the average,
the limit 5~0, and the magnitude of Go R. In the general
case one has a relation between a mean of the self-
averaging magnitude given in (2) and a.(E):
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finite. In this limit, y was found to be independent of
both the dimensionality and the energy, for

~
E

(
&2(d —1)

(
V ~. Based on these calculations, JK

tentatively conclude that all states would be localized in
any d-dimensional system with I,orentzian disorder.
These results appear to disqualify the Lorentzian disorder
as a physically sensible model for a disordered system.
However, their results rest on the definition they used for
the mean of y(E), since they assumed that this mean can
be obtained as an analytical continuation from the com-
plex plane. Moreover, as we shall show below, their re-
sults for y(E) coincide with ir(E) defined by (3). We will
show that this is due to their starting assumptions, which
is misleading because of the different order in taking the
ensemble average and the limit 5~0, which are not
equivalent.

Our strategy will be to obtain ~(E) directly for infinite
lattices, instead of considering finite cross section. Fol-
lowing Lloyd, ' one can write the averaged Green's func-
tion as

lim(Go it(E+i5)) „=GoR(E+iI')
0

1 0
dk(( Go „(k((,E+iI )

Xe
' ii' Ii

with R=(x,R~~) where Go R is the resolvent for the or-
dered system (I =0) eviluated on the complex plane.
G o z(k~~, E +i I ) is the resolvent for the ordered one-
dimensional system with site and hopping energies renor-
malized as follows:

IIV

R'
tl

Vo, = g Vo, a
'"ii Rii

R'
li

In the special case of finite cross section, the integral
over k~~ reduces to a sum. By inspection of Eq. (5) one
can see that it is a generalization to an arbitrary lattice of
Eq. (3.11) of JK. This means that their assumptions lead
them to an expression for y(E) that is the same as the one
we found for a(E). On the other hand, each G o „decays
exponentially as x~ ce with a coefficient that depends on

k~~. For systems of finite cross section, ~(E) coincides
with the smallest of these coefficients. However, in the
case of infinite cross section the interferences in the in-
tegral over k~~ could lead a prior to a a different from this
minimum.

In what follows, we give the results of the evaluation of
(5) for systems which are infinite in all their spatial di-
IYlenslons.

Case (a). For the linear chain,

x =cosh

'2

+
ES—EI s EI

1/2
2

1/2'2

(6)

]/2

where a is in units of inverse distance between nearest-neighbor atoms. Es ——2V and EI ———2V are the top and bottom
band edges of the ordered system. In Fig. 1 we show the graph for l(E)=a '(E),

Case (b). For the square lattice [with R in the (1,1) direction]
' I/2

I
2V

'2 2

+ 1+ I
2 2

EI
8 $/2

Here ii (E) is shown in Fig. 2 for different values of dis-
order.

Case (c). For a square lattice with V/2 interactions to
second-nearest neighbors [R is in the (1,0) direction] a is
obtained from Eq. (6) with Es 6Vand Ei ———2——V, which
are the position of the band edges for the I =0 system.
%'e omit a graph for this case or the following cases since
they coincide with that of Fig. 1 with appropriate changes
of scale for E and I . One sees that a. '(E) does not show
any special feature for E= 2V, where the density o—f
states diverges logarithmically for I"=0.

Case (d). For a bcc lattice [R in the (1,0,0) direction], a.

has an expression analogous to (6), with Es ——8 V;

EI———8V, which are the band edges of the ordered sys-
tems.

Case (e). For a fcc lattice [R in the (1,0,0) direction],
again, a has the form (6) with Es 12V and EI —————4V.
One notes that except for an energy shift, l(E) is the same
for cases (d) and (e), due to the fact that the bandwidth is
the same for these two cases if I'=0. 1(E) does not then
refiect the difference between the number of closest
nearest neighbors of the two different lattices.

Case (f). For a Bethe lattice,

a=in(Z„—1)'i +xi .

Here Z„ is the number of nearest neighbors. a] has
the form (6) with Es ——2(Z„—1)'~ V and
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FIG. 1. The attenuation length l =—sc
' as a function of ener-

gy in units of (Eq —El)/4, for the different lattices which were
considered except for the square lattice in the (1,1) direction (see
Fig. 2). I is the disorder parameter measured in the same units
as the energy. See discussion in the text for the definition of E&
and EI in the cases (a), (c), (d), (e), and {f). Lengths are in units
of nearest-neighbor distance.

FIG. 2. The attenuation length l =a ' as a function of ener-

gy for a square lattice in the (1,1) direction. Energy is in units

of the hopping parameter V and lengths are expressed in units

of the nearest-neighbor distance. I is the disorder parameter.

y( E)=~(E)

[(E E )2+1 i]i~2+(E

2

1/2

EI ———2(Z„—1)' V. The term in ln(Z„—1)' is
present even if I =0 and reflects the fact that the number
of sites separated from a given site grows with distance R
as exp[(Z„—1)R].

DISCUSSION

Two factors contribute to the decay of (Go R(E) ),„as a
function of R: the decrease of the modulus of GOR(E)
for each member of the ensemble, and the result of in-
terference in the average due to random phases of GO, R
for different members of the ensemble.

I.et us assume that we are in a range of energies and
disorder for which the states are extended. For each sys-
tem of the ensemble, Go R as a function of R will be of
the order of R" ~'/, which is not sufficient to give an
exponential decrease (except for a Bethe lattice). Howev-

er, the disorder causes random phases in Go R among dif-
ferent systems of the ensemble, which do give rise to an
exponential decrease in (GiiR),„. Due to this reason,
I (E) can be associated with a phase-coherence length. '

This identification is less precise as we get close to a mo-
bility edge, where fluctuations in

~
Gu R(E)

~
may contri-

bute, along with random phases, to the decrease of the
average. Following Abrikosov et al. ,

" one can interpret
I =a ' as a mean free path for ~k) state. For energies
close to the band center and I /(Es —EI ) «1, for any of
the considered three-dimensional lattices, one has
I=(E —E }/(2I ).

On the other hand, the exponential decay of
~ GOR

~

for each system is uniquely associated with localization of
states. * One expects that in the region of strongly local-
ized states, the exponential decay of ( Gc R ),„ is principal-
ly due to localization so that z(E)=y(E). Close to a band
edge, for an arbitrary lattice, one has

Extended states ~) Localized states
1

~c
Mobility

edge

phase fluctuations

)—amplitud fluctuations~

EIVERGY

FIG. 3. Schematic illustration of the length l =~ ' showing
its behavior as a function of energy in a hypothetical case where
there is a mobility edge E,. %'e indicate the regions where the
Auctuations in the phases or amplitudes of GOR(E) would be
important. The localization length y '(E) is also shown in the

figure.

where m* is the effective mass' for the band edge. The
above discussion is schematically illustrated in Fig. 3.
There, we show the regions where amplitude and phase
fluctuations are present.

In the cases we have studied with d & 1, a(E) always de-
pends on E and d throughout the entire energy range.
Also, a(E=O} decreases when the dimensionality of the
system is increased. From the above discussion it is seen
that «(E) is an upper bound for y(E) so that x(E) & 0 does
not imply localization of states.

However, for a linear chain ( d = 1), one has
a(E)=y(E}, which gives only one characteristic length
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in this case. Also, in the case of onwdimensional binary
alloys, recent results' for the length associated with the
exponential decrease of (Go R(E)),„agree very well with
the numerical calculation of the localization length.
Therefore, this might always be true in one dimension
(1D) and come from the same reasons which permit one
to write y(E) as a function of the total density of states in
one dimension. In the case of the Lorentzian distribution
there is another reason which makes plausible the state-
ment that the exponential decrease of (Go R(E)),„ in 1D
is essentially due to locahzation. Stone et u/. ' has shown
that for a one-dimensional system with a rectangular dis-
tribution of site energies, the phase coherence of Go R(E)
is maintained up to an arbitrary distance in the case of
strong disorder. Keeping in mind that the fluctuations
due to the Lorentzian disorder will effectively break the
linear chain into nearly isolated segments, this disorder
can always be considered strong. ' Therefore it seems
reasonable that random phases should not play a very cen-
tral role here.

The point which remains to be discussed is the observa-
tion, already made in the second section, that a(E) has the
same expression as that deduced by JK to calculate y(E).
If these quantities were equal, it would mean that all the
scattering processes that contribute to the phase incoher-
ence of Go it also contribute with the same efficiency to
the localization. Even when this is the case for one-
dimensional systems, it is strange that the localization
length does not depend on the dimensionality for energies
close to the band center. This leads us to suspect that the
quantity calculated by JK was not in fact the localization
length.

The starting assumption in the work of JK is that the
minimum Lyapunov characteristic exponent can be
evaluated as

hm ——lim (ln
~
Go R(E +i5)

~ ),„1.
A~co 8 5~0

(10)

( limImGR a(E+i5) ),„,
$—+0

(12)

which is zero if and only if the spectra has no absolutely
continuous part. In this case quantum diffusion, if it ex-
ists, is slow.

In fact, following Ref. 5 it is not difficult to show that
for a one-dimensional system GR R is a real number and
has a Lorentzian distribution with a mean given by

which differs from (2} in the fact that the ensemble aver-
age is done before taking the limit 5~0. The crucial
point is that different orders in that limit may not pro-
duce the same result. So the mistake at this point is the
same as that made by Lloyd' when he considered that

lim(ImGR R(E+i5))g„——ImGR R(E+i r) (0
$—+0

implied quantum diffusion and therefore provided evi-
dence for the existence of extended states. The later work
of Ishii proved that in order to study localization, one
must evaluate

( GR R(E) ),„=( lim GR R(E +i 5) ),„$~0

=Re liin(GR a(E+i5) ),„5~0

=ReGR R(E+i I ),

and a width given by I mG RR(E+il ) .The second
equality holds only for the infinite 1D system. However,
it illustrates the more general situation in which the
analytical continuation of an average evaluated on the
complex plane, which is itself a complex quantity, does
not coincide with the average evaluated on the real axis.
The first procedure is appropriate in order to study the
rough features of the distribution of states, but cannot dis-
tinguish among absolutely continuous and singular spec-
tra. Thus, in order to study localization one must analyze
either the 5~0 limit of the Green s function of a particu-
lar system, or the ensemble average of the Green's func-
tions already evaluated on the real axis.

The nonuniformity in the average and the limit 5~0 is
responsible for the misleading results of JK. This can be
appreciated, for example, in their formula A(2.8), which
states

Tr((zl —A } '},„=Tr(G (z+il')) .

According to the previous discussion, the last equality is
not valid if the value 5=0 is taken before the average.
From this we conclude that the initial assumption of JK
in using formula (10} is responsible for the fact that a.

rather than y was found.
This conclusion is also supported by their own numeri-

cal simulations. They found that the value of y taken
from the numerical simulation is always smaller than
their theoretical value. Moreover, the discrepancy be-
tween both values became stronger as I or E diminished;
this is in agreement with our interpretation.

Our conclusion that previous proof of localization in
the Lloyd model is not valid opens again the question
about what really occurs with the eigenstates in this
model. Even when we were not able to prove the ex-
istence of extended states for d & 2, there is a physical ar-
gument that suggests that even when the Lorentzian dis-
tribution does not have finite moments, the system could
have extended states. This follows from the fact that we
could exclude from the calculation all the lattice sites with
diagonal term of magnitude greater than a certain e'er. If
we choose a large enough e~, the concentration p of the
remaining sites will be above the percolation threshold
and their energy distribution will have a finite moment.
As I decreases, these moments decrease and p increases.
Then the quantum interference effect will be less signifi-
cant' allowing for the existence of extended states if
8Q 2.
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