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Interatomic interactions in solids: An effective-medium approach

M. Manninen'
Laboratory ofAtomic and Solid State Physics, Cornell University, Ithaca, New Fork 14853 250-1

4,'Received 25 April 1986)

The description of the total energy of a solid in terms of the effective-medium theory has been

studied. %'ith use of the density-functional theory, an exact symmetric formula is presented for
describing the total energy in terms of the embedding energies of individual atoms. Different ap-
proximate formulas are derived and compared to the conventional pair-potential representation, to
the model of Gordon and Kim, and to the semiempirical embedded-atom scheme of Daw and
Baskes. The theory is applied to estimate the pair potential in the rare gases He, Ne, and Ar, and
the cohesive properties of Al metal. A fair agreement with the experimental results is obtained.

I. INTRODUCTION

The study of static and dynamic properties of lattice
defects using molecular dynamics is based on the pair-
potential representation of the structural part of the total
energy of the system. ' In metals this is usually written as

E„,= —,
' g g Vy(R; RJ)+E—„g, (1.1)

i =1j=l
J+l

where Vy is the pair potential, R; a position of an atomic
nucleus, and N is the total number of atoms. F.„,~ is an
energy term which depends only on the volume (or densi-

ty) of the system but not on the structure. A pair-
potential expression of the form of Eq. (1.1) is formally
obtained by describing the metal ions by pseudopotentials
and applying second-order perturbation theory to calcu-
late the total energy. ' Several different schemes have
been proposed to determine the pseudopotential and the
corresponding pair potential. In alkali and other nontran-
sition metals, the results obtained, for example, for the
photon spectra are in fair agreement with the experimen-
tal results. However, the pair-potential picture becomes
questionable when applied to lattice defects which cause
large perturbations to the nearly homogeneous valence
electron density of the perfect metal. Also, the treatment
of impurities in the pseudopotential scheme is not
straightforward.

Recently, another method has been proposed for calcu-
lating the interionic interactions. ' In this so-called
"embedded-atom" method, one tries to write the total en-

ergy in the form

Z...= g F[n, (R, )]+-,' g g e(R, —R, ),

where I' is a function of the electron density n; at the site
of the atom i and 4 is the residual part of the pair ion in-
teraction which can not be included in the first term of
Eq. (1.2). The density n; is the electron density at site R;
when the atom from that site is removed, i.e., it is electron
density provided by the surrounding atoms. The idea is to

approximate the total electron density as a superposition
of atomic densities n, in which case n; is

(1.3)

Equations (1.2) and (1.3) are essentially as easy to use in
the computer simulations as the standard pair potential,
Eq. (1.1).

The function F(n) is generally nonlinear and then the
first term implicitly takes into account the volume-
dependent terms of Eq. (1.1). Also, the expression (1.2)
includes multi-ion interactions. It is expected that the
embedded-atom scheme can then better describe defects
like vacancies and surfaces where the density variations
are large.

The idea behind Eq. (1.2) comes from the so-called
"effective-medium" or "pseudoatom" theory first present-
ed for calculating the energetics of single impurities in
metals. ' Daw and Baskes have successfully applied the
embedded-atom method for many transition-metal sys-
tems by taking an empirical approach; the functions F
and 4 are fitted to reproduce some experimental data.

The purpose of the present paper is to look more for-
mally at the possibilities of deriving interionic interactions
of the form of Eq. (1.2) using the effective-medium
theory. First the total energy of the solid (in any ionic ar-
rangement) is written in a symmetric way in terms of the
electron densities provided by the surrounding atoms.
This can be done formally exactly using the density-
functional theory. Then approximate formulas are de-
rived by using the same approaches which have been ear-
lier applied for single impurities. It is shown that the
first-order approximation, in the limit of a weak distur-
bance from a homogeneous lattice, reduces to the conven-
tional pair-potential picture with the same pair potential
as obtained from the perturbation theory. In the case of
rare gases, on the other hand, the result is closely related
to the Gordon-Kim' model for molecular binding.

In Sec. II we present a formal derivation of the total en-

ergy in terms of density functionals. In Sec. III approxi-
mations are made for obtaining a usable equation of the
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form of Eq. (1.2). In Sec. IV the results are compared to
the conventional pair-potential picture, to the scheme of
Gordon and Kim, ' and to the semiempirical formalism
of Daw and Baskes. Approximate (ab initio) results for
rare gases and Al metal are given in Sec. V. Section VI
includes discussion and conclusions.

II. FORMAL THEORY

According to the density-functional theory"' the total
energy of system of electrons in an external potential can
be expressed as a functional of the total electron density.
This functional has the variational property that the exact
ground-state electron density minimizes it. ' In a solid,
the external potential is provided by the atomic nuclei
which are fixed at sites R; (adiabatic Born-Oppenheimer
approximation is assumed). The total energy of the metal
consisting of N atoms is

«.i =Ex [n]N (2.1)

where n is the total ground-state electron density, and the
subscript R indicates that the functional depends on the
sites R; and charges Z; of the nuclei (also the electrostatic
nucleus-nucleus repulsion is included). If one atom is re-
moved from the metal the energy change, the so-called
embedding energy, is

1

N (N —1)(N —2),.
=&&atom+S] +S2+S3+ (2.6)

The prime in the sums above indicates that terms which
have two or more indices the same are omitted. Each sum
in Eq. (2.6) contributes about the same order of magnitude
to the total energy. To find a convergent series we first
define the sums

S2= g'(&Ej[n j] bEj[—nj]),
N(N —1)

(2.7)

S3
N N 2

g'(~Ek[n jkl ~ k[nik]
I j&

~Ek[njk]+~Ek[nk) } .

tern where atoms at the sites 1,2,3, . . .i have been re-
moved. Each term of this sum depends upon which atom
is removed and which atoms had been taken out before.
By taking an average of all possible orders of removing
the atoms, Eq. (2.6) ean be made symmetric:

X —1
1E„,=NE„, +—g bE;[n;]+ g'&EJ[n(~]

N(N —1)

N —1~E' =Etot Etot E to (2.2) (2.&)

where E„, is the total energy of a free atom in vacuum.
The subscript i indicates that the energy depends upon
which atom is removed. The embedding energy can be
written as

b,E; =DE;[n;], (2.3)

Eia~=E~o) '[n)]+~«[n)i+En)om . (2.4)

We can successively remove atoms one by one and get fi-
nally

X —I

E~., =NE.io + g ~~[ni, z, 3, . . . )

where X is the number of atoms in the system and

n, 2 3; is the self-consistent electron density of the sys-

where n; is the self consistent -ground-state electron densi-

ty in the system after the atom i has been removed (but
other atom sites are kept fixed}. Equation (2.3) is a trivial
generalization of the density-functional theorem. The
density n; uniquely defines the external potential of the
N —1 nuclei. Then, since the site of the removed atom
R; is known, also the external potential of the original
system with N atoms is known and both E„, ' and E„,
can be formally expressed as functionals of the same den-

sity n; This is. the key idea of the effective-medium
theory when applied to calculate energies of impurities in
metals. It simply means that the binding energy of the
impurity can be calculated directly from the unperturbed
electron density of the host metal. s

Using Eqs. (2.2) and (2.3), we write the total energy of
the metal now in terms of the embedding energies. By re-
moving one atom we can immediately write

In these sums only those terms in which each of the re-
moved atoms are close to each other are non-negligible. If
the atoms are far apart they do not interact
(EEJ[n j]=bEj[nj] if

~
R; —Rj ~

large). The sums S are
related to the sums S in Eq. (2.6) by

n —1

S„=S„+„2S„)+ . +S) . (2.9)

Equation (2.6) can now be rewritten as

E„,=NE„, + QKE)[n;]+ —,
' g'(bEj[n)j] —bEJ[nj])

i,j
+ 6 g'(~Ek[«jk) ~Ek[nik)

I)j ,k

~Ek[njkl+~Ek[nk))+ ' (2.10)

E„„=—hE; [n;]——,
' g (EEj[n J) AE~[n, ])+-

J

(2.11)

and since, by definition, bE; [n; ] is the embedding energy

Now in each sum (except in the first) each term is negligi-
ble if any pair of the sites are far from each other. It is
then expected that the expansion converges fast even if
each sum has seemingly more terms than the previous
one. (For example, later it will be shown that in calculat-
ing electrostatic interactions between atoms, only the first
two sums in this expansion are nonzero. )

In this functional form Eq. (2.10} is exact. In a large
perfect crystal, each atom is in a similar surrounding.
The cohesive energy can then be expressed as
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of an atom in a preexisting vacancy, the vacancy forma-
tion energy (for an unrelaxed vacancy} is

E„„=—,
' g (dEq[n,J] &—AJ.[nj])+

j
(2.12)

The exact symmetric expression, Eq. (2.10), is now a start-
ing point in trying to find applicable approximate formu-
las.

III. APPROXIMATIVE EXPRESSIONS

B. I.ocal approximation for the embedding functional

As an illustrative example we will now assume that the
embedding energy is a function of the local electron densi-
ty. This is the simplest form of the embedding energy
functionals. The function can be calculated, for example,
by embedding the atom in a homogeneous electron gas, in
which case it can be viewed as the first term in a sys-
tematic expansion of the embedding energy in terms of
density gradients or perturbation corrections. In the lo-
cal approximation

hE;[n;]=DE"' [n;(R;)], (3.2)

A. Electron density

The electron density which determines the embedding
energy in the functional &&;[n i z z;] is the self-
consistent ground-state electron density of the system
where atoms from sites 1,2,3, . . iare. removed. It is obvi-
ous that any expression based on the embedding energy
functions can not be useful if the self-consistent electron
density has to be calculated for each atomic configuration.
(It would then be easier to calculate directly the total ener-

gy of the whole system self-consistently and the effective-
medium theory would not be needed at all. ) For making a
practical scheme, the electron density has to be approxi-
mated by a superposition of densities associated with each
atom. These densities n, (r R; } do—not necessarily have
to be the densities of free atoms but can be densities of
some kind of pseudoatoms which better describe the
screening charge in the metal. (In the linear screening of
pseudopotentials n, would be exactly the screening charge
of the pseudopotential. )

In the following we will always make the approxima-
tion that the density can be expressed as

n i z &;(r)= g n, (r RJ ), — (3.1)
j=i+1

and specify later, whenever necessary, what exactly is
meant by the pseudoatom density n, .

and the function b,E"' (n,j) needed in Eq. (2.10) can be
expanded as

gxhom( } gEhom(

ggE horn(&
n—o(R; —RJ )

Bn
(3.4}

52' ~horn(&
+ 6

n;

By defining a function

Fhom( } g +gghom(
horn

(3.5)

gp om( )+ 6n 2
(3.6)

the total energy of the metal can be written as

g @horn( (R (3.7)

This is the desired form of Eq. (1.2}. In this simplest lo-
cal approximation there is no additional pair-potential
sum. The relationship (3.6) between the function I'"'
and the embedding energy function b,E"' can also be ob-
tained directly by requiring that the total energy is written
in the form of Eq. (3.7) as shown in Appendix A. A pure-
ly local expression of the form of Eq. (3.7) cannot be a
good approximation for solids since it results in unreason-
able results for elastic constants as shown by Daw and
8askcs.

C. Corrections from the perturbation theory

One systematic way to improve the local approximation
in the effective-medium theory is to use the perturbation
theory. s'9 The first-order correction to the homogeneous
electron-gas term of Eq. (3.2) is

b,E'"(R;)=fd rbp(r —R;)5v'"'(r), (3.8)

where dy;(r} is the atom which induces charge density in
the homogeneous electron gas [Ap(r) =hn (r) —Z5(r),
where bn is the reduced density] and 5v'"'(r) is the differ-
ence in the external potentials between the homogeneous
electron gas and the real metal. Equation (3.8) can be
written in a inore useful form by using for the homogene-
ous electron gas density an average density

Expanding also b,E"' (n;ik) in the same way and substi-
tuting in Eq. (2.10) we find (by neglecting a small second-
order term and all higher-order terms, see Appendix A)

ggE horn( n
Z...=XZ„. +g ash' (n, ) ,'n—

,
—

n;

where b,E"' (n) is the embedding energy of the atom in a
homogeneous electron gas of density n To simp. lify the
notations we have dropped the subscript i from the func-
tion hE"' assuming that there is only one kind of atoms
in the system. Using Eq. (3.1) for the density we can
write

b,p(r' —R;)
n;(R;)= ——fd r n;(r) fd r'

u '
/r —r'/

where a is defined as

(3.9)

(3.10)
nJ(RJ ) =nj(RJ. ) n, (RJ —R;)— (3.3}
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and is assumed to be nonzero [which is not necessarily
true for all bp (Refs. 8 and 9)]. Using Eqs. (3.9) and
(3.10) it is straightforward to show that the first-order
correction reduces to the electrostatic interaction between
the induced charge density of the embedded atom, hp,
and the total charge density of the system in which the
atom is embedded. Equation (3.8) then becomes

bE"'(R;)=fd'r bp(r —R;)P(r), (3.11)

E„,= gF"' [n(R;)]

where P is the total electrostatic potential of the system
(without the potential of the atom to be embedded). To be
consistent with the approximation (3.1) the pseudoatom
density n, should be taken to be the electron density cor-
responding to the induced charge bp (i.e., b,p minus the
nuclear charge). With this approximation the correction
AE"' can be written as

b,p(r —R; )b p(r' R, )—bE"'(R;)= d r d r'
' (+i)

(3.12)

Substituting this for Eq. (2.10) it turns out that only the
two first sums of the expression are nonzero. Including
also the local part of the embedding energy from Sec.
III C, the total energy of the metal will be

perposition of the pseudoatom densities becomes question-
able.

In the perturbation theory also higher-order corrections
can be systematically added in calculating the
embedding-energy function in an inhomogcncous electron
gas. Since we want to keep the approximation of Eq.
(3.1), there is not any obvious systematic way to improve
the total energy functional, Eq. (2.10), using higher-order
perturbation theory.

D. Corrections using the mixed perturbation scheme

For taking advantage of the local nature of the screen-
ing in metals and for avoiding the problem arising from
the long-range Friedel oscillations, N5rskov' has pro-
posed a "mixed perturbation scheme. " The key idea is
that in the close vicinity of the embedded atom (region
a;), the potential is governed by the atom and can be ap-
proximated to be the same both in the homogeneous elec-
tron gas and in the real metal. Further out, on the other
hand, the potential can be approximated to be that of the
host, i.e., unaffected by the embedded atom. The lowest-
order correction to hE" in this approach can be written
as6, 14

5bE;= f d rbp(r —R;)5P "(r)
l

b p(r —R; )b p(r' —R& )
+— d'r d r'

(3.1 3)

+ f d rbp(r —R;}5v,'„,(r)

+5 f de eb, n(c.), (3.14)

This expression is again of the form of Eq. (1.2}, the pair
potential being now the electrostatic interaction between
the pseudoatoms. The fact that the average density n now

appears in the function F"' does not make the applica-
tion of the Eq. (3.13) more difficult since the averaging
can be made to the pseudoatom density before the sum-
mation of the total density [i.e., the pseudoatom density in

Eq. (3.1) is replaced by an averaged pseudoatom density

n, ]. However, there is a self-consistency requirement:
the induced density bp should be calculated by embedding
the atom in a homogeneous electron gas of density n

which depends on bp through Eqs. (3.1) and (3.9). This
condition cannot be strictly fulfilled if the superposition
approximation for the total electron density is required.
The most consistent way is to calculate bp in a density no
which is an average over all atom sites [as defined in Ap-
pendix C, Eq. (C3)]. The induced charge density is spher-
ically symmetric. At small distances from the nucleus it
is governed by the core electrons and is very close to that
of a free atom. At large d1stanccs kpI, 7 ) has Fr1cdel osc11-

lations, whereas the free-atom density goes to zero ex-
ponentially. If the short-range atomic-like behavior is
doininating in the electrostatic sum of Eq. (3.13},then the
results should not be sensitive on which density Ap is
determined. However, if the long-range Friedel oscilla-
tions turn out to bc important, then the self-consistency
becomes essential, and, also, the approximation of the su-

where 5$ '(r) is the part of the electrostatic potential of
the metal which is caused by the charges outside the re-
gion a;, and 5v',„,(r) is the change in the external potential
caused by the positive charges inside the region a;. The
last integral comes from the change in the one-electron
energy eigenvalues when the atom is moved from the
homogeneous electron gas to the real metal. The first two
integrals are extended over a sphere a; centered at R;. In
practice, the sphere a; is always so small that inside it
there is no other nuclei than that of the embedded atom.
Then 5U,'„, is caused by the positive background charge of
the homogeneous electron gas. By making again the ap-
proximation (3.1) of superposition of pseudoatom densi-
ties, Eq. (3.14) can be written as (see Appendix B for de-
tails)

f 3 f 3 bp(r —R; )hp(r —R )
s

1 (~,.) )
I' —r

bp(r —R; }bp(r' RJ)—.
1 P'

r —r'

(3.15)

where the notation —a; under the integral means that the
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sphere a; is omitted in the integration.
The change in the one-electron eigenvalues is difficult

to estimate. Ngrskov et a/. have studied approximate
ways to derive this term and thus go beyond the result of
Eq. (3.13). Here we only want to mention that if the po-
tential outside the sphere a; is assumed to be purely elec-
trostatic and apply simple perturbation theory to estimate
the change in the eigenvalues, the last term in Eq. (3.15)
cancels exactly the second term. The result of the normal
perturbation theory of Sec. III C is then recovered. Note
that in this limit the result is independent of the choice of
the radius of the sphere a;.

IV. RELATION TO OTHER METHODS

A. Pair potential

The present result of the effective-medium theory, Eq.
(3.13), which includes the perturbation correction to the
local energy function, can be related to the conventional
pair-potential picture derived froin the pseudopotentials.
This can be done by extracting from the first term of Eq.
(3.13), the pair interaction part and the structure-
independent part. The straightforward derivation is done
in Appendix C and it gives

[+(r—R; ) —n, (r—R; ) ]by(r' —RJ )

g[E +QE" (no) —o!no]+—g g fd &fd r'
~ ~ (~ e) r —r' (4.1)

where no is an average of the (averaged) densities in Eq.
(3.9) and bp and n, are the charge density and electron
density of the pseudoatom, respectively. The first sum is
now structure independent but depends on the volume of
the system through no. The second sum is the pair in-
teraction: it is the sum of the electrostatic interactions be-

tween a screened atom (screened pseudopotential) and a
bare pseudopotential expressed in the form

bp(r r') n, (—r r'—)—
(4.2)

[r—rf

Note that here n, is the electron density corresponding to
the charge density hp so that the difference of these is
caused by the atomic core (nucleus) or a positive pseudo-
charge corresponding to the pseudopotential.

Equation (4.1) has exactly the same form of that ob-
tained from the pseudopotential theory using local pseu-
dopotentials. The volume-dependent term is the embed-
ding energy of an atom in a homogeneous electron gas
without a compensating positive background charge [sub-
tracting this out gives the third term in Eq. (4.1)]. The
electrostatic interaction betmeen the atom and compensat-
ing positive charges enters nom in the second sum as in-
teraction between the atom and bare pseudopotentials
(which have replaced the positive background}. The
volume-dependent term [the first sum in Eq. (4.1)] can be
cast to the form familiar from the perturbation theory by
noticing that AE"' is the sum of embedding energies of
the bare pseudopotential and free electrons minus the
binding energy of the atom (E„,m }. The average electron
density no as defined in Appendix C is not exactly the
overall average of the valence electron density which ap-
pears in the formulas of the conventional pseudopotential
theory. However, if the potential is weak, the difference
between these two densities is small and in this limit of
weak pseudopotentials the effective-medium result agrees
with the pseudopotential result.

Rasolt and co-workers' ' have developed a method for
deriving pair interactions in metals which is related in the
effective-medium theory in the sense that the results of
atoms embedded in an electron gas mas used. In their

method the key quantity is the induced electron density of
an atom embedded in a jellium vacancy. This has two ob-
vious advantages. First, the electron density inside a jelli-
um vacancy describes better than the homogeneous jelli-
um the electron density in the vacancy of the actual met-
al. The second advantage is that the density of the elec-
tron gas is fixed to the average valence electron density
which, e.g., guarantees that the Friedel oscillations have
correct wavelength. In the theory of Dagens et al. ' and
Rasolt et al. ' the induced electron density was used to
derive a pseudopotential which then was used in a normal
way to calculate the pair-ion interaction. In the
effective-medium theory one could also use the jellium va-
cancy model as a reference system instead of a homogene-
ous electron gas. One would then first calculate the
embedding energy of an atom in a jellium vacancy and ap-
proximate the functional h F-; [n; ] by

hE; [n;]=DE""(n,")

hp(r —R; )+(r' —RJ )+drdr
j (+i) r —r'

(4.3)

where the effective electron density n," is now defined re-
qulr1ng

(4 4)

The VA'gner-Seitz radius is determined here from the aver-
age density of the metal. Another possibility to satisfy
Eq. (4.4) would be to fix the density n,' to be the average
valence electron density and vary R~s. In any case, the
use of the systematic expansion (2.10) would no longer be
straightforward since the evaluation of functionals
b,E&[n,j] would be more difficult. Also, the electron-gas
calculations mould have two parameters, the density and
the Wigner-Seitz radius which determines the size of the

ap(r —R, )n,"O(
~

r —R;
~

—Zws)
d P' d f'

fr —r'/

bp(r —R; }hp(r' RJ)—
d T d T

r r
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vacancy. Approximation (4.3) would nevertheless lead to
a formula which would have the same form as (3.13), but
where the function I would be related to the embedding
energy in a jellium vacancy [not necessarily in the same
way as in F"' to hE"' in Eq. (3.6)].

B. Gonfon-Kim model

Gordon and Rim' have proposed a non-self-consistent
method for calculating binding energies of molecules. In
the simplest form this theory makes an assumption that
the total electron density of a molecule is the superposi-
tion of atomic electron densities. Density-functional ap-
proximations are then used to estimate the energy change
when atoms are brought together to form a molecule. The
total energy consists of kinetic, electrostatic, and
exchange-correlation parts. The electrostatic contribution
is exactly the same as in Eq. (3.13) when the charge densi-

ty hp is taken to be the charge density of a free atom.
The simplest approximation for the kinetic and
exchange-correlation parts is a local approximation:

b, T+bE„,=fd rn(r)f(n(r)) Efd r—n, (r)f(n, (r)),
(4.5)

where n (r) is the total electron density of the molecule of
N atoms (supposed to be similar to simplify notations)
and f(n) is the energy per electron of a homogeneous
electron gas of density n By s.ubstituting the superposi-
tion approximation (3.1) to n (r), Eq. (4.5) can be written
as

AT+DE„,= g fdirn, (r R;) —f gn, (r RJ)—

the function F is slightly different. Moreover, the average
density appearing in Eq. (4.8) cannot, in general, be ex-
pressed as a simple superposition of (averaged) atomic
densities without doing additional approximations. The
non-self-consistent (NSC) approach could also be used to
estimate the embedding energy of an atom in a homogene-
ous electron gas. Since the atom electron density is kept
frozen there will be no Coulomb contribution to the
embedding energy and it will be, using the same local ap-
proximation as in Eq. (4.6),

bEN'sc(n)= fd r[[n (r)+n]f [n (r)+n]
—nf(n) —n, (r)f[n, (r)]] . (4.10)

The relation between DEN'sc and I' is not exactly the
same as in Eq. (3.6) but gives additional terms which
nevertheless are smaller than the three first terms in Eq.
(3.6). The use of the local density approximation for the
exchange-correlation energy functional in Eq. (4.6) is
commonly accepted and widely used in the density-
functional calculations. For the kinetic energy, however,
the local approximation (Thomas-Fermi) is not accurate.
Harris' has made an extension to the Gordon-Kim
model, by calculating the kinetic-energy change from
single-particle energy eigenvalues. This approach clearly
improves the local model, but seems not to be very useful
here where we want to express the energy with help of the
electron density alone. Recently Plumer and Stott' have
made an extensive study on approximations of the
kinetic-energy functional. The resulting approximations
for embedding energies of atoms in a inhornogeneous elec-
tron gas could be better used in looking for approxima-
tions of the form of Eq. (1.2) for the total energy.

—f[n, (r—R, )] C. Semiempirical method of Daw and Baskes

(4.6)

If we now define an effective density n; [different from
that used in the normal effective medium theory, Eq.
(3.9)] as a solution of the equation

3
a t

~

~

II a ~
~

I ~

~ j II
d r n, (r—R;) f n, (r—R;)—g n, (r RJ)—

j (+i)

—f[n, (r —R; ) n; ] =—0, (4.7)

we can write the total energy as

E =gF (n )

dy(r —R; )hp(r' —RJ )

i j [~i)

(4.8)

where

F (n)=E„,
+ fd'r n, (r)[f[n, (r)+n] —f[ng(r)j] . (49)

Equation (4.8) now has the same form as Eq. (3.13), but

Using the ideas of the pseudoatom method of Stott and
Zaremba and Daw and Baskes postulated that the total
energy is written as

Eto, = Q F(n; )+ —,
' g g 4(R; —RJ ),

i j (&i)
(4.11)

where n; is the density defined in Eq. (3.1) and taking n,
to be the free atom density. The pair potential 4 was as-
sumed to be a purely repulsive short-range potential
describing the core-core repulsion. The functions F and
4 were fitted to reproduce experimental lattice constant,
elastic constants, vacancy formation and sublimation en-
ergies, and the energy difference between fce and bcc
phases. Equation (4.11) was found to give good results to
surface geometries of solid Pd and Ni, and properties of
several transition-metal liquids. The comparison of Eq.
(4.11) to Eq. (3.13) shows that even if they have the same
form, the individual terms are very different. The pair
potential in (3.13) is attractive in typical interatomic dis-
tances in metals, whereas in Eq. (4.11) it is weakly repul-
sive. However, there is an ambiguity in determining the
functions F and @: any part of the function F which is
proportional to the density n can be equally well included
in the pair-potential sum. * This means that one can al-
ways add to the pair potential 4(r) a term yn, (r), where
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y is any constant by subtracting from the function F(n)
the linear term yn .The functions F and 4 from a sem-

iempirical scheme can then not be separately compared to
those determined from an ab in' tio 'theory

In the semiempirical model one uses directly the density

n; without any averaging of the type of Eq. (3.9). If one
can approximate n, =cn„where c is a constant, then also
in Eq. (3.13) n, can be replaced by n, by redefining the
function F. This approximation is reasonable if only the
short-range behavior of n, is important [meaning also
that one could use the free-atom densities in Eq. (3.13)].
The form of the total energy assumed by Daw and
Baskes can thus be obtained in an approximate way also
from the present theory. One should also mention that in

the transition metals the semiempirical formula also in-

cludes the interactions between the localized d electrons,
which are strongly underestimated in the approximate
formula (3.13).

V. RESULTS

In rare gases the function bE"' (n) is proportional to
the density n and the total energy of the form of Eq.
(3.13) can be expressed as sum of pair interactions. In
Fig. 1 the calculated pair potentials for He, Ne, and Ar
are compared to the experimental scattering potentials. '

In the calculations the free-atom densities were used for
b p(r). This is a good approximation in the case of a rare
gas which is a closed-shell atom and relaxes only slightly
when embedded in an low-density electron gas. The
effective-medium theory cannot reproduce the attractive
part of the potential which is mainly due to the van der
Waals interaction. In the repulsive region the calculated
potentials are in fair agreement with the experimental re-
sults.

For Al metal we have estimated the cohesive energy,
equilibrium lattice constant, bulk modulus, vacancy for-
mation energyan, d surface energy, using for bp both the
free-atom density and (in an approximate way) the in-
duced densities in homogeneous electron gas. The results
are shown in Table I. The free-atom density gives too
large a lattice constant and too small a cohesive energy.
The reason is that the function F(n) becomes too repul-
sive due to the fact that the core electrons are overem-
phasized in determining n. %hen the atom is embedded
in an electron gas the screening makes the atom more
compact (only the Friedel oscillations reach further out).

la.0

Ar

I.OO-

O. I 0—

O.OI - ——

-O.OI "
4 5

DISTANCE {a U. )

FIG. 1. Interatomic potentials for He, Ne, and Ar. The solid
lines are the results of the present calculation and the dashed
lines the experimental results {Ref. 19). Note the change of the
vertical scale from linear to logarithmic at 10 meV.

J „d re(r)=0. (5.1)

The radius 8 depends on the electron density in which
bp is calculated, and for Al it varies from 4.5 to 3.9 when
n goes from 0.001 to 0.03. Since this radius is smaller
than the interatomic distance in Al, the electrostatic in-
teractions in Eq. (3.13) reduce to a„(rT)n, where a„ is de-
fined in Eq. (B3) (the integrals go over a sphere of radius
R ). The total energy then becomes

E„,= g[F(n;) —,'a„(n;)n;—j (5.2)

and depends in this approximation only on the density.

This means that if hp is the induced density in an electron
gas, the average density n; in Eq. (3.13) will be smaller
and the lattice constant will be reduced from the too large
value obtained using the free-atom densities. The func-
tion +, calculated in a self-consistent way so that it is the
induced density of the atom when embedded in the elec-
tron gas of density n;, is very tedious to obtain due to the
long-range Friedel oscillations. As a first approximation
we have completely neglected these oscillations and ap-
proximate that bp(r) is zero beyond a radius R which is
determined as the first radius which satisfies

TABLE I. Calculated properties of aluminum metal. In the non-self-consistent model Eq. (3.13),
and in the semi-self-consistent model Eq. (5.2), were used, respectively. In both cases the electron densi-

ties of free atoms were used. The experimental surface energy is estimated from the surface tension of
the liquid phase.

Lattice constant (a.u. )

Cohesion energy {eV)
Bulk modulus (Mbar}
Vacancy formation energy (eV)
Surface energy (111) {erg/cm )

Surface energy (100) (erg/cin )

Non-self-consistent

9.8
2.2
0.1

0.05
50
30

Semi-self-consistent

7.3
3.3
0.3
0.2

260
170

Expt.

7.6
3.3
0.7
0.7

700
700
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Since there is no pair potential part, Eq. (5.2) cannot
reproduce the correct elastic constants or lattice structure
(any structure would have the same energy). However, it
is known that the contribution from the pair-potential
sum to the cohesive energy, for example, in Al is very
small and that the energy difference between different
lattice structures, e.g., bcc and fcc is small in simple met-
als. In Fig. 2 the total energy of Eq. (5.1) is shown as a
function of the density n for aluminum. The cohesive
properties of Al metal are estimated using the expression
(5.2) and again the free-atom electron densities for deter-
mining the density n T.he interpolation formulas for all
the numerical data for Al are given in Appendix D and
the results are shown in Table I. The agreement with the
experimental results is better than using the free-atom
densities also as the averaging function. This demon-
strates the importance of the screening of the atomic den-
sities in metal. Still better agreement with the experi-
ments could perhaps be obtained by the full self-consistent
application of the formula (3.13), but the method would
no longer be practical,

VI. DISCUSSION AND CONCLUSIONS

Using the effective-medium approach we have shown
that the total energy of a metal can be written in the form
of Eq. (1.2), where the function F can be calculated from
the embedding energy of an atom in a homogeneous elec-
tron gas, and the pair-potential contribution becomes the
electrostatic interaction between screened atoms, The re-
sulting equation (3.13) reduces to the conventional pair-
potential result in the hmit of a weak pseudopotential. In
the case where the total electron density is well described
as a superposition of free atom densi-ties, the result of the
effective-medium theory is closely related to the Gordon-
Kim model of molecular binding.

The application of the formula (3.13) has some unwant-
ed difficulties. The charge density bp is the induced den-
sity of an atom embedded in a homogeneous electron gas
of density no, and thus has long-range Friedel oscillations.
Since the density no is generally lower than the average
valence electron density of the metal, these oscillations
have a longer wavelength than the Friedel oscillations in
the real metal. The existence of these oscillations makes
the summations in Eqs. (3.1) and (3.13) slowly converging. .

Another problem is the self-consistency requirement, that

0.02

FIG. 2. The variation of the approximate total energy of Eq.
45.2) as a function of the average electron density n at a lattice
site in aluminum. The quantity plotted is AE+Etot ~+ +atorn-

nz should be consistent with Ap through Eqs. (3.1), (3.9),
and (C.1). Fortunately, the main part of the electrostatic
interaction comes from small distances where the induced
electron density is nearly that of a free atom and fairly in-

dependent on no.
Even if Eq. (3.13) is a result of a systematic calculation

it contains only the first terms of the exact expansion
(2.10). Moreover, it has the additional approximation
(3.1) of superposition of pseudoatom densities. In the case
of closed-shell atoms, rare gases, free-atom densities can
be used to replace the induced densities in Eq. (3.13). In
the case of metals, however, the screening is more impor-
tant and cannot be totally neglected. Estimations of the
properties of Al gives reasonable results for the cohesive
energy and equilibrium lattice constant but underesti-
mates the bulk modulus, vacancy formation energy, and
surface energy.

In conclusion, we have derived an approximate formula
for interatomic interactions in solids. In the limit of weak
pseudopotentials it reduces to the conventional pair-
potential formula for simple metals and in the limit of ex-
tremely rigid atoms (e.g. , rare gas) it is closely related to
the Gordon-Kim model for molecular binding. Because
the formula describes these two extreme limits correctly,
it gives support for replacing pair potentials for more gen-
eral interatomic interactions of the form of Eq. (1.2) in
computer simulations. It seems however, that ab initio
calculations for the functions in Eq. (1.2) do not give as
accurate results as one would want in applications of the
method. A semiempirical approach might then be more
fruitful in practical applications to molecular dynamics,
and the present theory would merely serve as a guideline
for parametrizing the functions needed.
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APPENDIX A

Assuming superposition of atomic densities, Eq. (3.1),
and taking n, (R; —Rz) to be small if R;&R~., we can
write Eq. (3.4) to the second order as

(Al)

and

( n~)i, ) = b,E"' (nk )

ggE hom(—[~.(R, —R„)+n.(R, —R„)]
nk

+ —,[n, (R; —Rk)+n (R.—Rk)]2

(A2)

Bb,F.(n,).AE"' (n;t)=EE"' (n& ) —n, (R; —R.J)

8 EE(nj)+ —,
'
[n, (R; —RJ))

BnJ
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Substituting these in Eq. (2.10) keeping all terms shown,
we get

E(o~=&E.(om+ g~E" (n )

for which the expansion (3.6) is a solution.

APPENDIX B

g n. (R, —R, )
() b,E(j)))';)

Since the electron density is described as in Eq. (3.1) the

electrostatic potential 5$ '(r) can be written as

i j (&i)

+ —,
' g

+ ( y

. i () &&(n;)
g n, (Ri —Rj)

dn;
' 3(i&E(n;)

g n(R; —Rj)
j (~i) ()ni

(A3)

The second-order term can be neglected since it is propor-
tional to the sum of squares of individual atomic densities
which is much smaller than n; The e.mbedding energy is
the negative of the sum of the vacancy formation and
cohesion energies and in the local approximation this
means that

BF(n;)
b, E"' (n; ) =F(n; ) —E„, n;—

Bn.

Since in a solid each atom has of the order of 10 nearest
neighbors, it is obvious that the last term in Eq. (A3) is
much smaller than the other second order term. If this
last term is neglected we get Eq. (3.5) by using the defini-
tion of Eq. (3.1) for n;

Now we demonstrate that Eq. (3.6) follows directly if
we require that the total energy is written in the form of
Eq. (3.7). We assume a perfect lattice and derive the va-

cancy formation energy for an unrelaxed lattice:

E„„=g [F(nj, ) F(n;)]-
i (+j)

aF(n;)
n, (R—j —R;)

i (~j) i

d F(n;)
+ —,

' [n, (Rj —R;)] i +
n I

BF(n;)
n;

bp(r —Rj )
5$ '(r)= g f d r' (81)

We assume that there is no other positive charges inside
a; then the nucleus of the atom in question. Then 5V',„, is
caused solely by the homogeneous background charge of
the jellium. In the mixed perturbation theory the effective
density is defined as

n =—
l

, , &p(r —R; )bp(r' —R;)dr dr'
Qgt * (~ ') I J fr —r'/

(82)

hp(r —R; )a„=—f d'r f d'r (83)

The second term in Eq. (3.14) can now be written as

bp(r —R;)bp(r' —R;)—a„n;= r
j (+i)

at

(84)

Combining this to the first term of Eq. (3.14), where the
substitution (81) has been made, results in Eq. (3.15).

APPENDIX C

In a nearly homogeneous metal ~here the pseudopoten-
tial approach is good, the variation in the average densi-
ties n(R;) at different sites R; is small. We define

no g——n—(R;)
N

(Cl)
N,.

and write the first term in Eq. (3.13) as

gF"' [n(R, )]=QF"' ' g n. (R, —R, )

gF horn(n )F"' (no)+ g n, (R; Rj) no— —
j (+1)

Describing F"' in terms of bk"' and including only the first two terms in the expansion (3.6) we get

gg~hom(—
g Fhorn( —

) g gE horn(—

Bno

1 (3bE"' (no)+— g g ——fd rn, (R; —Rj —r) fd r' (C3)
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where n, is described in terms of n, using Eq. (3.9).
Since a defined in Eq. (3.10) can be shown to be exactly '

t)be"' (no)
(C4)

Eq. (C3) immediately gives Eq. (4.1).

APPENDIX D

The embedding energy bE"' was approximated by an
analytic fit to the numerical data. This was chosen to be

b E"' (n) = —1.65+ 1250n —490e (Dl)

where n is in atomic units and bE in eV. The function
a„(n) was approximated by

n, (r) =y(rt )n, (n ),
where y depends on the average density n as

y( n) = 1.3696+0.0478n 'i

(D3)

(D4)

The Gunnarsson-Lundqvist interpolation formula for
the exchange-correlation potential was used in the calcula-
tion of bE ' and the electron densities of free atoms.

a„(n ) = —1002—68.24n

Both above expressions describe the numerical results for
aluminum with 0.1 eV accuracy within the density range
n =0.001, . . . , 0.03. The averaging of the atomic elec-
tron density using the function bp with a cutoff radius
R defined in Sec. V results to a nearly constant enhance-
ment to the local density. This is approximated by
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