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The charge-density-wave dynamics in samples with size on the order of a Lee-Rice domain are
calculated. At high frequency and current the conductivity approaches that of infinite samples. An

explanation for the apparent discrepancy between measurements at large currents and the asymptot-
ic behavior derived by Sneddon, Cross, and Fisher is presented. Finite-size effects change the

response at low frequency and current. A kink is introduced in dV/dr near the threshold for dc
conduction. Our results agree quantitatively with experiments on some NbSe3 samples. The ac
response is found to be substantially broader than the overdamped harmonic-oscillator form which

has been used to describe experimental results. The response is characteristic of a distribution of re-

laxation times similar to that observed in recent experiments. This distribution is related to the elas-

tic modes of the deformable charge-density-wave condensate. A relation between the frequency and

current dependence of the damping by these modes is derived. Our results are compared with those
for infinite samples.

I. INTRODUCTION

In recent years a new mechanism of conductivity,
charge-density-wave (CDW) conduction, has been
discovered and extensively investigated. ' The CD% con-
densate forms below the Peierls transition temperature
Tp. At low dc electric fields the CDW condensate is
pinned by its interaction with impurities, but above a
threshold field Er the condensate is depinned and contri-
butes to the conductivity. This leads to a highly nonlinear
dc conductivity and a wealth of other interesting phenom-
ena. At dc biases above the threshold for nonlinearity,
periodic voltage oscillations (narrow-band noise) and 1/f
noise occur. 2 The ac conductivity shows strong frequency
dependence which is similar to the field dependence of the
dc conductivity. i A broad distribution of relaxation times
is seen in both the ac conductivity and the 1/f noise. A
variety of phenomena with very long timescales have been
observed: hysteresis in the current-voltage (I- V) charac-
teristic, relaxation after applied pulses, ' and switch-
ing.

A variety of models have been proposed for CDW con-
duction based on both classical' " and quantum' pic-
tures. In this paper we investigate a classical model based
on the perturbation method developed by Klemm and
Schrieffer" (KS) for pinning by weak impurities. The
major improvement over previous work based on this ap-
proach" is that damping by the internal elastic modes of
the CD& is included. This has a dramatic effect on the
ac and dc response.

The perturbation approach is only convergent for suffi-
ciently small samples. However, it is important to under-
stand CD%' dynamics on these length scales for several
reasons. One reason is that such small sample sizes are
experimentally realizable. Another is that theories for in-
finite samples often proceed by coupling small regions to-
gether. The internal dynamics of these regions must be
included properly in a complete theory. Finally, calcula-

tions for small samples give several direct insights into the
response of infinite samples. For example, on short time-
scales (high frequencies and currents) the response of
small samples approaches that of infinite samples. Our
model gives the asymptotic high-field dependence of the
dc conductivity derived by Sneddon, Cross, and Fisher'
(SCF), a-o„—cE '~ . It also gives the leading correc-
tions to the SCF behavior and provides an explanation for
the apparent disagreement reported' with experiment.
On long timescales, finite-size effects become important
and our model indicates how these affect the CDW
response. In particular, we find a "kink" in dV/dI near
ET similar to that observed experimentally in some sarn-
ples. "

The form of the high-field dc conductivity results from
a current dependent damping rate due to damping by
internal elastic modes. We find that the damping rate for
the ac conductivity has the same form as a function of
frequency. This frequency-dependent damping rate corre-
sponds to a broad distribution of relaxation times similar
to that observed in experiments. Finite-size effects cut
off the distribution at long relaxation times. There are
several important experimental consequences of this dis-
tribution of relaxation times: the response becomes sub-
stantially broader, the imaginary parts of the ac conduc-
tivity and dielectric function peak at different frequencies,
and the peak positions vary with dc bias in different ways.
Experiments are consistent with all of these results.

In the next section we describe the perturbation theory
used for our calculations and discuss its structure qualita-
tively. In Sec. III we present results for the dc and ac
conductivities. Conclusions and other implications for ex-
perimental behavior are presented in the final section.

II. TIME-DEPENDENT PERTURBATION THEORY

Experiments on CD% systems indicate that the arnpli-
tude of the CDW order parameter is field independent, '
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where lengths have been scaled to make the equation iso-
tropic and the velocity of phase excitations is set equal to
1. The terms on the left-hand side of Eq. (1) are the
damping force and the elastic force which limits distor-
tions of the CDW. The terms on the right-hand side are
the effective coupling to the component E of the electric
field along the CDW wave vector Q, and the pinning
force due to impurities with concentration c, local density
5n(r), and pinning strength Vo. The experimentally mea-

sured CD% current wi11 be proportional to the time
derivative of the collective coordinate b, defined as the
volume average of (]).

Two distinct pinning regimes have been identified.
For Vo&c '~ or Vo&A, , where A, is the coherence length
for the CDW amplitude, there is strong pinning: the
CDW deforms to optimize the phase at each impurity.
We consider the case of weak pinning, Vo &c ' and

Vo & A, , where the phase can no longer be optimized at
each site. It varies on the scale of the static phase coher-
ence length, or I.ee-Rice domain size, (=16m./cVO, to
conform to fluctuations in the pinning potential of many
impurities. ' Thus for samples with dimension L & g, the
spatial fluctuation in the phase, Q(r, t):P(r, t) b(t},—is a-
small parameter which may be treated either perturbative-

ly or iteratively.
We consider a cubic sample of side L with periodic

boundary conditions. Then taking the average of Eq. (1)
over volume Q=L yields

+ Vo(5n (r)sin[Q r+ b (t)+Q(r, i}])n . (2)

The equation for 5$ can be written as

5$(r, t) = f dr'dt' G(r —r', t t') Vo 5n(r'—)

X sin[Q r'+ b (r')+5/(r', r')], (3)

where the Green's function 6 satisfies

and that changes in the phase of the order parameter

P(r, t) are overdamped. ' ' Thus the classical equation
of motion for (}()(r,t) is written as

1

go
' ——V' P=e'E+ V05n(r)sin(Q. r+(])),

approaches that of an infinite sample for processes with
timescales less than tL, i.e., for ac fields with co »2n. /tL, ,
or dc currents where 5»2m/tL, . Therefore calculat-
ions for samples with L &g reveal the response charac-
teristic of large samples on short timescales as well as in-
dicating how finite-size effects may be important on
longer timescales.

If Q «2n. , Eqs. (2) and (3) may be solved perturbative-
ly. To check this criterion we have calculated
(

~

5(][)
~

)n, the mean-squared value of 5$ averaged over
volume and impurity configurations, a, to lowest order.
Setting 5(])) equal to zero on the right-hand side of Eq. (3),
and using

( 5n(r) 5n(r') ) =c5(r—r')

for uncorrelated impurities, we find

(
~
5$ i

)~=cVO fdr fdt fdt'6(r, r)6(r, t')

Xsin[Q r+h(t)]

Xsin[Q r+b(t')] .

The maximum value occurs for a static system,
b, (t)=b (t'). In this case the integrals over time just pick
out the co=0 component of 6, and

with

i]=(1/8H) g (EEL) =1.3 X 10
K(~0)

Thus the perturbation expansion is valid when
L « g'—:1/(i)c Vo)=148/. At high frequencies and
currents (

~
5$

~
) decreases, (

~
5$

~
) ~ b —'~ for

b, ti »1, and the accuracy of the perturbation approach
improves.

In this paper we consider small samples L &g' and
therefore only include 5$ to the lowest nontrivial order.
An approximate value for 5$ is obtained from Eq. (3)
with 5(l) set equal to zero on the right-hand side. This ap-
proximate value is then included to first order in Eq. (2).
The resulting equation for b, is

b(t)=F(t}+Im(Ae' '"

+ fgf~[g+(r r~)ei[()(t )+a(t)]'

~0 —7 6=5(r)—5(t),
Bt

(4) +g —
(r ~)ri[eh(t ) h(t)]]

]
'(7—)

periodic boundary conditions, and has zero spatial aver-
age. The solution satisfying these conditions is

(5)

where the sum is over the reciprocal-lattice vectors:
K.=(hx+ky+Iz)2n/L, with k, k, and I any integers.

Equation (4) describes diffusive transport. There is
thus a natural timescale ti =L /ro the time f—or diffus. ive
propagation of phase excitations (phasons) across the sam-
ple. It can be shown that the response of a finite sample

where time and length are measured in units of tL and L,
E=L e*E, and A and 8 are dimensionless functions of
the particular arrangement of impurities:

A —= (Vo/L) f dre'O'5n(r)

a '(r)= (Vo/2L) f Zr f ar-5n—(r)6(r r', t)5n(r')—
ig (r'+r)

Note that the phase at previous times enters explicitly in
the equation of motion for the CDW current, suggesting
how hysteresis ' and memory effects ' enter naturally
into the problem.
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Information about A and 8-+ can be obtained by calcu-
lating their Inoments averaged over impurity configura-
tions, a. As mentioned above, pinning by weak impurities
arises from fluctuations in the impurity potential. The
coefficients A and 8+ reflect these fiuctuations and their
average over impurity configurations vanishes. However,
their average amplitudes are nonzero:

(10)

In contrast, the impurity average of 8 is nonzero,

(12)

This term comes from successive scatterings by the same
site. Fluctuations about this mean value,

are small compared to (8 ) because the maximum
value of 6 is always at r =0. The importance of the role
played by B is described below.

Klemm and Schrieffer" (KS) have studied Eq. (7) in
the static limit, making the adiabatic approximation
b,(t )=5(t) on the right-hand side. This provides a mi-

croscopic derivation of an equation of motion similar to
that suggested by Gruner, Zawadowski, and Chaikin'
(GZC) for a rigid, overdamped CDW. The collective
coordinate 5 acts like an overdamped particle moving in
an effective periodic potential. Indeed, in the limit
L/g'~0, 8+-become unimportant and the effective
periodic potential becomes sinusoidal as assumed by GZC.
Both 8+- represent the effect of internal deformations of
P in response to the impurity potential. The response in-

creases as L/g' increases and the periodic potential be-
comes more highly structured. For example, the second
harmonic of the poteIltlal 1s 0.5 Idt 8 ( I), which 111-

creases relative to A as (L/f )' Klemm. and Schrieffer
showed that the increased structure in the periodic poten-
tial for b, affects the narrrow-band noise spectrum and
other properties.

The full equation of motion [Eq. (7)] also yields an ef-
fective periodic potential, which is identical to the KS re-
sult for slow processes. However, the internal deforma-
tions which determine this potential produce other impor-
tant effects which are not included in the adiabatic ap-
proximation: The periodic potential becomes current and
frequency dependent, the system acquires memory, and
the internal deformations contribute to the rate of dissipa-
tion. As shown below, this dissipation plays a crucial role
in determining the field and frequency dependence of the
conductivity.

In fact, the CD%' neUer moves adiabatically. For a con-
stant field experiment, 6 will have magnitudes as large as
2

I
A

I
-200(L/g')' as b, varies through 2m—the phase

changes rapidly compared to the time tI, for information
to traverse the sample. A more surprising result is that
for arbitrarily small constant CD%' current the damping
rate ro is renormalized. This renormalization varies
with 6 in a way that fundamentally alters the field depen-
dence of the conductivity from the GZC result.

For a constant current, we may replace A(t) by 60+6,t
in Eq. (7). The terms from A and 8+ oscillate, yielding
periodic voltage oscillations. In contrast, the contribution
from the 8 term is a constant, b (6), the Fourier
transform of 8 (I) The result is an effective renormali-
zation of the damping rate to

7 '(b, ) =70 'I 1 —Im[b (b, )]/5 I . (14)
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FIG. 1. The variation of r 'i~0 ' with current 6 or frequen-

cy co is illustrated for the indicated values of L/5'. The case
L/g'=0 corresponds to the rigid CDW model where w

' is a
constant.

The dominant contribution to b comes from (8 ),
which is due to double scattering by each site, and
represents a Born approximation for the damping of the
CDW through phason excitations at each impurity. Note
that in the adiabatic approximation the contribution from
8 is identically zero because B is real by symmetry.

The behavior of ~ '(6)/r0 ' is illustrated in Fig. 1 for
several values of L /g'. The case L /g'=0 corresponds to
the rigid CDW model r ' is constant. In the limit
ru « IL

' each term in the sum of Eq. (5) may be approxi-
mated by K (1 iaiti, (L—K) ). Taking the imaginary
part and combining Eqs. (12) and (14), we find that the
damping rate approaches a constant,

'(b, )/ro ' ——1+(2n) L/g' .

For b, )&tL
' the sum in Eq. (5) may be approximated by

an integral over K. This gives

fr '(b )/w0
' 1]~ (L /p—)(b tI )

The physics underlying this variation of the dampin~
rate is easily understood. The increase relative to ro
comes from dissipation through excitations of internal de-
formations or phasons. For slow processes, the damping
rate is constant because of finite-size effects. The lowest
phason frequency is of order coI, = (2n )itL '. When
h~~coL all phasons are excited and contribute to the
damping rate. As the current increases, h~coL, the
lower-frequency phasons in the moving frame of the
CD%' cannot respond to the rapidly varying impurity po-
tential. The damping rate decreases. This physical inter-
pretation of the decrease in damping is borne out by the
behavior of ( I5$ I ) as a function of 6, which was
described above. The amphtude of phase fluctuations,
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which reflects the response of the CDW to the impurities,
decreases monotonically as 6 increases. The contributions
to the periodic potential from internal deformations (e.g.,
8+ ) also decrease.

An important result is that the same renormalized
damping rate enters into the ac conductivity. The linear
ac response at a dc bias E below threshold is calculated
from Eq. (7) by expanding about the static phase b, in zero
ac field. One finds (see Appendix)

cr(ru) =[r '(co) ice—'K(co)]

with r ' given by Eq. (14) with b, replaced by co, and

K(co) =K+ t b+(b„0) b+(A—,cu)+Re[b (0)—b (ui)] ) .

(16)

40—

U
20—

I
t

0.0
i/

Here, K is the force constant for small static displace-
ments about b, and b+(h, ru) is the Fourier transform of
the real part of exp(2ib, )8+(t).

As described above, the damping rate is determined by
the response of the phasons. The main factor determining
a phason's response is the ratio of its frequency to the
characteristic frequency of the motion. At constant dc
current the impurities "see" an oscillating phase with
co=6. The contribution of phasons to damping is the
same as when an external field drives the CDW phase
with the same ni. In our units, the scaling factor between
co and 5 is unity. It is readily determined experimentally
by measuring the ratio of the CDW current to the
narrow-band noise frequency or Shapiro step frequency. '

A frequency-dependent damping rate is often interpret-
ed in terms of a distribution of relaxation times. In our
model this distribution corresponds to the distribution of
phasons with the relaxation time for each given by the in-
verse of its frequency. The implications for the form of
the ac response are described in detail in Sec. III C.

III. RESULTS

A. dc response near threshold

Equation (7) was solved numerically at constant field
and the mean current was evaluated over timescales much
longer than both tL and the characteristic period of
motion in the periodic potential. Values of A and 8—
were obtained in two different ways. For the results
shown in Figs. 2—7, A and 8+- were calculated from the
configuration averages of their moments [Eqs. (10)—(13)].
Values were also obtained by explicit summation of Eqs.
(8) and (9) for specific randomly generated impurity dis-
tributions. Variations of A and 8+ with impurity config-
uration change the value of the threshold field and the
precise form of the effective periodic potential. Higher
order terms in perturbation theory than those included in
Eq. (7) would produce similar changes. However, when
the field is normalized to ET, the results for the dc
response calculated with different choices of A and 8-+
for the same sample size are indistinguishable on the scale
of Fig. 2. The dominant factor in this plot is the renor-
malization of w ', which has a well-defined configuration
average. Fluctuations about this value are small. The re-

FIG. 2. Differential resistance vs field calculated for the
leading values of L/g' (curves), and experimental results for
NbSei at 48 K (pluses). For L/g'=0 the results are equivalent
to the rigid CDW model.

suits shown are thus very representative of a given sample
size and should not change significantly if higher-order
terms in perturbation theory are included.

In Fig. 2 the differential resistance is plotted as a func-
tion of dc field for several sample sizes. The large field
limit of the CDW conductivity o„ is the same for each
curve. For comparison with experiment a parallel con-
ductance o„due to conduction by normal electrons has
been included.

For all sample sizes there is a kink near threshold in
dV/dI asharp dr—op followed by a rapid rise. This is
the region where the damping rate is constant because of
the finite-size cutoff in the phason spectrum. The width
of the kink decreases as the sample size increases and the
phason frequency cutoff uiL decreases. The GZC model
corresponds to the limit L/g'~0, where r ' is constant
for all E. In this limit the value of dV/dI increases
monotonically above ET. This behavior is never seen ex-
perimentally. Instead, dV/dI is found to decrease mono-
tonically at large fields. All curves for L/g' ~ 0 show this
behavior. The decrease reflects the decrease in r ' (Fig.
1) as fewer and fewer phasons contribute to the damping.
The large-field behavior is discussed in detail below.

Also shown in Fig. 2 are experimental results for a
2 mmX10pmX10pm sample of NbSei at 48 K. The
agreement with theoretical results for L/g'=0. 2 is excel-
lent. The only parameters in the fit other than L/g' are
o„and o, which merely fix the endpoints of the curve,
not the shape. The fit is somewhat less sensitive to sam-
ple size than Fig. 1 suggests because o.„is not known for
the experimental system. If this asymptotic value is ad-
justed, the results for L/g'=0. 4 also fit the experimental
results fairly well over the measured range of fields, but
the overall rise in dV jdI is too large. The best fit would
be for a value of L /g' slightly larger than 0.2.

In many samples the differential resistivity decreases
monotonically above threshold —there is no kink. ' To
date, no explanation for the sample dependence of the
threshold behavior has been established. ' Our calculation
suggests that the kink is a finite-size effect. The width of
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the kink decreases as I./g' increases in Fig. 2 because the
finite-size-induced low-frequency cutoff eL decreases.
Experimentally, kinks in dV/dI tend to correlate with
small sample size and low temperature, ' ' but systematic
experiments with varying sample size and coherence
length are needed to establish this explanation.

A finite low-frequency cutoff in the phason spectrum
will always lead to a kink in dV/dI at threshold, al-
though it inay become unmeasurably small. For I. &&g',
where our perturbation theory is not valid, the value of
coL at E=O approaches a constant proportional to ET.
However, as E increases towards ET, coL ~0. For
E ~ET, the presence of impurities should only affect the
phason spectrum of the sliding CDW for frequencies
lower than the characteristic frequencies of the CDW
motion, which go to zero at threshold. As described
above, it is only the modes whose frequencies are higher
than those of the motion which renormalize r '. We can
thus calculate the approximate threshold behavior of an
infinite sainple by using the phason spectrum of a com-
pletely unpinned CDW. The effective damping rate then
has the form r '~b '~ for all b, . The divergence of

at threshold removes the kink in d V /dI and
I ~(E ET) —near threshold. This is in qualitative
agreement with experiments on large samples however,
reported exponents ' vary from 1.1 to 4. Mean-field
scaling treatments ' also give exponents in this range.
Although the details of these calculations are very dif-
ferent, there, as here, the threshold behavior is controlled
by the very-low-frequency elastic modes.

B. dc response at large fields

Sneddon, Cross, and Fisher' showed that the asymp-
totic form for the dc conductivity is o'=o —CE
and suggested that a plot of the experimental conductivity
versus E ' should produce a straight line. However,
such plots, in general, show a pronounced upward curva-
ture. Sneddon'" has suggested that this discrepancy is due
to the effect of screening by normal electrons, which was
not included in the equation of motion [Eq. (1)]. Howev-
er, we show below that euen in the absence of screening,
plots of o vs E '~ show pronounced curvature.

In Fig. 3(a) we present plots of o/o „vs (E/ET)
for the same set of sample sizes and coefficients, A and
8-+, used for Fig. 2. The conductivity due to the normal
electrons, o.„, has been subtracted. The results plotted
here are more sensitive to the coefficients A and 8+-than
those plotted in Fig. 2. While the qualitative features
remain unchanged, the height of the initial rise in o at
threshold varies by a factor of -2 as the value of ET
varies. In plots of dV/dI this variation rnanifests itself in
small changes in the shape of the "kink. " Unlike o,
d V/dI reflects the local character of the I- V characteris-
tic; thus these changes do not affect results at larger
fields. In Fig. 3(a) each curve is normalized to a different
threshold field. %'hen plotted in the same units, each
curve approaches the results for larger samples for fields
larger than about 2ET. This is a consequence of the in-
dependence of high-field results on sample size discussed
above.

O.S 30
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FIG. 3. Plots of the dc CDW conductivity o vs (E/ET)
Calculated results for the indicated values of L /g' and measure-
ments (squares) on TaS3 at 150 K are shown in {a),and measure-
ments on NbSe3 at 42 K (triangles) are plotted in (b}. The dotted
portions of the calculated curves are extrapolations of the data
to infinite field using the asymptotic form given in the text.

Near threshold in Fig. 3(a), one sees the effect of the
constant damping region introduced by finite-size effects.
Results for all sample sizes show a sharp rise in conduc-
tivity near threshold with downward curvature. For the
GZC model, L/g'=0, this curvature continues for all
fields: o -o „CE at hi—gh fields. For all other values
of I./g' the curvature changes sign at values of
(ET/E) '~ slightly less than 1, as the decrease in ~ ' be-
comes important. This upward curvature is pronounced,
and continues to the highest fields studied. It sets in at
lower values of cr/o as the sample size increases.

As mentioned above, our calculation gives the same
asymptotic high-field behavior as that of Sneddon, Cross,
and Fisher. ' The source of this behavior is the decrease
of r ' at high currents, r '=ra '+cd, ', which im-
plies o. '=o.„'+c'I ' . Inverting this relation and re-
placing I with E, we find

o-o [1—C' x+ 05( C'x) —P(x )],
where x:E'~ . The rea—son that the curves in Fig. 3(a)
are not straight lines is that the leading correction to the
SCF result is of order E '. This quadratic term in
E ' yields a substantial curvature in plots of o vs
E ' even in the limit E '~ ~0. Corrections to the
leading order (SCF) result are emphasized in such plots
because all of the high-field region is compressed into a
small area. If one plots 8 vs I ', there is no term of
order I ', so the curvature goes to zero in the limit
I '~ 0. However, corrections to R of higher order in

are present, and these cause noticeable curvature
out to the largest currents typically measured.

Also shown in Fig. 3(a) are measurements of the
CD%' conductivity o in TaS3 at l30 K, which extend to
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about 50ET. The ratio of 0 to u„ is indicated to the right
of the figure. The scale relative to the theoretical results
is consistent with the value of o.„obtained by extrapolat-
ing plots of E. vs I to infinite current. The upward
curvature starts immediately at threshold and continues to
the highest fields measured. The form of the curve is just
what one would expect from an extrapolation of the trend
in our calculated results to infinite-length samples. Re-
sults for samples with kinked dV/dI curves, like the
NbSei sample on which the data for Fig. 2 were taken,
look like the calculated results for finite size in Fig. 3(a).

Figure 3(b) shows that NbSe& samples which do not
have kinks exhibit high-field behavior very similar to that
observed in TaSi. If screening was important in deter-
mining the shape of these curves, as suggested by Sned-
don, ' some variation auld be expected. In particular,
TaS3 which is a semiconductor —and NbSe3 —which is
metallic —should have different degrees of screening.

At extremely high fields neither our calculation nor
that of SCF is applicable because inertial terms in the
equation of motion [Eq. (1)] have been neglected. Recent
ac measurements' on TaS3 and NbSe3 show that inertial
effects become important at frequencies above a few GHz.
Thus at dc currents corresponding to narrow-band noise
frequencies of this magnitude, the high-field behavior will

change, reflecting inertial effects. The initial effect will
be to decrease the rate of rise of cr. A rough estimate
based on measured I-V characteristics and ratios of the
CDW current to the narrow-band noise frequency sug-
gests that this should occur at fields of order 100ET.
Inertial effects may therefore be entering at the highest
fields plotted in Fig. 3. Future experimental measure-
ments where the narrow-band noise frequency, dc conduc-
tivity, and high-frequency ac conductivity are correlated
for a single sample would play an important role in deter-
mining the effect of inertial terms on the high-field con-
ductivity.

C. ac conductivity

The variation of the damping rate, which dominates the
high-field dc behavior, also changes the ac response
dramatically. The linear ac response is given by Eqs. (15)
and (16). Figures 4(a) and 4(b) show the real and imagi-
nary parts, o' and cr", of the ac conductivity at zero dc
bias as a function of cotL for different sample sizes. Fig-
ures 5(a) and 5(b) show the real and imaginary parts, e'

and e", of the corresponding dielectric function,
e(cu)=io(co)/co As above, v. alues for E, b, and b+
were calculated from their moments averaged over impur-
ity positions. Note that in our normalized units the limit-
ing high-frequency conductivity o( oo ) = l.

As L/$~0, b-+ 0, ~and r and K in Eq. (15) become
frequency independent. The response approaches that
predicted by the rigid CD% model, ' which is identical to
that of an overdamped harmonic oscillator (OHO). This
response is illustrated in Figs. 4 and 5 for a characteristic
crossover frequency, co, :—K~, of 10tL . The asymptotic
response for low and high frequencies is

Re[o'(co)] ~ co, Im[o(co)] ~ co for co &(co, ,

104
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FIG. 4. The real and imaginary parts of the ac conductivity,
cr' and cr", are plotted in (a) and (b), respectively, for the indicat-
ed values of L /g'.
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FIG. 5. The real and imaginary parts of the dielectric func-
tion, e' and e", are plotted in (a) and (b), respectively, for the in-

dicated values of L/g'.
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Re[o( ao ) —o(ru)] ~co, Im[cr(cu)] ~ ru

for co »ru, . (18)

At co, the imaginary parts of o and e both peak, and the
real parts reach half of their maximuin values.

For any finite sample size, the response is characteristic
of a broad distribution of relaxation times rather than the
single relaxation time of an OHO. This distribution of re-
laxation times directly reflects the distribution of elastic
modes of the CDW. The exponents characterizing the
frequency dependence of the response are changed from
those in Eqs. (17) and (18). In addition, the peaks in e"
and o" occur at two different frequencies.

Three different frequency ranges are evident in Figs. 4
and 5. Below cuL, , the cutoff in the phason spectrum, r
and K are frequency independent. The response follows
that of an OHO with the renormalized r '. Above coL,

' and E vary. A peak is seen in e" at roL, , followed by a
decrease with apparent exponent near —,'. Both o' and 0"
continue to increase, but at a reduced rate. At a higher
frequency, ru„a" peaks and cr' reaches about half of its
maximum value. For ~ ««~„

Re[cr(ao) —o(co)]~co '~, Im[tT(ro)]acro '~ . (19)

No peak is seen in e" at co„just an increase in the rate of
falloff with increasing cu.

These features are easily understood in terms of a sim-
ple approximation to Eq. (15). The largest frequency-
dependent terms in the denominator of Eq. (15) come
from (b (cu)) and E. Using the high-frequency form
of (b )~ discussed in Sec. II, we find

o(ru)=[1+p(L /g')(i') '~' iE/r0]— (20)

for co & roL, where P '=8m'ri.
For Lg/' &0.0 2the term from (b ) is larger than

unity near ~L and dominates the denominator. Both u'
and o" increase roughly as c0'~ above jul . The term from
E modifies the effective exponent slightly, but decreases
in importance as ro or L/g' increase. The constant unity
on the right-hand side of Eq. (20) becomes dominant
above a frequency co, defined by ~ro, 'b (ru, )

~

=1 [or
'(ru, )=1+2 ' ]. There is a peak in a" at ru„and at

higher frequencies o follows Eq. (19). The value of co, is
independent of L/g', since it only depends on the damp-
ing by high-frequency modes. If results for different
L/g' are plotted in the same units (rather than in terms of
ruL ), the peaks in tr" lie on top of each other.

For very small. samples, L /g' & 0.02, cu, & rul, and r
is never much larger than 1. The term from E becomes
important and o" and e" peak at co, =Sr '(0). The
response follows that of an OHO until m««uL «cu„
where there is a smooth crossover from the high-
frequency behavior of an OHO, Eq. (18), to Eq. (19).

In terms of a distribution of relaxation times g(7.),

as 7' for 7.«rul '. The form of e" in Fig. 5 reflects this
behavior, peaking near ruL and falling off like an OHO at
low frequencies and with an apparent exponent near ——,

'

at high frequencies. No separate relaxation time associat-
ed with co, is seen. An OHO w'ould show a single relaxa-
tion process centered at cu, . For the values of L/g' in

Figs. 4 and 5, u, is slightly larger than coL and contri-
butes to the peak in e" near uL.

A common way of illustrating a distribution of relaxa-
tion times is a Cole-Cole plot of e' vs e" (Fig. 6). For a
single relaxation time (OHO) the plot gives a semicircle.
For a distribution of relaxation times the curve lies below
the semicircle. An asymmetric plot implies an asym-
metric distribution of relaxation times. The existence of
two peaks in the plot indicates two classes of relaxation
processes. Our results (Fig. 6) are indicative of a single re-
laxation process with a broad asymmetric distribution of
relaxation times.

In the GZC model with a sinusoidal potential, the
peaks in e" and o" both shift to lower frequency as the dc
bias, E, increases towards ET. Both depend on E, which
decreases with increasing E as the curvature of the effec-
tive potential near the stable phase 6 decreases. For a sin-

gle sine-wave potential, Eicos(sin ' ~E/ET
~

). For any
periodic force with quadratic extrema, E ~(ET E)'—
near ET.

If there is a distribution of relaxation times, the peaks
in e" and cr" need not shift together as K changes. In our
calculation K determines ru, and the peak in e" shifts
with co, as E increases. In contrast, the peak in o" and
the rapid rise in cr' do not shift appreciably. They are
determined by the decrease of r ' and remain near cu,.
Figure 7 illustrates this behavior for L/g =0.2 and a bias
of about 0.995ET, where E has decreased by a factor of
10 from its value at zero bias. The Cole-Cole plot contin-
ues to show a single peak.

There have been a large number of experimental studies
of the ac response in recent years. ' The response
is found to be nonlinear in the ac amplitude for fields
greater than a few percent of ET. The linear response
generally shows two characteristic frequencies, "' ' just
as in our calculation. At one frequency there is a sharp

0.5—

0.0
e"(cu)= Id+g(7)ro7/[1+(ru7) ] . (21)

Thus e" follows g(7), but is broadened by a Lorentzian.
The distribution of relaxation times represented in (b )
is zero for 7««coL ', peaks for 7.=ul ', and varies roughly

FIG. 6. A Cole-Cole plot of e" vs e' [normalized to e'(0)) for
the indicated values of L /g', which illustrates the broad distri-
bution of relaxation times.
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FIG. 7. {a)Conductivity and {b) dielectric function calcu1ated
for a sample with I./g'=0. 2 at two different dc biases: 0 {solid
lines) and 0.995ET {dashed lines).

rise in the value of cr' (in a linear plot) and o" reaches a
maximum. Based on the rigid CDW model, this frequen-
cy has been interpreted as co, and used to determine the
effective force constant K of the periodic potential. 3'
Our results suggest a different interpretation, i.e., that this
frequency corresponds to ~,. Recent measurements ' '

show a maximum in e" at a lower frequency. We would
interpret this frequency as to, or roL, which we expect to
be of the same order in infinite samples.

Cava et al. were the first to find this peak in e" and to
analyze it in terms of a distribution of relaxation times.
For KQ 3MO03 they found that the variation of the peak
position with temperature fitted an Arrhenius law. Above
the peak, the frequency dependence of e" was described by
a temperature-independent exponent of 0.70, which is very
close to the apparent exponent seen in our curves. The ex-
ponent characterizing the response below the peak was
very temperature dependent. Similar results have
been reported in TaS3.

These measurements are presumably on samples where
L/g' »1. As discussed above and elsewhere, ' ' in the
limit I./g'~ oo the cutoff in the phason spectrum coL sat-
urates at a finite value. The distribution of relaxation
times near this peak will depend on the details of the dis-
tribution of phason modes and may differ from the form
found in our calculation. Since relaxation via these modes
is not thermally activated, the shape of g(7) for 7.&oiL,
will not vary with temperature. This is consistent with
experimental results. %hile experiments show that the
position of col does vary with temperature, many other
quantities, such as the threshold field, static dielectric

constant, normal resistance ~o ', and CD% amplitude, are
also temperature dependent.

The observed distribution of relaxation times at long
times, 7&cuL ', can be understood in terms of thermally
activated processes. For I. & P there are many metastable
states of the CDW corresponding to variations in P over
lengths of order g. These cannot be described by our per-
turbation theory. Thermal excitations between these
metastable states will also contribute to the ac conductivi-
ty. The characteristic relaxation times are determined by
the temperature and the barrier heights. For a fixed dis-
tribution of barrier heights, the distribution of relaxation
times broadens as the temperature is lowered. This is con-
sistent with the observed broadening of g(7) at large 7. as
T is decreased in Ko 3MO03.

An alternative explanation for the data on Ko iMo0& is
that the peak observed in e" results from a peaked distri-
bution of relaxation times, all of which represent thermal-
ly activated processes. The activated shift in coL, with
temperature is then understood. However, there are
several problems with this interpretation. The first is that
it provides no explanation for the asymmetric broadening
of g(7) as T decreases. A more important problem is that
one would expect to see another peak in e"(o~) correspond-
ing to the nonactivated motion of the CDW about a single
locally stable configuration, which is described by our cal-
culation. However, experiments which extend to a few
GHz, where inertial effects become important, show no
second peak. ' ' ' Our model naturally explains these ob-
servations.

There are two ways of testing these models experimen-
tally. The first is to study the response as a function of
bias. In our calculation the peak in e" is associated with
co, and shifts to lower frequency as the bias increases and
K decreases. The peak in cr" does not shift since it is
determined by high-frequency modes. Previous measure-
ments are consistent with these predictions. The frequen-
cy at which cr" peaks appears to be bias independent. '

Cava et al. present data for e at two fields, 0 and
0.77Ez, which indicate that the peak in e" shifts to lower
frequencies with increasing bias. If the peak in e" were
thermally activated and increasing the bias lowered the ef-
fective barriers, the peak would shift in the opposite direc-
tion.

Another test of the two explanations of the peak in e"
involves studies of response as a function of sample size.
The distribution of metastable states should depend on the
sample size. In particular, we suggest that in samples
with kinked d V/dI characteristics there will be few if any
metastable states, and that the low-frequency response
will approach that of an OHO.

IV. SUMMARY AND CONCLUSIONS

%e have shown that a detailed study of the CD%
dynamics in samples of dimension I. &g provides a
coherent explanation for many features of the observed de
and ac conductivities of CD%' conductors. The deforma-
bility of the COW condensate plays the central role in
these results. As the CD% moves in response to an ap-
plied ac or dc field, it deforms. Elastic modes of the
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CDW are excited which damp the motion. The level of
excitation and the resulting damping depend on the ratio
of the characteristic frequency of the mode to that of the
motion: the ac frequency or the narrow-band noise fre-
quency. ' The total effective damping rate varies with fre-

quency and current in the same way.
Response at high frequencies and currents is only af-

fected by high-frequency modes. The spectrum of these
modes is not affected by finite sample size or impurity
pinning. The asymptotic high-field behavior of the dc
conductivity derived by SCF and the leading correction to
it (Fig. 3} are determined by these high-frequency modes.
They also determine the high-frequency form of the ac
conductivity [Eq. (19)j.

At lower frequencies and currents the spectrum is al-
tered by both finite sample size and impurity pinning.
The perturbation theory used here is only accurate when
the effects of impurity pinning are small, i.e., for suffi-
ciently high frequencies or for sufficiently small samples.
The main effect of sample size in small samples (L «g')
is to introduce a low-frequency cutoff coL in the spectrum
of elastic modes or phasons. This introduces a kink in
dV/dI at the dc threshold whose width decreases with in-
creasing sample size (Fig. 2). The distribution of relaxa-
tion times seen in the ac response (Fig. 5} is cut off at cot .
Above coL, , a broad distribution of relaxation times corre-
sponding to the distribution of phasons is seen. Measure-
ments on samples with L/g' « 1 should show all of these
features. Recent advances in growing ultrapure samples, '
where g is large, may facilitate such experiments.

In infinite samples, impurity pinning will also introduce
a cutoff frequency in the phason spectrum at dc biases
below threshold. While the form of the spectrum near
this cutoff may not be the same as that near roL in a small
sample, the resulting ac response will show the same qual-
itative features. In particular, the imaginary part of the
dielectric function e" will peak at the cutoff frequency,
which will, in general, be different from the frequency
where the imaginary part of the conductivity peaks. The
form of e" will reflect the distribution of modes. Changes
in dc bias will shift the peak in e" while the peak in o"
will remain fixed. We expect the largest differences from
our results to occur below the cutoff frequency, where the
spectrum of modes in a sample with L «P is identically
zero, while the spectrum of an infinite sample may exhibit
a long tail. Infinite samples will also contain many
metastable states. ' Thermally activated transitions be-
tween these states will lead to another contribution to the
ac response which is not present in small samples.

As the threshold field is approached, the cutoff fre-
quency in infinite samples will go to zero. The new low-
frequency modes necessarily correspond to lengths much
greater than the static phase coherence length g. Scaling
approaches ' are required to treat these length scales
properly; they cannot be described by the perturbation ap-
proach used here. However, a qualitative picture of the
effect of these low-frequency modes on the dc response
near threshold can be obtained by a naive extrapolation of
our results for the form of the damping by high-frequency
modes to low frequencies. The low-frequency modes re-
move the kink in dV/dI near threshold which is found

for finite samples (Fig. 2). The current-voltage relation
becomes I~(E E—T) . While the same exponent is
found in Fisher's mean-field scaling theory, the agree-
ment is coincidental. Experimental measurements
find' ' ' a variety of apparent exponents from —,

' (which

leads to a kink in dV/dI) to 4. Our calculation suggests
that this may reflect a change in sample size. Experi-
ments are needed to examine this point.

The results described above are for steady-state mea-
surements. The integration over past times in Eq. (2)
naturally introduces memory effects, which lead to in-
teresting transient behavior. We find hysteresis loops in
the I- V characteristic when the applied field is cycled rap-
idly, response to current pulses that depends on the direc-
tion of the previous pulses, ' and a number of other ef-
fects. In each case the times over which these effects
occur are of order tL. Based on the observed peak in cr"
for NbSei and the ratio of co, to tL

' for a sample with
L/g'=0. 1 (Fig. 4), this should correspond to times of or-
der 20 ps. Some experiments s find memory effects and
hysteresis for timescales of seconds or longer. i This indi-
cates that the samples contain many Lee-Rice domains
and that metastable processes enter which are not
described by our perturbation technique.

In our calculation transient effects have two major ori-
gins. If b,(t) is replaced with its Taylor expansion in Eq.
(2), one finds inertial terms. For L &g' the system
remains underdamped, but the effective mass increases
with L/g', leading to more pronounced transient effigy;ts.

A related effect is that the effective periodic force varies
as a function of current and frequency. The amplitude of
the second Fourier component of the force is f8+(t)dt
in the static limit. For finite current it decreases as
b+(b, ) ( cx b, '~ for large 5). Higher Fourier com-
ponents decrease even faster. Thus the effective pinning
force depends on current. An analogous phenomenon is
the difference between static and sliding coefficients of
friction in normal systems. If the magnitude of the effec-
tive pinning force decreases sufficiently rapidly, the static
I-V characteristic may become hysteretic. This does not
happen for L & g', but the current dependence of the pin-
ning force does contribute to the strong transient
behavior.

The results presented above illustrate the importance of
deformations of the CDW on length scales less than g.
These have not yet been included in the scaling treat-
ments developed for longer length scales. A complete
understanding of CDW dynamics requires a unification of
these two approaches. Future work should also consider
the effect of temperature, which appears to play an im-
portant role in many experiments. "' '
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APPENDIX

To evaluate the linear response, we decompose 5 into a
static component b, and a small time-dependent part d(t)
The static component must satisfy

O=F+Im Ae'a+e "a fdt'B+(t t'—), (Al)
J

where F is the normalized dc field. The force constant K
for small static displacements about b, is

K= = —Re Ae' +2e ' dt'B+(t t—'), .

Expanding Eq. (7) to first order in d and using Eqs.
(Al) and (A2), we find

=f(t) Kd(t—)

+ Jdt'[d(t') d(t)]—

&&Re[e "aB+(t t')+B—(t —t')],

b+(b,—cu) b(ai)] I— (A5)

Using the definition of r ' [Eq. (14)], we can rewrite
Eq. (A5) as Eqs. (15) and (16).

where f is the ac component of the applied field. Taking
the Fourier transform gives

f(co }=i cod(co)+Kd(co)

+d (co)[b+(b„O)+b (0)—b+(h, cu) b—(co)],

(A4)

where b+(h, co) is the Fourier transform of
Re[exp(2iE)B+(t)] and b (co) is the Fourier transform
of B (t}.

The linear response is

i cod(u)
f(~)

= [1 (i—/co)[K+b+(b, O)+b (0)
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