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New layer method for the investigation of the electronic properties
of two-dimensional periodic spatial structures: First applications to copper and aluminum
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A new formalism, the "assembly of boundary-controlled monolayers" {ABCM) method, has been

developed for the calculation of the electronic structure of general three-dimensional physical sys-
tems exhibiting two-dimensional translational symmetry. By outlining the underlying basic con-

cepts, it is shown that there is indeed no physically relevant restriction with regard to the form of
the electronic potential nor to the number of layers of which the structure is composed. It is charac-
teristic of the method that, in a first step, the properties of each monolayer of the structure con-
sidered are represented by a Green's operator; then, by application of the "layer composition pro-
cess" to these operators, the entire structure is synthesized. Special interest is paid to the case of a
crystal surface; it is shown that the ABCM method provides direct access to the complex band
structure, and enables a natural classification of the electronic states of a half-crystal. A first nu-

merical realization of the method was used to demonstrate its reliability in practical applications:
Thusly have comprehensive investigations of the complex band structure and of the surface states
and resonances of the Al{100},Al{110},and Cu{100}surfaces been performed. These calculations are
not only high-accuracy refinements of previous work, but they also provide the missing continuation
in regions of (k,E}space where no theoretical results have been obtained up to now, hereby yielding
confirmation of some speculative interpretations of the experimental data.

I. INTRODUCTION

For the calculation of the electronic structure of physi-
cal systems exhibiting two-dimensional (2D) translational
symmetry [such as, e.g., multilayers, thin films, or a
semi-infinite crystal with a (possibly) reconstructed and
relaxed surface], various computational methods have
been proposed, which may be classified as follows: First,
there is the group of those methods which had originally
been developed for the calculation of the electronic prop-
erties of the three-dimensional infinite crystal (linear com-
bination of atomic orbitals, linear combination of Gauss-
ian orbitals, linear combination of muffin-tin orbitals, and
linearized augmented plane waves) they were made
applicable to systems with only two-dimensional transla-
tional symmetry by a proper modification of the trial
functions, taking into account the asymptotic behavior of
the wave function outside the crystal layers. It is an in-
trinsic feature of all of those methods that the number of
trial functions which must be included in the calculation
is proportional to the number of layers considered. There-
fore, only a relatively small sequence of layers (10—20)
can be handled, even if a modern computer with large
storage is available.

This crucial restriction to only thin multilayers can be
avoided by using a so-called monolayer method. Here, the
given layered structure is subdivided into rnonolayers
zL' &z (zest (i =1,2, 3, . . . ; z denotes the coordinate per-
pendicular to the planes of 2D-translational symmetry),
and Schrodinger s equation —subject to certain boundary
conditions at z =z& and/or z =zL —is solved within any
single layer. Then, in a second step, the wave function 1b

for the whole structure is determined by matching the

boundary values of tP at z=zt't" and/or z=zL". The
propagation-matrix method' ' and the transfer-matrix
method' "" are based on a one-sided boundary condi-
tion for 1it and its z derivative B,1b at z =zL', this ensures,
indeed, a quite simple formulation of the matching condi-
tion at the cross sections z =zt", but unfortunately corre-
sponds to an improperly posed problem in the mathemati-
cal sense. ' ' Hence, even though the successful applica-
tion to simple metals and high-symmetric surfaces' '
seemed to prove the reliability of these methods, it is not
very surprising that numerical instabilities and lack of
convergence were observed when the calculations were ex-
tended to more complex elements and to surfaces of less
symmetry.

A way to overcome these difficulties is to pose a two-
sided boundary condition to a linear combination of 1b and
B,ttt at both the "left" and the "right" cross sections of the
monolayer; more precisely,

Ag(r~~, zx)+t)„g(rt~, zx) =bx(r~~) for X=R,I-

Here, b& and bL are prescribed boundary data at z =zz
and z =zL, respectively, which are determined in the fur-
ther course of the calculation by matching them to the
corresponding boundary values from the neighboring
monolayers; A denotes a positive linear operator acting on
r~~, the coordinates perpendicular to z, and B„=(ne, )B,
denotes the outward normal derivative. As was shown by
the author, ' boundary conditions of type (1) imply a
properly posed rnathernatical problem such that instabili-
ties and divergencies are to be excluded. The well-
established layer-KKR (Korringa-Kohn-Rostoker)
method, ' which proved to be a solid basis for low-energy
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electron diffraction (LEED) calculations, ' and related
Green's-function methods underlying angle-resolved
photoemission calculations ' make use of boundary
conditions of this form. However, the electronic poten-
tial has to be supposed to exhibit only a simple z depen-
dence outside and a mere muffin-tin form inside the lay-

ered structure. As a matter of fact, the formulation of the
layer-KKR method crucially depends on the latter as-

sumption, and non-muffin-tin corrections to the potential
may be included at most by perturbation theory.

In order to eliminate all of the restrictions described
above, the ABCM method (assembly of boundary con-
trolled monolayers") has been developed as a new scheme.
Since it is a layer method using the boundary condition
(1), it could be based on rigorous mathematical founda-
tions securing convergence and stability. It may be ap-
plied to any square-integrable potential; thus, it is
designed especially to enable real self-consistent calcula-
tions without any physically relevant confinement to a
special class of potentials. So, for instance, it is flexible
enough to allow for the relaxation of the electronic struc-
ture near the crystal surface. Nevertheless, restricting the
general form of the potential yields a considerable reduc-
tion of computational work. The numerical realization of
the ABCM method presented in this paper was primarily
intended to put the abstract formalism to the test on phys-
ical structures and, therefore, it should provide the possi-
bility of immediately comparing the results with those of
previous calculations obtained by other methods (based on
muffin-tin potentials). Hence, as a first step, a computer
program was designed and implemented which is appli-
cable to potentials of so-called warped muffi-tin form.
In the following sections numerical results for Al and Cu
are given, after some basic concepts have been introduced
which are necessary for the understanding of the formal-
1sm.

II. BASIC CONCEPTS

Since the functional-analytical framework of the
method will be published in another paper, the underlying
concepts are introduced without going into mathematical
details. Let Z denote a two-dimensional unit cell in a
plane of ZD-translational symmetry; then, a monolayer is
represented by an elementary region Q=ZX(zL, zii) to-
gether with an electronic potential ic(r!!,z) defined on Q.
The monolayer problem consists of finding the general
solution to the single-particle Schrodinger equation in 0
subject to a planar Bloch condition characterized by a
two-dimensional propagation vector kII. In order to
achieve this aim, an additional boundary condition of
type (1) is posed, with A being set proportional to the
square root of the planar kinetic energy operator:
A =a( —8„—8~+ED)'~ Provided a an. d Eo are (arbi-
trarily chosen) positive numbers, it can be shown that for
any given energy E, 8 propagation vector k~~, and
boundary function b =(b~, br ) a unique solution to
Schrodinger's equation exists and depends continuously
on the data (E,k!!,b), i.e., the monolayer problem is prop-
erly posed. The mapping b~g& is described by a linear
operator

CR &R—~E,~li

~R 1 ~RL b

bL
(4)

Sz i, is called the monolayer scattering matrix (not to be

confused with the layer-KKR scattering matrix!); its coef-
ficients are linear operators and may be computed from
GE ~ in an obvious way. It is worth pointing out that in

(4) the application of Szk to (bit, bL) yields functions

(cia, cL ) which belong to the same class of functions as be
and bL. Therefore, if bit and bL are well-behaved func-
tions, so are cR and cL, in contrast to the propagation-
matrix method mentioned above, where by each applica-
tion of the propagation matrix, the quality of the resulting
functions degenerates. '

Having calculated the S matrices for each monolayer of
the structure considered, any two neighboring layers, A
and 8, can be combined to the composite layer AB by
means of the "layer composition equations" which may be
represented most appropriately in the form of the diagram
shown in Fig. 1. Given S'"' and S' ', this set of equa-
tions yields the coefficients A and W of the layer scatter-
ing matrix S' '. Although it involves nonlinear opera-
tions (e.g., the inversion of linear operators), it is a well-
conditioned systein of equations such that no numerical
problems arise. By repeated application of this layer com-
position process, the entire structure can be synthesized.

In what follows, let us restrict ourselves to the special
case of a half-crystal. Here, only in a confined region
zv &z (za near the surface may neighboring monolayers

Z{A) Z(A)
L R

(B)
R L

(A IBJ
R L =CR

FIG. l. Graphical illustration of the layer composition pro-
cess.

Q=G „,b,
which is called the monolayer Green's operator. By vary-
ing b (in an appropriately chosen function space), any spe-
cial solution for the given values of E and k!!may be ob-
tained. Hence, the monolayer Green's operator GE ~ has

to be regarded as a mathematical object which character-
izes the totality of (single-particle) eiix:tronic phenomena
within one monolayer.

It can especially be used to describe the transmission
and reflection properties in the following way: Given
boundary data ( bit, br ), the Green's operator Gz i, yields

the boundary values of the wave function
yR(r!!):=y(i'!!,zit) and yL, (&[!):=y(&!!,zL, ); instead of t(a
and gz, it is more convenient to consider

cR '. = AitR —Bn PR ~ CL '. = ApL —BngL

The boundary values c =(cia, cL ) depend linearly on b (via

E"!!'
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be different, whereas in the bulk zs & z, all layers are iden-
tical. Therefore, it is advantageous to make use of the
"layer-doubling method" analogous to that in I.EED
theory, in order to construct the bulk scattering ma-
trix; thus, starting from a single bulk layer, it takes only n

reduplications to generate a bulk region of 2" layers. It
was shown by the author' that the rate of convergence
crucially depends on E and kll, and that it may be ex-
pressed in terms of the "complex band structure" as will
be discussed below.

Suppose the matrix SEi, of the composite structure'
ll

zv&z &zz+2"d (d = width of a bulk monolayer) has
been calculated; then, the general solution to
Schrodinger's equation matching the asymptotic behavior
of the wave function in the column Z&(( —00, + 00) can
be determined in the following way: In the bulk, the wave
function is represented as an infinite linear combination of
so-called generalized Bloch waves Pgi, (p, =1,2, 3, . . . )

which include both "propagating waves" with real (three-
dimensional} propagation vector k =k~ ~+k i"'e,
(kz"'6 R ) and "evanescent waves" with complex z com-
ponent ki"' E C.3' Within the framework of the ABCM
formalism the generalized Bloch waves are to be calculat-
ed by solving the general linear eigenvalue problem

t

IFFY

—1 WaL, ba O 1

1 0 b tTST~„SF, 1 b

Here, the coefficients 9F and a are to be taken from the
bulk monolayer scattering matrix according to (4); T
denotes the operator of translation by the parallel com-
ponent aq~~

——(1—e,e, )ai of a three-dimensional primi-
tive lattice vector a3, such that Z+(0, 1}a& is a primitive
unit cell of the bulk crystal, and the complex eigenvalue t
is related to the (generally complex) propagation vector k
by r =exp(ik a&). If desired, the generalized Bloch waves

may be explicitly obtained by applying the Green's

operator Gz~ to the eigenvectors (bg', br'"'). Eigen-'
ll

values t'"' with
~

t'"'~ =1 correspond to the bulk band
structure (propagating waves), whereas

~

t '&'
~ ~ 1

represents a point (E,k) located at one of the "real lines"
of the complex band structure (evanescent waves). As
can be concluded from the law of conservation of proba-
bility current, ' the (finite) number o(E,k~~) of waves
propagating into the half-crystal equals that of those be-
ing radiated; hence, by increasing the number of bulk
layers, the wave function f' ' deep inside the bulk region
(z &zan+2 d) will resemble a finite linear combination of
2o (E,k, ~) propagating waves

2'
„(E,k)~ )Pg' (6)

@=1

since all evanescent waves are to be neglected there.
In the vacuum region z &z~ outside the half-crystal the

electronic potential may be assumed to depend only on the
z coordinate. Therefore, the wave function is appropriate-
ly represented in the form of a planar Fourier expansion "
with z-dependent Fourier coefficients

(V)MEx cz =XEv a+'
ll

'
ll

(8)

For the sake of brevity, explicit formulas for Ms i and

NEj, are omitted here. However, it should be noted that

these operators can be completely expressed in terms of
the coefficients 9P and W of SEk and those 2o'(E, k~~)

solutions to the eigenvalue problem (5) which are related
to the real band structure. Thus, any numerical problems
arising from the exponentially decaying evanescent waves
are excluded.

Both scattering states and bound states are determined
by (8), but only the latter shall be discussed here. In this
case, the operator Mz z is injective and hereby invertible

[except for discrete values of E=E~"(k~~); j=1,2, 3, . . .];
hence, by inversion of M@ i, , the general solution cg+ to
(8) is obtained in terms of the coefficients a+ yielding a
complete characterization of the o (E,k~

~

)-dimensional
space of "surface-adapted bulk states. " Of course, if
o(E,k~~)=0 (i.e., within an absolute band gap), bound
states of this kind do not exist. Nevertheless, if in this sit-
uation E equals one of the values EJ (k~~), a non-
trivial solution ca to (8) exists, although the right-hand
side vanishes. This is characteristic of a surface state,
since according to (6) the probability density of the elec-
tron is negligible in the deep bulk. In practice, the classi-
fication of the solutions to (8) is most appropriately er-
formed by a (numerical) singular value decomposition s'

of the operator MLi, . I.et a;„(E,k~~) denote the smallest

singular value of Mz q', then a peak pointing downwards

to and situated at the E axis denotes a surface state [see
Fig. 2(a)], whereas a smooth behavior of a;„above the E

„Kmin
(0)

K fYl)A i, Kmio
tc) ~

E
'res

FIG. 2. Behavior of the smallest singular value x;„(E}of the
"matching matrix" M ~ in the neighborhood of a surface state
(a) or a surface resonance (b), (c).

ij'j' '(r)= g u (gs, z)exp[i(k~~+g) r~~]

gCG&

( G2 is the two-dimensional reciprocal lattice;
=E —

~ k~~+g ~

= energy in the z direction per g vector),
which are to be calculated either analytically or numeri-
cally by solving a one-dimensional Schrodinger equation.
Now both the wave function P' ' in the bulk and the vac-
uum solution P' ' are inserted into Eq. (4) (with Ss i set

to be the scattering matrix Sxi, of the composite struc-'
ll

ture); a tedious but straightforward calculation leads to a
system of linear equations involving only the boundary
value cx '.——(A —B,)g' '

~, and the coefficients

a+ ..——(ai, a2, . . . , a ) of those Bloch waves which propa-
gate into the bulk region:



NE% LAYER METHOD FOR THE INVESTIGATION OF THE. . .

axis indicates surface-adapted bulk states [provided that
a(E, k~~) ~ 0 holds]. An interesting case occurs if
xm;„(E,k~i) exhibits a minimum close to the E axis, but
without tangency. In this situation, the operator M@~

may be regarded as being "nearly singular, " i.e., the am-
plitudes Lz of the wave function deep in the crystal do not
vanish, but they are small compared to the amplitude of
the singular vector belonging to x;„,which dominates in
the surface region. Usually this phenomenon is called a
"surface resonance. " Lastly, as a delicate case, a;„(E,k~~ }
may happen to have a zero where cr(E,k~~)) 0 holds. If
this occurs within a relative band gap, and if the singular
vector related to ir;„=0 differs in symmetry from all the
2o'(E, k~~) propagating waves, it makes sense to speak of a
"relative surface state" (in contrast to an "absolute surface
state" situated within an absolute band gap as discussed
above); otherwise, if no distinction by symmetry is possi-
ble, only a mixture of the singular vector localized at the
surface and the propagating waves in the bulk can be
detected by a physical experiment. Hence, the notion of a
surface resonance is appropriate to this situation. Since
relative band gaps are confined to symmetry lines in k~~

space, it depends on the k~~ resolution of an experiment
and the kind of k~~-averaging processes involved in it,
whether or not it is reasonable to differentiate between rel-
ative surface states and resonances.

III. NUMERICAL REALIZATION

As the ABCM method has been formulated without
reference to a special basis of trial functions, one is yet
free to choose the type of numerical discretization.
Among various discretization methods applicable to the
monolayer problem, an augmented-plane-wave-likes9'~
method is presented here. Starting from an equivalent
variational problem ' (suitable even for discontinuous trial
functions) and assuming a warped muffin-tin form of the
potential

Vsph( I r, I
} if

I r, I:=
I
r ~, I &s,

w(r) =
V(r) elsewhere

[Ri(E,r) is the solution to the radial Schrodinger equation
for angular momentum I; Fi ——spherical harmonics]. In
the region outside the muffin-tin spheres the wave func-
tion is approximated by a planar Fourier series

X
~(r) —g gg T (g)e'

n=o g

Here, T„are the Chebyshev polynomials and g is a
scaled coordinate defined by z =zI +(1+()d/2. There
are several arguments why an expansion of this form is
favorable: First, those matrix elements of the discrete
Schrodinger equation which do not depend on the poten-
tial ui(r) are easy to evaluate by means of well-known
functions. Second, with respect to the potential-
dependent matrix elements, numerical integration is facih-
tated by the use of a Gauss-type integration rule which
combines both a high rate of convergence and the advan-
tage of equidistant nodes. Furthermore, the discretization
error introduced by the truncated Chebyshev expansion
(11) is directly controlled by the coefficients B„g. Last-
ly, the identity

2T„(()T (g) =
T~ +„(()+ T

~
„~

~

(g) (12)

permits economizing computer storage, since the number
of different matrix elements per g vector amounts only to
2%+1 instead of the usual number (%+1)(%+2)/2.

The stationary points of the variational expression are
now determined by the system of linear equations

R g LXM g,~g~~g =bg+( ')"bg-
P~g

(13)

where b g and b g denote the planar Fourier coefficients of
the boundary data (1). For the sake of simplicity, let us
only treat the case of a single atom basis; then the matrix
M is given as the sum of Hermitian matrices

2
r()M=M'"+M' '+A+ y (r L, p)&"'— —

1=0
(rl and sl denote center and radius of the jth muffin-tin
sphere), the following ansatz for the trial functions is
made. Inside a muffin-tin sphere an angular momentum
representation is used:

(ro is the muffin-tin radius; A is the unit area in the r~~

plane), which are defined as follows: Let

(f Ig}:=f,f'(k)g(k)dk
L

q(r}= g g A, R, (E,r))r, (r, )

l=O Im
~
(I

(10) denote the inner product of L2( —1, 1) functions; then

ro&
Mgg pg

'.——[(k[]+g) (k[[+g )rQ Era] X 5gg (T„—
I Tp ) — (T„

I
(1—

g ) I Tp )

2
ro (i)—(1—5~ ) ~~( I g —g'

I
ro}

I g —g' I ra

rom.
+(I i) px2 —~„~(lg g'I ra)+—M„gag (16)
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where

m'„",(y)
~ng, pg' '= (Tn

I
~V(g g' 0 I Tp) (26)

: = (T„"
I
(1—g')'"J (y(1 —g')'")

I T,"), (»)

~ (y):= (T„
I J,(y(1 —g')'")

I T, } (18)

[Jm(x) is the Bessel function of the first kind and of order
m]. M„g pg denotes a term dependent on the potential
io(r), which will be discussed below. Furthermore, it is
defined

A„g pg .——a[
I k!!+g I

+Eo(k!!)]' ra[1+( —1)"+ )5gg

(19)

[a and Eo(k!~) being positive numerical parameters] and

with EV(g, g', g)= V (g —g', g) —V (
I g —g' I,g), where

V (g,g):= f io(r!!,rog)e ~'d r!~,z
„(] g2) 1 /2

V (g,g):= f V,p„([p'+ (roy)']'")

(27)

X2m Jo(gp)pdp .

Because of (12), the numerical integration of (26) involves
only integrals of the form (Tp I

AV(g, g', )) for
p =0, 1, . . . , 2E. Here, the following (Gauss-type) in-
tegration rule proved to be very efficient: Let us decom-
pose

(I)
~ng, pg

:='g ~lm, ng X~lm, pg' ~

imj&l

(20) (Tp I
f)=f(1)X2X(l p) '5—p+(Tp I

f), (29)

with f(g):=f(g) f (1), —5p. ———,[1+(—1}p); then

( Tp I f) is approximated by

„g:=[1+(—1)'+ +"]%Pc (g)

X &damn( I k(!+g I
ro), (21)

(Tp I
f)=Tp '(f):= g sin(8J)cos(p8J)2M+1 . o

Xf(cos(8J )), (30)

' I/2
21+1 (I —m)!

2 (1+m)!
(22)

where the (equidistant!) nodes 8J are given by

(2j+1), j =0, 1, . . . , 2M .
4M +2 (31)

The coefficients c (g) depend on the azimuth of

k!~+g=
I k~!+g I [—sin(6g)e„+cog(8g)ep]

vZm, m=o,
cm(g):= 2vmcos[m5(g)], m &1,

2v~sin[Im Ie(g)], m( —1.

(23)

(24)

&t is worth mentioning that the residual term in (3()) can
be calculated by means of the Chebyshev coefficients of
f, thus providing an a priori estimate quite useful in
practice For the numerical evaluation of the integrals

nodes g, =cos(81 ), one of those
methods is to be favored which is especially adapted to
the translational symmetry of the integrands.

Solving the linear system (13) with the right-hand side
chosen as bg .——

5gg 5 yields coefficients Bngg which are
used to calculate the planar Fourier representation of the
monolayer scattering matrix according to

~x=2AGxx axr=2AGxr (X Y =R L} (32)

Li denotes the logarithmic derivative of the radial func-
tion R~ at r =ro. The parameters p, a, and Eo have no
physical significance, but they may be used to control
convergence and accuracy. ' ' ' lt should be noted that
the coefficients Ai in the L representation (10) have al-
ready been eliminated in Eq. (13); if desired, they are ob-
tained by

Ri(E, ro) = g Ml „g8„g .

~
A

where A is diagonal with matrix elements A = —,Ao o,
and G~q has the matrix elements

G~g(g g'}= g ~.", G~i(g g'}= g ~.",
n=0

GLa(g, g')= g ( —1)"&gg, GLL(g, g')= g ( —1)"Bgg
n=0

(33)

All integrals appearing from (16) to (23) are analytically
evaluated by means of standard tables and implemented
in the computer program using standard routines for the
"special functions. "

Besides the logarithmic derivatives L,I, the matrix ele-
ments M„g pg contain all information about the potential
w (r};they are defined as

e(ai!!)ee(ai(!)
~m. b~

The discrete form of (5) then reads

R
"4'
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s'"':= iGL(,"tt)bg' )[(M ='1,2, . . . , cr(E,k()}] . (35)

with e(a3(() being a diagonal matrix with the elements

exp(ig ai((); the eigenvalue ti equals exp(ikid ). For basic
mathematical reasons the matrices at both sides of (34)
are ill conditioned; thus, the application of the QZ algo-
rithrn is favorable, since it has been designed exactly
for this situation.

After calculating the (T(E,k((} propagating Bloch waves
(b„'"',bt"') from (34) which are traveling into the bulk re-
gion, the layer-doubling process is performed in the fol-
lowing way: Let IFFY(") and W~p) [or Gzp) according to
(32), respectively] denote the coefficients of the bulk
scattering matrix after the nth reduplication operation,
and let ~Q(") denote the orthogonal projector on the linear
space spanned by the vectors

be built up by the "left" and "right" components of the
2(T(E,k(() propagating solutions to (34), and let

E:=(ei,~e, . . . , e ) (43)

MPwp NPwa 0

where

(44)

MPw .
~L Qeu(A Dv) —2A-

Et(A Dv)— (45)

denote an orthonormal basis of the range of ~Q'") (i.e.,
~Q'") = g„,~ee„). Then, the coefficients P=(Ps)
characterizing the vacuum solution (7) and
a=(ai, a2, . . . , a2 ) characterizing the bulk solution (6)
satisfy the system of equations

Then, layer doubling is terminated, if

(Sent.

Q~( 1)bL —bt(—
E~bg

(46)

~
~98 "+"Q'"+"—A'"'Q("'~

~

(s(A) (36)

(with Q,'„"':=1 —Q~(")) is satisfied with e(Q) and e(A~) be-

ing chosen sufficiently small. Of course, if o(E,k(()=0,
then Q'"'=0 and Q,',"'=1 must be set in (36). It has been
shown that the layer-doubling process converges as

(t,„),where

t,„:=maxte ' '; t,"
~
~1I . (37)

Hence, that real line of the complex band structure, which
is situated next to the bulk band structure (at the given en-

ergy E), determines the rate of convergence. Especially,
the closer F. approaches a band edge, the worse the layer
doubling will converge. In order to achieve an accuracy
of D digits, the number n of layer reduplieations amounts
to

Let NG be the number of g-vectors included in (11); then,
the linear system (44) consists of NG+0 equations for the
NG+20 unknown variables P and a. Hence, it defines
the 0-dimensional space of surface-adapted bulk states,
provided that both Mp and N have maximal rank
(equal to the regular case). Instead of eliminating
a +i,a +2, . . . , a2 [this would directly lead to Eq. (8)],
it is favorable for numerical reasons to proceed in the fol-
lowing way: First, MPw is factorized by a singular value
decomposition as

M w=V U (47)

where U and V are unitary matrices of dimension NG and
NG+0, respectively, and it=diag()r(, )t2, . . . , )t)v ) is the

diagonal matrix of singular values )~) )x'2 ) . ))t)v )0.
Thus, in the regular case, Eq. (44) can be solved for P in
the form

n =logio[ —D~ogiot, .]~»glo(2) . (38) P= Ux. ' VtNPwa if V NPwa =0 . (48)

Finally, the discrete analog to Eq. (8) has to be set up.
It is advantageous to write the planar Fourier coefficients
of the wave function (7) outside the half-crystal in the
equilibrated form

Here,

Vl ~ = (vl)v2) ' . ) v)v )

and

u ' "(g,z) =)33,u (21s,z) /u (i),,z, ), (39)
2

'. = V)V +1)vtV +2). . . ) V)V +g)G G G

where u (i)s,z) is obtained by numerical integration of the
(one-dimensional) Schrodinger equation for z (z), and Ps
is to be determined froin (8). For the simple ease of an
ideal crystal surface, the explicit form of this system of
linear equations shall be given: Let

)'

Dy '.—diag ro u (its)zy) u ('gs)zy)
dz

be defined as the diagonal matrix of the logarithmic
derivatives of u (its, z) at z =zv, and let

(b(1) b(2) b(2cr)
)

(42)

consist of the NG, first, and the o, last, columns of V.

Performing a further singular-value decomposition

V N =Z(5 0)LV (49)

I'with 8' and Z being unitary matrices of dimension 2o.
and o, respectively, and 6 being the diagonal matrix of
singular values 5),52, . . . , 5 ) yields an orthonormal set of
(T vectors w +i,w +2, . . . , w2 (being the right half of
the columns of IV), which span the kernel of V2zNPw.

Hence, the coefficients o,' of any surface-adapted bulk
state are to be expressed as a linear combination of
+o+]~+o+2~ . - ~ +2o.

Furthermore, the singular value decomposition (47)
provides a practical criterion for the existence of surface
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Pres=+ imnuÃGviv68 9pw (50)

dominates on the right-hand side of Eq. (48). Due to the
small denominator ~;„,the amplitude of the wave func-
tion in the surface region is distinctly enhanced in com-
parison with the bulk amplitude, which is the characteris-
tic of a surface resonance. It should be noted that —in
contrast to other methods ' ' ' ' —there is no numerical
difficulty in distinguishing a surface state from a reso-
nance, because the qualitative behavior of a;„(E) in the
neighborhood of the energy EJ" of a surface state can be
expressed as

xm„(E)=
~

A, (E)
~

(51)

with A,(E} being a smooth function of energy, whereas
~;„(E)is either parabolic or discontinuous near the en-
ergy EJ'" of a resonance (see Fig. 2).

states: Since a=0 is required in this case, a surface state
exists if, and only if, at least one of the singular values ~~

of MP equals zero. A nontrivial solution P to Eq. (44) is
given by the jth column u& of the unitary matrix U in

(47); if several ~~ happen to vanish simultaneously, P is a
linear combination of the respective singular vectors uj.

In the case that the smallest singular value x;„=~&
shows a variation with energy such that a minimum close
to zero occurs, the term

was fixed by the requirement that V(z) should smoothly
match the muffin-tin floor across the plane z =zv. ~ith
the jellium model as orientation, a potential of the form
(52) seems quite reasonable; it proved to give satisfactory
results in the work of other authors.

Some tests were made in order to investigate what nu-
merical accuracy can be achieved by increasing the num-
ber of trial functions [in (10) and (11)]and by varying the
numerical parameters a and Eo [in (19)] and p [in (14)
and (16)]. First, all effects due to the crystal potential
were turned off by setting ie(r) =0 ("empty-lattice test").
The matrices M and Gxr as well as the complex band
structure ki"'(E,k~i } were numerically calculated and
compared to their exact values obtained by evaluating the
respective analytical expressions. It turned out that a six-
digit accuracy of the real band structure requires
%=17—20 in the Chebyshev expansion (11) and about
L =10 in the L representation (10); this agrees with the
values typical of the APW method. ~' Since the exact
matrices Ggy are diagonal in this special case, the number
of planar Fourier coefficients in (11) does not influence
the accuracy, provided all g vectors are regarded which
span the free-electron energy bands at the given energy E.
Thus, the empty-lattice test is a specific criterion for the
convergence of the Chebyshev series and the expansion in
spherical harmonics. The rate of convergence of the latter
is infiuenced by the choice of the parameter p; setting

IV. NUMERICAL RESULTS FOR Al AND Cu p=roLL ~i(E,ro) (53)

The numerical calculations presented in this section
should mainly serve the purpose of demonstrating the per-
formance of the ABCM method on well-known examples,
providing hereby the comparison with other methods.
Therefore, the simple model of an ideal half-crystal is
considered (without giving regards to any effects charac-
teristic of a real physical surface). The use of "standard
potentials, " which are the basis for previous calculations
of other authors, enables a direct quantitative comparison,
and does not essentially restrict the possibihty of verifying
results concerning convergence and stability, which have
been obtained by abstract mathematical reasoning.

In the bulk region, the potentials suggested by Snow
(for Al) and by Chodorow and Burdick ' (for Cu) were
chosen. These potentials proved to be quite useful in giv-
ing both a qualitative interpretation and a quantitative ex-
planation of the electronic properties of the surface and of
the bulk. ' ' ' Especially the Burdick potential
has been revalued by the fact that the resulting theoretical
energy bands are in good agreement with those obtained
by photoemission or inverse-photoemission experi-
ments; it seems to be superior, even to self-
consistently calculated potentials.

The transition region between surface and vacuum was
simulated by the analytical model potential

V(z) = V, +(V„„—V, )tanh[{~/L)(z —z)] .

The position z~ and the width 2L of the surface barrier
were considered as adjustable parameters, whereas the
vacuum level V„,. was determined by experimental data
of the work function 4= V„, EF. ' The constan—t Vo

proved optimal, because in this case the I summation in
(14}can be considered to extend to the upper limit L +1
instead of L. The choice of a and Eo [characterizing the
boundary operator A; see (19)] is not critical, provided A
is positive. Varying a from 0.5 to 2.0 and Eo from 0.01
to 1 Ry yielded identical results of the complex band
structure.

The above statements proved to be also true in the nu-
merical investigation of Al and Cu, except for the fact
that now the convergence of the planar Fourier series is
crucial. An estimate of the accuracy of the matrices Gxr
and the complex band structure was obtained on the one
hand by increasing the number NG of planar Fourier coef-
ficients, and on the other hand by comparison with the
real band structures calculated by Snow ' and Bur-
dick. ' The results confirmed the author's analysis' ac-
cording to which an accuracy of D digits of the real lines
of the complex band structure is ensured within a "bell-
shaped" region extending above the complex kj plane in
( k&,E) space ("bell of confidence"):

(Imk, ) &g,„E—e(D) . —

Here, g,„denotes the maximal length of the g vectors;
the constant c(D} increases with the number of digits
desired. Furthermore, it was verified that the rate of con-
vergence of the Fourier series strongly depends on the in-
terlayer distance d: Completing the arguments of Tong
and Van Hove, it has been shown by the author that the
ratio (NG)i/(XG)ii of the (minimal) numbers of g vectors
necessary to obtain equal accuracy for two surfaces, I and
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II, with different interlayer distance di and dii, respec-
tively, is given by

(&G)i/(&G)ii=(dii/di) . (55)

TABLE I. Ratios of interlayer distances for the fcc lattice.

(110)
(110)
(100)

(111}
(100)
(111)

4.35
2.83
1.54

1.63
1.41
1.15

An optimistic and a pessimistic estimate yield P= 1 and
P=3, respectively; numerical values for a fcc lattice are
shown in Table I. Indeed, covering an energy range up to
3 Ry above the Fermi level with an accuracy of 1 mRy
(with respect to the real band structure) required
NG ——25—29 for Al(100) and NG ——43—47 for Al(110).
The Cu(100) surface needed XG ——45—49, whereas in the
case of Cu(110), NG ——50 was not sufficient to achieve the
required accuracy; with regard to the "geometry effect"
(55), one would guess a number of at least 75—89 g vec-
tors to be necessary. It is not surprising that in the case of
Cu the convergence of the planar Fourier series is much
slower than that of Al, because the strongly localized a-
like wave functions of Cu in the energy range between the
valence bands and the lower bands of the excited states are
to be properly represented only by including a relatively
large number of planar plane waves, in contrast to the
"free-electron"-like wave functions and energy bands of
Al.

The reliability of the method even at core-state energies
was demonstrated by calculating the complex band struc-
tures of Al(100) and Cu(100) in the neighborhood of the
2s- and 2p-core states of Al and the 3s and 3p states of
Cu, respectively, for some high-symmetric k~~ points.
There was no problem in obtaining the almost entirely fiat
real energy bands within a tolerance of 0.1 mRy; thus, the
bell of confidence indeed comprehends the core-state ener-

gy range deep below the complex k& plane, which has
been accessible only by analytical methods ' up to now.

Among a number of graphical representations of the
calculated complex band structures, only three representa-
tive examples can be printed here (Figs. 3—5). The energy
ranges from about —2.3 to 3.5 Ry (with the muffin-tin
floor being chosen as energy zero), and ki extends into
the complex plane up to

~

Imki
~

=2.3(2m/ao), where ao
denotes the respective lattice constant. This limit has
been chosen such that the outermost real lines exhibit
about half the accuracy of the bulk band structure. The
middle part of the drawings is to be identified with the
real energy bands along an irreducible section of a straight
line in (real) k space, which is perpendicular to the surface
considered and contains k~~. The right- and left-sided
parts show real lines located on symmetry planes
Re kq ——const. Dashed lines are to be interpreted as the
respective side views of those branches of the complex
band structure which are not contained in one of the
planes drawn.

In the low-energy range, the bulk band structures are in

good agreement with those of Snow and Burdick '

(within a tolerance of 1—5 mRy); as far as results for the
complex bands are available, ' ' there are—at least
qualitatively —no serious discrepancies. The calculations
presented here provide a systematic extension to regions
of relatively high and very low energies reaching far in the
complex kz plane, with the numerical accuracy being well
defined. To the author s knowledge, it is the first time
that such a comprehensive survey over the system of real
lines could be achieved in the case of a real metal. The
calculated complex band structures indeed exhibit all the
properties which have been predicted theoretical-
ly; ' ' ' ' for instance, no singularities occur except
for branch points of the square-root type, which delimit
the width of the "complex loops. "

Compared to Al, the complex band structure of Cu
shows much more structural variety in the vicimty of the
Fermi energy, which is mainly due to the existence of the
flat d bands. Among many interesting phenomena, there
is, for example, the peculiar closed loop C-D at Cu(100)-
M (Fig. 3), which is connected by the "oblique" lines 8 C-
and D-E with the complex of Z] lines at the X point.
Since the complex loops of Cu reach relatively far into the
ki plane, surface states may be formed which rapidly de-

cay in the bulk [ ~

Imki
~

& (0. 1—0.3)(2n./ap)].
In the case of Al, however, the energy of the d-like

states lies high enough to yield a complex band structure
very similar to that of nearly free electrons in a wide ener-

gy range around the Fermi level (Figs. 4 and 5). Due to
the narrow band gaps, only small vertical complex loops
occur, which do not extend very far in the ki plane

[ ~
Imki

~

=(0 01 0 05).(2n—/a.o)] Hence, . the surface
states of Al are only weakly damped while penetrating
into the bulk.

The numerical determination of surface states and reso-
nances was performed by calculating the minimal singular
value ~,„(E)of Mpw (see Sec. III) along an appropriately
spaced mesh of energies (DE=0.2—5 mRy) within the
respective absolute and relative band gaps. By identifying
the symmetry of the singular vector P=u belonging to
v;„[see (47)ff], an a posteriori classification according to
the symmetry group of k~~ was obtained. The influence of
the potential outside the half-crystal on the location of the
energy of a surface state or re onance was investigated by
variation of the parameters z and 1. [see (52)]; as can be
guessed from simple analytical models, 9 'm the sensitivi-

ty to the form of the vacuum potential varies very much,
so the energy of the Mi state at Cu(100) (see Fig. 6)
changes only within 1 mRy for —2 (z & 0 and
10 &1. & m (atomic units), whereas the I, state situated
in the absolute band gap between X4 and Xi is shifted by
nearly 100 mRy towards higher energies, when the poten-
tial barrier chosen is very steep and very close to the sur-
face.

Assuming the arguments of the authors cited to be
valid also in the general case, this may be intuitively inter-
preted as follows: For a surface state to exist, it is crucial
that the logarithmic derivatives of the planar Fourier
coefficients of the wave function ..a. e equal limits when
they approach z =zq from the right and from the left.
There is a good chance to satisfy this condition if either of
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FIG. 6. Surface states of Cu(100) embedded in the
symmetry-resolved projected band structure (vertical bars) at the
high-symmetric k~~ points I', M, and X Calculated surface
states are denoted by c.; when two surface symmetries are com-
patible with the same bulk symmetry, c~ {c.~) denotes the ir-
reducible representation with greater (lesser) index. Experimen-
tal values: a is from Heimann et al. (Ref. 70), P is from West-
phal and Goldmann (Ref. 73), y is from Kevan (Ref. 105), 5 is
from Straub and Hirnpsel (Ref. 107), and g is from Dose et al.
(Ref. 75). (Resonances are marked by X. )

FIG. 7. Surface states of Al(100) embedded in the
symmetry-resolved projected band structure (vertical bars) at the
high-symmetric k~~ points I, M, and X. Calculated surface
states are denoted by c,; when two surface symmetries are com-
patible with the same bulk symmetry, c~ (c,-&) denotes the ir-
reducible representation with greater (lesser) index. Experimen-
tal values: a is from Gartland and Slagsvold (Ref. 65) and
Hansson and Flodstrom (Ref. 102), and P is from Levinson
et al. (Ref. 103).

the limits rapidly varies with energy. On the side of the
half-crystal, this occurs in a (sufficiently narrow) band
gap, ' ' or in the case that a real line of the complex
band structure, coming far from the interior of the kz
plane joins an almost flat bulk energy band [e.g. , the Zz
band at Cu(100)-M; see Fig. 3]. Thus, surface states of
this kind are strongly coupled with the bulk properties of
the half-crystal, and they are nearly independent of the
detailed shape of the surface barrier ("crystal-induced sur-
face states"' ). Examples are the states I'&, X3, and M4
at Al(100) (Fig. 7) and the surface states of Cu(100) below
the Fermi energy (Fig. 6).

On the vacuum side, the variation of the logarithmic
derivatives increases as the energy approaches the vacuum
level of the potential. ' Furthermore, at fixed energy,
they are very sensitive to slight changes of z and L.
This explains not only the existence of surface states in
ranges of energy where the logarithmic derivatives of the
half-crystal do not vary appreciably, but also the reason
for such a strong sensitivity to the form of the vacuum
potential ("bamer-induced surface states"). The I

&
and

X& states at Cu(100) above the Fermi level belong to this
class.

Since both occupied and unoccupied surface states of
Al and Cu have been observed experimentally, it was sug-

gestive to fit the theoretical results by an appropriate
choice of z„and L. In Figs. 6 and 7, the optimal fit of
the calculated surface-state energies (at the high-
symmetric k~~ points I, X, and M) is shown in compar-
ison with the experimental data, both being embedded in
the (symmetry-resolved) projected band structure.

In the case of Al, a surface state has been measured at
I" about 2.75—2.80 eV below the Fermi energy, which
continues in the absolute band gap extending along half
the I -X and the I -M lines, and merges then into the en-
ergy continuum as a relative surface state or reso-
nance. ' At the X point, a surface state has been ob-
served in the small band gap between the bulk states 1.2

and I.&,
' which disperses up towards the Fermi energy

as
~ k~~ ~

decreases, and which is possibly connected with
the band gap described above. Setting z =0 and I.=0.5
a.u. , a I

&
state about 10 mRy above the measured energy

and a X3 state nearly abave the band edge at I-2 were ob-
tained. Furthermore, the calculation yielded unoccupied
surface states: There are two absolute surface states, X~
and X3, about 120 and 127 mRy above EF, respectively,
and there exists a relative surface state, M4. , about 10
mRy above F~. A survey of the calculated dispersion af
surface states and resonances, embedded in the projected
band structure along the paths I -X-M and I-M, is
displayed in Fig. 8, which represents the continuation of
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the results of Spanjaard et al. ' in three regards: First, by
resolving the projected band structure according to the
number 0(E,k~~) of "overlaid" bulk bands (see Sec. II),
"filled band gaps" are easy to recognize. Thus, it is clari-
fied where a surface resonance or a relative surface state is
to be expected. Second, it becomes theoretically evident
that an (absolute) surface state does not simply terminate
at the boundary of an absolute band gap, but-
generally —merges into the continuum: Since in most
cases that energy band which "fills" a projected band gap
is clearly separated in k space from the band edges which
defin the (relative) gap, an (absolute) surface state is like-

ly to reappear as resonance or a relative surface state
beyond the region ~here the projected gap is intersected
by the filling band. If the symmetry of this band differs
from that of the gap edges, the dispersion of the surface
state is not affected at all while passing the line of inter-
section; otherwise, a local distortion occurs due to hybridi-
zation. Lastly, it is illustrated that generally a relative
surface state or a surface resonance is allowed to exist
only within a limited range in k~~ space. However, this
range is not sharply defined; usually, a relative surface
state first changes into a resonance, which then gradually
disappears when approaching the boundary of a filled
gap. As far as comparable, the theoretical dispersion
curves agree well with experiment and, furthermore, con-
firm the interpretation given by the respective au-
thors. ' 2 It should be pointed out that the agreement is
indeed one-to-one, in contrast to Seel's self-consistent in-
vestigations' yielding additional resonances along the
I'-X line, the interpretation of which seems rather prob-
lematic to the author.

In the case of the Cu(100) surface, a variety of surface
states have been detected, which provides examples par
excellence for each of the "classical" types as they were
originally discussed in the 1930s. So, at the I point„ there
is a Shockley state about 184 mRy above zero within the
5& hybridization gap. A Tamm state has been observed
at 425 mRy nearly above the flat Z2 band, which has al-
ready been mentioned above. Furthermore, at X two oc-
cupied surface states are known at about 226 mRy (Ref.
73) and 557 mRy (4 mRy below EF ) there is also a res-
onance at X situated just on the band edge (L, ) above
EF. An unoccupied I' surface state has been reported at
about 850 mRy. ' ' ' It was quite surprising for the
author that, despite the simplified theoretical model, this

spectrum of experimental data was not only qualitatively
reproduced by his calculations, but also quantitatively
(with the exception of the unoccupied I i state). A vacu-
um potential barrier with z =0 and I =0.2 a.u. yields
differences of 2—12 mRy between calculated and mea-
sured surface-state energies (see Fig. 6); only the I i state,
which is located at a complex loop extending from the X&
to the Xi bulk state over a height of 400 mRy, differs
from the experimental value by at least 90 mRy, although
it is very sensitive to a variation of z~ and L. '

Thus, it may be concluded that —in contrast to other
assertions' —an adequate description of crystal-induced
surface states does not primarily require self-consistency
in the calculation of the electronic potential. " It seems
much more important to use a bulk potential which is
able to reproduce the electronic properties of the infinite
crystal as accurately as possible; furthermore, it must be
emphasized that the use of reliable mathematical methods
is crucial when designing a physically reasonable model.
Only if those surface properties which are essentially
determined by the crystal substructure can be numerically
mastered without difficulties (especially with regard to
convergence and accuracy), should the self-consistent cal-
culation of effects be attacked which influence the details
of the electronic potential in the vacuum and the surface
region. One cannot but guess that negligence of these
conclusions may be the cause for the rather considerable
discrepancies between the results of some other calcula-
tions of surface states (Refs. 111, 18, 9, 112, 113, 57, and
4) based on different models and alternative methods, and
also for the differences they exhibit when compared to the
experimental data.
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