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The low-energy magnetic excitations due to an impurity embedded in a magnetic structure are
analyzed. %'e propose a model dealing separately with the Raman intensities scattered by the local-
ized and the propagating modes. In fact the spin-orbit coupling is responsible for this inelastic in-

teraction with the light but the real problem is the following: the magnon modes which are not ob-
served in the pure crystal become largely activated when there is an impurity with spin-orbit cou-
pling in the ground state. A complete description of the ground state of the Co + impurity in a ru-
tile structure is given. The wave functions of the two types of excited states in the structure due to
the impurity are also calculated. The Raman coupling takes place on the impurity sites and the in-

tensities of each of the two processes are expressed and their ratio analyzed. The model uses a
Green s-function formalism, the impurity concentration is assumed to be small, and the basic physi-
cal hypothesis is about the noninteraction between the impurities.

I. INTRODUCTION

The low-energy magnons perturbed by the presence of
an impurity embedded in a magnetic structure are a very
interesting problem illustrated in many experimental re™
suits by neutron scattering, '

by NMR (Ref. 4), fluores-
cence, spectroscopy, and inelastic scattering of
light. " They are also analyzed in theoretical re-
sults. ' 'i Here, we are dealing, in detail, with the case of
a transition-inetal fiuoride (an antiferromagnetic insulator
MnF2). We work out, by considering a typical impurity
(Co + ion), a theoretical model for the description of the
inelastic scattering of light. We are essentially interested
in the formulation of the Raman intensities of two kinds
of scattered modes: the localized ones, which are bound
to the impurities; and the spin-wave ones, which are
modified by the presence of the impurity in the structure.
We have chosen an example (Mni, FzCo, ) in which the
spin waves do not interact with light in the pure crystal
MQF2, but which are so activated by Co + impurities that
they give rise to a scattered intensity which can be of the
same order of magnitude as the intensity scattered by the
localized modes. It is reasonable to suppose that our
model could be extended to other mixed crystals. Other
previous calculations, ' some of them using the coherent
potential approximation, ' ' are well adapted to a
description of the case of large impurity concentration;
they justify the enhancement of the magnon band and the
position of the rays, ' but they do not permit a detailed
description of local phenomena. So we make the opposite
assumption of very small impurity concentration and we
try to give an analytic description of the Raman scattering
intensities.

In the first part we deal with the impurity Co + itself,
as an isolated one in a nonmagnetic rutile crystal. %e cal-
culate its quantum structure, taking into account the fact
that in this compound the chemical bonding has essential-
ly a ionic character; the whole surrounding of the Co +

ion can be treated as a crystal field. To describe the elec-
tronic states in a simple model, we have made successively
several assumptions. The first one is about the 3d con-
figuration of the free ion. In fact, we have neglected the
interaction between this configuration and the excited
ones, the energies of which are about 10 cm ' higher. '

In the same way, to take into account the influence of the
P term on the ground I' term, following previous au-

thors, ' '2 we describe it by a method of effective operator.
Lastly we treat, as a small perturbation of the cubic crys-
tal field, the small distortions of lower symmetry, as is
shown in the energy diagram ' of Fig. 1. We finally build
the electronic ground-state wave function and we calcu-
late the different components of the Raman tensor in the
dipolar electric approximation. For each transition we
analyze their dependence on spin-orbit coupling and crys-
tal field. We conclude by comparison with some experi-
mental data.

In the second part, we are interested in the effect of an
impurity on the spin waves of the magnetic matrix in
which it is embedded. We have calculated in detail the ef-
fect of an impurity on the spin waves of a ferromagnetic
matrix in which it is embedded. Actually the phenomena
we are interested in has been observed in antiferromagnet-
ic compounds. But to avoid the complexities due to the
lack of knowledge of the ground antiferromagnetic state,
we did our calculations on a ferromagnetic model. It is
reasonable to think that the comparison between the con-
tribution to the Raman intensities of the localized and the
nonlocahzed modes is not affected much by the true na-
ture of the ground state. There is no serious reason to
suppose that the existence of the double degeneracy of the
magnon bands in an antiferromagnetic should affect the
essential features of our results concerning this compar-
ison. At first, we calculate the excited wave functions of
the crystal both for localized modes and the spin waves
perturbed by the impurities. Secondly, we calculate
separately the Raman intensities scattered by these two
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II. RAMAN TENSOR

In the electric dipolar approximation the probability of
a Raman transition between two electronic states,
described by the wave functions @; and 4f, is given by
the well-known formula

Tf= X E~ —E; —flu)&bafle,

PI@ &(~' le2PI@ &+ E E; +—ficoi

4T
2

F tl
S.0.

r; =-

f~
cubic or t 6o r. S.O.

(2.1)

where the summation runs over the complete set of inter-
mediate electronic states 4~ of the inany-electron system.
A A
P=PJ, with PJ the moment operator of the jth electron;
ei and e2 are the unit vectors giving the polarization of
the electromagnetic field (1 for incident, 2 for scattered).
E;, E~ E, +Pi(cubi

——co&), an—d E are the energies associat-
ed with the 4;, 4~, and 4 states. When the transitions
take place between two sublevels of the ground state,

iti(cubi

6)2 ) «E E~, we wri—te co i -coi co, and——T~f can
be expressed as the sum of a symmetrical part S,f and an
antisymmetrical one A,f. We have to calculate 4; and 4f
and the matrix elements of the dipolar operator connect-
ing them to the intermediate states 4

FIG. l. Splitting of the 4F term by the cubic crystal field.
A. Electronic wave functions 4; and 4f for the Co +

ion in a rutile diamagnetic matrix

kinds of modes, in order to compare their magnitudes.
When the impurity concentration is small, we can consid-
er each one of the impurities as noninteracting with the
others and the total intensity scattered by the localized
modes is proportional to the concentration. On the other
hand, the intensity scattered by the magnon modes, ac-
tivated by the impurities, is proportional to the square of
the concentration of impurities. When the energies of the
localized modes are not too far from the edge of the ener-

gy band of the pure crystal, the intensities scattered by the
two kinds of modes can be of the same order of magni-
tude. Thus our model explains why, in that case, one ob-
serves ' the Raman scattering of light by the spin waves
of the matrix as well as by the localized modes.

q (0)+q)(1)+g (2) (2.2)

4'; ' is one of the 4 described in the previous paper;~» that
is to say,

As we have shown in a previous paper, 4; and 4f are
the sublevels of the F ground state of the 3d configura-
tion of the free Co + ion, perturbed by the crystal field
and the spin-orbit coupling. Figure 1 shows the splitting
of the F term by the cubic crystal field into two orbital
triplets ( Ti and T2) and one orbital singlet ( Az). The
orthorhoinbic distortion completely removes the orbital
degeneracy of the ground triplet T, . To obtain a non-
vanishing Raman tensor, we must take into account the
effect of the spin-orbit coupling on these orbital singlets.
We have listed them with Koster's notations. The expan-
sion of the wave functions to second order in the spin-
orbit coupling can be summarized here as2

@(0)
2

@(0)
=(1+C')-'"l'T„l,+ &(C l+-,' &+ l+-,' &)=

1

@(0)

(1+C2)—i/2l4T I+&( l+ 3
& Cl

—&

&)
@4

(2.3a)

(2.3b)

with

2DoC=~ —1

'2
2D0

D
—1 +3 (2.4a)
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Do E—( TiI 4+) —E( T, I 2+), D =E( TiI 3+)—E( T, I 2+) . (2Ab)

We note here that they are the two components of the Kramers doublet since the spin degeneracy is not completely
quenched:

&),I.k Ms
I
u,s

I
e, &

I r, I k Ms
1 yr+

Tg I k Ms I
ALS

I PiI'Ti I k Ms +
k~2, Ms 'r r+ ra+~s

& 'Til'k™s
I
~~

I
'TiI'k™s&&'Til k™sI ~~

I
pi

Til k Ms
~s ~s E~ —ET r,k'

Eg —E4
k

(2 5)

(2.6)

In these formulas we have written, up to second order
in spin-orbit coupling, all the terms which are of the same
order of magnitude (see Fig. 1).

B. Raman-tensor components

We have specified the wave functions of the possible in-
itial and excited states and we are able to obtain all the
Raman tensors and the corresponding intensities. The full
calculations have been previously detailed and the final
results for the components are in Table I.

Some of the results in Table I are quite different from
those previously obtained. ' The parameters fL, and gL ~

which are interrelated, do not need any assumption about
the magnitude of Rco in front of E~ E;, so that —we have

written fL as

i~) EN'L' Ei
fL' g gN'L'

N'

where

gN"L = (2 8)

The summation

(i) ~ (i)
gL' ~gW'L'

N'
(2.9)

is implicit.
We can outline the following comments: in every case

TABLE I. Raman tensor components.

9A C —(1—C) 9 A C
V 7 8 Dlo I+C' 2 D' I+C'

yy yy 1 9 A C ( 1 C ) 9 A C
Vp 8 D,' I+C' 2 D' I+C'

Si3 =S24 =iyx yx

4

w1th /j = fz
5

4

-= -- 1
T13 =T24

V7
9A C —(I —C) 9 Al C
8 Do I+C' 2 D' I+C'

2 ' '1/2
3

7
'2 ' '1/2

3
7

C A I V7 I

I+Cl 6 W 2+
4 +4f4

C A
1+C' ~o

~ g2+ g3+ g4
5&5

v7 S fi IIv7 S

2
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I6 fl+ 6f4V'5

3v5 73 5 8gz=
4

fz+ f4, g~= 6fl+ f4—
S I4

———S23 ——~S I4 ——SS~3 ————~ y . yg 9 3
8 7

I+Cv 3 A' 2
I+Cl DoD v 5 8 8

I /2
xg xz ~ yg . yg 9 3 I+CV 3 A 4

A 14= —323 ———id~)g ———iA~g~ ———— g2—I+C' DD 8
g4
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the antisymmetrical part appears to be smaller than the
symmetrical one but not negligible. In fact,

ay mg„')
(, -2~ 10-' . (2.10)

All these results contain even terms in A/J((, p, (A/Dp),
(A/D ), or A /DpD wliich are of the same order of
magnitude because the splitting hp by the cubic field is
much larger than the splitting Dp, D of the orthorhom-
bic distortion [Dp-600 cm ', D —1250 cm ', A=M,
and P is a constant which relates the T, I 2+(L =3) to a
P(L =1) under the assumption of equivalent opera-

tors2P, 21]

From these results we could deduce the existence of a
strong anisotropy in the calculated Raman intensities. In
fact, x and y must be exchanged when the impurity site is
transferred from one sublattice to the other. Thus, if the
two sublattices are equally occupied by the impurity, we
should not observe any anisotropy in the Raman intensi-
ties. The anisotropy, which is experimentally observed,
may indicate some correlation in the occupancy of the
sites by the impurities.

C. The case of a Co~+ ion embedded as an isolated
impurity in a magnetic structure

In the preceding sections we have described in detail the
Raman scattering due to the Co + ion as an impurity, in a
diamagnetic matrix with a rutile structure. By an analo-
gous method, which also takes into account the exchange
between the impurity and the host magnetic ions, we are
able to analyze the case of a magnetic rutile structure.
When the impurity mode is strongly localized, the mag-
netic excitation can hardly propagate from the impurity
to its neighbors. In this case, a mean-field approximation
is a roughly adequate description of the magnetic ex-
change interaction between Co + and the nearest magnet-
ic neighbor ions. In this approximation the exchange can
be described by an additional term

A,„,h ———aS, , (2.11)

where the exchange constant a includes all the kinds of
magnetic interactions in the magnetic structure (antifer-
romagnetic, ferromagnetic, etc.) and is proportional to the
average spin component on the neighboring site in the
ground state.

From experimental results ' and other theoretical
studies, ' we can note that the exchange interaction, be-
tween different sites is of the same order of magnitude as
the spin-orbit interaction which takes place inside each
impurity ion. Then, as explained in the preceding sec-
tions, we treat simultaneously the exchange interaction
and the spin-orbit coupling as a perturbation of the crystal

field:

(i) or (3( a+2(A —28)+3/J(a)
TiI 2+ 1/2 I+(a) (2.13b)

g(2) or (4)
4T, r2+ 3/2

C(2) or (4) a —2(A —28)+v'J( —a)
I+( —a)

(2.14a)

(2.14b)

Indices (1) and (4) are associated with the sign (+ ); in-
dices (2) and (3) are associated with the sign ( —), and

9 A

16 Do

9 A

16D (2.15b)

I+(a)= (122 +[a+2(A —28)+3/J(a)] I'/, (2.16)

J(a)= [a+2(A —28)] +122 2 . (2.17)

We can see that all the terms are of the same order of
magnitude. Of course, for a nonvanishing value of the ex-
change constant a, the Kramers degeneracy has been re-
moved. The (Ir; which are not degenerate are the result of
an expansion to zero order in perturbation V (the corre-
sponding energies being calculated to the second order ).

Thus as in the preceding section, to obtain a nonvanish-
ing Raman tensor in the dipolar electric approximation,
we must expand them to higher order, by the standard
perturbation theory applied to the nondegenerate case, this
time.

To second order in V, we find the normalized wave
functions (2.2):

(2.12)

We expand the eigenfunctions of the total Hamiltonian
as previously with the help of the complete set of linear
combinations of

i y, I k,Ms). Keeping the same nota-
tion,

~
y, l k ) are the eigenfunctions in the crystal field

associated with the irreducible representation 1 k of the
D2i, group and are defined as linear combinations of the
spherical harmonics

~
y, L,MI ). Ms is one of the possi-

ble values + —', , + —,
' of the spin component. The exchange

term aSz has nonvanishing matrix elements inside the or-
bital singlet

~
T2, I 2+ ). The eigenfunctions, denoted (I(;

in the preceding sections, which diagonalize the perturba-
tion V at the lowest order are linear combinations of the
state vectors

~
Ti, I 2+,Ms ) with coefficients C4'T r+~ .2™S

C(1) or (3) (2.13a)T(ri+ —3/2 I (a)

~ /@';)= /'p;),
(I, ~aS,

~
0,), ('T, I k+M,

~

ALS
~
0, )

J (~l) i
—EJ k~2 ~,

' E —
&4T, r+

r~ M, I-
I
«

i yI k+M,

y~4T k M ir„+

(2.18)

(2.19)
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The time reversal operator transforms 4I3( into (I33 and
(Izz into 44 (Kramers components). Now we are able to
calculate explicitly the Raman components between two
of these states, as shown in Table II.

We obtain two kinds of results. The first one concerns
the components which are associated with transitions be-
tween two levels arising from two different Kramers dou-
blets. These components were existing without exchange.
They are noted in the table by an asterisk ('), but they are
deeply modified by the terms J(a). The second one con-
cerns the Raman components which are associated with
transitions between two distinct levels arising from the
same Kramers doublet. Some of them, such as S)2(S~34)
and A fz(3~34), do not exist without exchange interaction

t

(when a=0), and they are quadratic in perturbation.
Strictly speaking, the other ones, 3 &~ and 3 34, would ex-
ist without exchange interaction. But it must be em-
phasized that if exchange were neglected, these transitions
could not be considered as Raman transitions because
they would take place between two states (the two
partners of the same Kramers doublet) with the same en-

ergy. Thus, without exchange they would constitute a
case of Rayleigh transition, so that the Raman nature of
these transitions is directly connected to the presence of
the exchange term. Their antisymmetrical character is a
direct consequence of the effect of the time-reversal sym-
rnetry.

TABLE II. Raman components in the mean-field approximation.

Sy, 3i 1 a A' aA C 2 V7 3

4v7 1+C' v'J( ) D' D' v

3i 1 a A' aA C
4 V7 13

12= 34= ~ 1 Cz ~ Dz Dz ~g2 g
g3

g
g4

9 1 —CV3 Az 4 V7 13
~12 ~34 ~ 1 Cz D D ~gz g

g3
g

g4

1 C az 1 11V7 5

C ~()
1 C

T)3 =T)3 =—,(3v 5fz+ f4),
()v7 1+Cz 2J(a) 12

1 C az 1 V7 5fz f3+ f4- —
2& 7 1+C' 2J(~) v 5 2

xy xy
*

~13 ~ l 3 +
8&7 1+C'

2AV J(a)—J{0) a 1 —C' 3aA
1

a —10(2+8)
1+C 2D V J{a)

v7fz+
4

f3+ 4f4
5

gzy ~~y l 3C 2A+
gV7 l1+C' D

a —10(A +8)
2D

a jaA 1 —C
1

(103 +8)
D v'J(a) 1+C'

v'7
5 4

g2+ g3 — 84
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III. RAMAN INTENSITIES DUE TO
LOCALIZED AND SPIN-%'AVE MODES

B. Hamiltonian model

We start the Heisenberg Hamiltonian of a pure fer-
romagnetic crystal

Ho = —XJ [SRsa+a, + i (s R SR+ a, +SR SR+a,. )I,
i, R

(3.1)

where R are the sites of the Bravais lattice, 6; are the
vectors which connect one site to each of its z nearest
neighbors (i =1 to z), SR, Sa+, and SR are the com-
ponents of the spin operator of the site R, and J; de-
scribes the exchange interactions between the spin which
occupy the R and R+6; sites.

The ferromagnetic ground state of the pure system, in
which the SR component has the same eigenvalue, —S on
any site, can be described by the wave function

ie, )=g is, —s)„, (3.2)

in which gR is the product extended to all the sites of
the system of the one-site eigenstate

i
S, —S)a of both

the operators SR and SR with the eigenvalues S(S+1)
and —S, respectively. We shall use, as usual for small ex-
citations, the mean-field approximation in order to simpli-
fy the first term of the Hamiltonian (3.1), which thus is
reduced to

Ho ———g J;[—SSR+ i (SRSR+a,. +SRSR+a, ) 1

A. Physical introduction

Up to now we have not taken into account an essential
phenomenon which is the transfer to the neighboring sites
of the matrix due to the transverse terms in the spin Ham-
iltonian of the magnetic excitations produced by the
scattering of light on the impurity sites through the spin-
orbit coupling. The first effect is the following: the mag-
netic excitations which are bound to the impurity, in fact,
extend some distance from the impurity; they are there-
fore more or less localized in the neighborhood of the im-
purities, according to the value of the strength of the cou-
pling betwo:n the impurity and the ions of the matrix.
The second effect is that the impurity gives rise to a non-
vanishing coupling of light with the spin waves which ex-
tend to infinity in the crystal and were not coupled to
li.ght by themselves in the pure matrix. '

As a result, we must consider that the light is scattered
both by the localized modes and by the spin-wave modes
through the spin-orbit coupling which is assumed to exist
only on the impurity sites. Our purpose is to compare the
intensities scattered by these two types of magnetic excita-
tions, and to discuss their ratio according to the value of
the relevant parameters. In spite of the fact that the
genuine physical system is generally an antiferromagnetic
one, we have built the theory assuming a ferromagnetic
model, as we have explained in the general introduction.

Let us consider the spin excitation from the state
SR ———S to the state SR ———S+1 st the site R. %'e
shall introduce the notation

i
R) for the wave functions

describing the resulting excited state of the whole system,
which can be written

i
R)= is, —s+1)„g is, —s)„.,

R' (~R)

that is to say,

i
R&=(2s)-'"s+

i
e, & .

(3.4)

(3.5)

Two excitations localized on two different sites R and
R' are orthogonal and we shall choose the states

i
R) as

an orthonormal set 5RR ——(R
i

R').
In the Dirac formalism, the spin operators used in the

Hamiltonian can be formulated as

SR ——
i
R)( —S+1)(Ri,

SRSR+a, ——
i
R)(2S)(R+6; i,

(3.6)

(3.7)

Ho ———s+J,[(s—1) iR)(Ri+ iR&(R+a;
i

+ iR+~, &&Ri]. (3.8)

+ i Ra+5;)(Roi )+H', (3.9)

In an orthorhombic symmetry 6;=—4; and we
have three distinct exchange integrals J ~; ~, with
i =+1,+2, +3. In the special case of a cubic symmetry,
that we shall consider now, these three integrals have the
same value J.

Let us now consider a substitutional impurity occupy-
ing the site R0. In the preceding section we gave a de-
tailed description of the quantum state of the impurity
taking into account the crystal field, the spin-orbit excita-
tion, and the exchange as a molecular field. The excita-
tions of the quantum states of the impurity involve both
orbital and spin variables. What we want to do now, is to
describe the interaction between the impurity and the
crystal; it will be convenient to keep a Heisenberg type of
Hamiltonian. ' For this purpose we shall define a pseu-
dospin operator SR at the impurity site, with the special
property that Si++, is the operator which describes the exci-
tation of the impurity from its ground state to its first ex-
cited state. The interaction between the impurity and the
crystal will be described by an exchange integral, the value
Jo of which will differ from the value J between two sites
of the pure crystal. In the presence of the impurity of
spin $0, at the Ro site, the Heisenberg Hamiltonian be-
comes

H =—6S(so —1)JO i Ro)(RO
i

—(s —1) ysoJO+ y SJ iRO+dL;){Ro+6; i

j (+i)

—(2SS,)-'"gJ,( iR, ){R,+a, i

i,R

(3.3)
where H' represents all the other terms of the Hamiltoni-
an which are unaffected by the impurity.
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Writing 0=00+ V where V is the perturbation due to
the impurity, we obtain

V= 6S[&(S—1)—Jo(So —1)1 I Ro& &Ro
I

2

+~JS —~o(s —1)l g IR+~;&&R+~; I

i=1

+vs(gvs —J,~s, ) g (IRo+~;)(Rol~;+c c ) .
i=1

(3.10)

The system actually contains several impurities occupy-
ing sites RIjJ', in the diluted limit the impurity sites lie far
from each other. The perturbation V will involve summa-
tion extended to all the impurity sites of terms similar to
those appearing in (3.10).

The ground state of the system is described by the wave
function

(3.1 1)

in which we note that only the
I

—So )R, , which represent

the states of impurities are able to interact with light.
I

C. Excited states

(3.12)

as this wave function describes a bound state, it can be
normalized to unity by the condition

g I rR R, I

'= 1 . (3.13)

The phase of the coefficient y (, does not depend on

the site 8, and its amplitude decreases to zero at large dis-
tance from the impurity more rapidly as the state becomes
more bound to the impurity.

On the other hand, the spin waves are described by
propagating wave functions which can be written as

Let us consider a Raman transition from the initial fer-
romagnetic ground state described by the above equation
(3.11) to the final magnetic excited state. This excited
state can be either an excited state bound to the impurity
or a spin wave extended to the whole crystal. ' '

We first describe a magnetic excited state bound to the
impurity occupying the ~~ site by

—1/2

IC~(k)&= (2so) p p„(k)SR + Q (2S) ' PR«)SR
R (~Rg'j j

(3.14)

D. Expressions of the Raman scattered impurities

According to the formula (2.1), the Raman tensor asso-
ciated with a transition from the ground state 4o to an ex-
cited one 4y involves matrix elements of the type
(4~ I O,rr I

Cjo), where the expression of the effective
operator Oeff can easily be expressed for the symmetrical
and antisymmetrical part of the tensor. The wave func-
tion 4o of the ground state is given by (3.11). +J is given
by (3.12) if the excited state is localized in the neighbor-
hood of the impurity occupying the site Ro', and by
(3.14), if the excited state is a propagating one of wave
vector k. Since a nonvanishin~ spin-orbit coupling takes
place on the impurity sites RIjj only, the state Cjo and 4I
are connected by 0,~~ on these sites only, through the ma-
trix elements

~,( —s, +1
I o,« I

—s, )„,, (3.15)

In the case of a localized excited state associated with

where k is the wave vector.
The factor X ', where N is the (infinite) number of

periodic sites of the lattice, has been introduced to nor-
malize the wave function 4~ to unity.

P ( j(k) and ((3R(k) are the amplitudes of the wave func-

tion on the impurity sites Roj' and the matrix sites R,
respectively. There is no reason for the PR(k) to be small-
er on sites which are far from any impurity than on sites
which are close to an impurity. In the limit of the pure
crystal the PR(k) are equal to the factor exp( —ik R) of
the Bloch functions.

the impurity site RI(", we have

&@'I
I
O rr I

@o&=+1'R&@OISRO rf I
~'o&

R
(3.16)

which reduces to

&@/'I o.rr I
C'o& =yR('j& So+ll O « I

S~.jOe« I @o&

(3.18)

which reduces to

& @y«) I o.rr I
C'o &

y p„, ,(k) ( —s, + 1
I O„f I

—s, ), , (3.19)R

Our main assumption is that, as long as the bound
states do not extend too far from the impurities, they do
not interfere with each other for small concentrations; as
a consequence, the total intensity I1 scattered by the lo-
calized excited states, is equal to the sum of the intensities
I1~~' scattered by the different impurities; that is to say,

(3.20)

In the same way, in the case of a propagating excited
state, we have

&e~(k) IO,rrleo)= ' g(2so) ' P (j(k)
N



J. QUAZZA AND J. LABBE 34

with

(3.21)

where I(: is a constant of proportionality.
When all impurities are identical, (3.21) does not actual-

ly depend on the Rd" and we obtain therefore the final ex-
pl ession

=c&It
I ra, I

'
I &

—S'o+ 1
I o.rr I

—~o&a, I
'. (3.22)

Ro is any one of the impurity sites; c is the impurity con-
centration.

On the other hand, as the function 4y(k) of the spin
wave extends to the whole crystal, the scattering of light
coherently arises from all the impurities of the crystal. In
that case, we must add the amplitudes scattered by the
different impurities. Thus the total intensity I,„,(k) scat-
tered by the spin wave of k vector is equal to

I-t«)= ~I( I &
—~o+1

I oerr I

—~o&„()I'

x gP ()(k) '. (3.23)

If the impurities are randomly distributed in the crys-
tal, the Phases of the comPlex coefficients Pa~(&(k) have all

possible values for any k not equal to zero, but all these
phases vanish when the wave vector is 0, thus the expres-
sion g.p, ,(k), extended to all the impurity sites, is

g P ( )(k) =cNPa (k)5i, () .
J

(3.24)

As a first conclusion, the intensity scattered by the lo-
calized excited state is linear in the impurity concentra-
tion, but the one scattered by the spin wave is quadratic.
This conclusion is in agreement with some experimental
results. The explicit calculations of each one of the two
previous intensities would require a detailed knowledge of
the electronic structure of the impurity in order to calcu-
late the matrix element (3.15). Such a calculation has
been made in the preceding section. The result is "model
dependent*' and rather complex. However, we obtain
another interesting result by calculating the ratio of the
intensities scattered by the localized and extended excited
states, respectively. In fact, the matrix element (3.15)
which depends on the model used to describe the electron-
ic structure of the impurity is eliminated. The ratio leads
to

(3.26)

This result is valid within the limits where the concen-
tration is small enough for the interaction between impur-
ities to be neglected. The most interesting conclusion is

Thus, only the spin wave at k=0 gives a nonvanishing
scattering of light, with the intensity

rex((0) =c'&&
I pa, (o)

I

'
I & -~o+ 1

I oerr I

—&o &a, I

'
~

(3.25)

the following: as (o depends on the pa (0) and ya, on the

impurity sites, respectively, of the extended and localized
wave function of the excited states, its order of inagnitude
will not be the same in the case of deep or shallow impuri-
ty states. As a matter of fact, for a shallow impurity state
bound to an impurity at the RI)" site, the wave function
4g' extends relatively far (but, as said previously, not far
enough for the states localized on two different impurities
to interact) from Ro(J' and thus, its amplitude y ( &

at the

impurity site itself is small. Furthermore, one gets a shal-
low impurity state when the impurity has physical proper-
ties which do not differ too much from those of the host
ions, so that the spin waves are not very much perturbed
by the presence of an impurity, and therefore their ampli-
tude

I pa (0) I, at the impurity site, does not differ very

much from its value pa(0) far from the impurity site. As
a conclusion, the smallness of the concentration c can be
compensated by the large value of the ratio

I pa (0)ya '
I

. In that case, the intensity scattered by the

spin waves of vanishing wave vector k can have the same
order of magnitude as the one scattered by the localized
modes.

On the other hand, in the case of a deep impurity level,
the wave function 4$' is well localized on the impurity
site, and the amplitude ya( ) is of the order of unity. Also,

the orthogonality of the wave functions of the spin wave
to that of the localized state leads to a small value of its
amplitude p„, ,(0) at the impurity site. Thus, in that case,

the ratio p is much smaller than unity. As a physical con-
clusion, the intensity of light scattered by a spin wave is
much smaller than that scattered by a localized state for a
deep impurity level, but it can be of the same order of
magnitude in the case of a shallow impurity state. In or-
der to give a more precise analysis of this phenomenon,
we shall now describe a detailed calculation of pa, (0) and

ya in terms of the physical parameters.

E. Caiculation of yq,

To determine the state bound to a single impurity at the
site Rd', it will be convenient to choose that site as the
origin RI)"=0 of real space. The wave function (3.12) of
this bound state

I 4I & must be a solution of the homo-
geneous equation

[1—G()(E)Vj I eq & =0, (3.27)

where we have introduced the Green's function Go(E)
=(E—Ho) ' of the pure crystal and where the perturba-
tion V, due to the impurity, is given by Eq. (3.10).

By projection of the (3.27) equation on the one-site ex-
cited state (3.5), we can obtain the following linear and
homogeneous system of equations for the unknown coeffi-
cients yR.

(3.28)

The energies F. of the bound states are defined by the
condition on the determinant:
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(3.29}

This determinant can be expressed on the basis of the
infinite set of the states

I
R & defined by (3.5) as

ll&RR —g &R
I
Go(E)

I

R"
& &

R"
I

V
I

R'&
ll =o

where the matrix elements of the Green's function can be
expressed as

(3.31}

with E», the eigenvalues of the energy of the spin wave of
wave vector k of the pure crystal, U the volume of the unit
cell, and the integral is extended over the first Brillouin
zone.

According to (3.10) with Rp=0 the perturbation V can
be written as

IO&A &Ol+ g Ii &A&i I+8( IO&&i I+ Ii&&OI ) .

(3.32)

Here we have introduced the simplified notations

I
i & =

I Rp &
=

I
0 & and

I
i & =

I 6; & for i = +1,+2, +3,
and we have

cially the needful yo ——yit. (All the details of these calcu-
lations can be found in Ref. 27.)

Equation (3.30) leads to several solutions for E, but in
our model, only the bound states with a nonvanishing am-
plitude yo at the impurity site are able to interact with the
light. Therefore, we only have to retain the solutions
which have the s symmetry for which yp&0 and y; do
not depend on i for i&0 F.ollowing all these previous
steps for the calculations we have

(3.36)
2JS

JS
3J,(S,-S)

F. Explicit calculations of the amplitude Pq (0)
of the perturbed spin wave function

of wave vector k=0

Our result relates the value of yp to the value of the en-

ergy E of the s corresponding bound states; the value of E
itself could be calculated numerically and is model depen-
dent; according to the value of the A, Ap, 8 parameters we
may have zero, one, or two solutions for E. However, we
shall use our result in a very simple way to determine the
value of yo from that of E when this one is known from
the experiments.

A p ——6S [J(S —1)—Jp(Sp —1)],
A =(S—l)(SJ—SoJo)

8=& S[JVS —Jo(so)'/ ] .

(3.33a)

(3.33b)

(3.33c)
(pk ——[1+G+-(Ei, ) V]q»g, (3.37)

For any value of k the spin wave function 4»-+, scattered
by the impurity at the site R=Rp [the sign + ( —) is as-
sociated with the out- (in-) going wave, respectively], must
be a solution of the Lippmann-Schwinger equation

and an infinite set of separated equations

}'R=X &R
I
Go«) I»" &&»"

I
V I» &r (3.35)

for each R&0 or h„.
The energies E of the bound state are the roots of the

7X7 determinant of the system (3.34). For each one of
the solutions obtained for E the same system leads to the
relative values of the seven coefficients )/;, and Eq. (3.35)
finally gives the complete set of yR in relative value. Tak-
ing into account the normalization written in (3.13), the
y„coefficients are calculated in absolute values and espe-

With the previous notations the infinite system (3.28)
splits into a subsystem of seven linear and homogeneous
equations which is written as

&;; —g &»'
I
Go(E) Ii"&&»"

I
V Ii'& y;=0 (334)

where E~ and 4'k are, respectively, the energy and the
wave function of the unperturbed spin wave associated
with the same vector k; G+-(E) is the perturbed Green's
operator which is defined by the equation '

G-(E)= with E—+0+ .1

E —0+iv (3.38)

Relating the perturbed G(E) to the unperturbed Gp(E)
by the Dyson equation, we obtain a simple equation be-
tween 4~ and %'~

4»-, ——(1—Go V) (3.39)

The wave functions are developed in terms of the com-
plete set on the R sites as in (3.14). The coefficients
pR(k) can be expressed in detail by projecting (3.39) on
the wave function (3.5) in which the R site is excited so
that we can write the pR, (k), when R=Ro, as

pR(k}— e &+» ISR (1 GpV) SR I@»&+»/2 y e &@' ISR (1 GOV}
2S(i E ' ' 2(%sos)'/ it (~R, )

(3.40)

As the perturbation V has a nonvanishing matrix ele-
ent only inside the subspace of the impurity site R=Rp

(noted 0) and its six nearest neighbors R=Rp+6; in
which i =+1,+2, +3, Eq. (3.40) is reduced to

PR,«)=e g &o
I
(1—Go V) '

I
» &e

' . (3.41)

P (0)= 1

1 —Gpp(E», p}(Ap+6A —128)
(3.42)

Let us call kp the value of k for which the spin-wave

From (3.41), taking into account some physical proper-
ties of the matrix (1—Gp V) ', we obtain pR (0) as
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Ho+63 —128= — —4(A —8}1 E —6JS
Go(E ) 2JS

and (3.42) can be written as

(3.43)

energy is maximum. When the bound state is close to the
band edge, Eq. (3.30}, which determines the value of E,
can be expanded in the form

' 1/3
3 1Goo«g}=-

4m
(3.45)

one calculated in the case of a bound state near the edge
of the band, so that we can use for the matrix element of
the Green's operator Goo(k=ko) the following approxi-
mate expression:

P (0)=
4G (E )(&-&) E-6JS'

The Goo(E|, o) has the same limiting value as this
I

And finally, with the help of (3.36), (3.44), and (3.45)
the expression for the ratio of the intensities scattered by
the two types of modes can be formulated as

I„,(0)
Ii

' 1/33' Jo(So—S} 2JS
& (S—1)(SoJo—SJ)—v S [(So)'~ Jo —v SJj E —6JS

(3.46)

This expression for the ratio is very useful, using only
simple and accessible physical parameters J,Jo,So,S,e and
E the energy of the bound states. We note firstly that the
scattering of light can be produced as much by the per-
turbed spin™wave modes by the localized modes.

In the case of small impurity concentration c, this
model confirms the experimental results, that is to say,
that the ratio of the two intensities is linear in e. It is also
interesting to note that this model predicts that the two
intensities can be of the same order of magnitude up to a
distance between the energy E of the bound state and the
energy Ei of the edge of the energy band of about 25%
of the extension of the band.

This is the case of a Co + impurity embedded in a

MnF2 crystal, for example. We can compare our results
with those obtained by Gosso and Mocha and for concen-
tration c about 0.07 with the use of dispersion curves for
the MnFz in which the ratio is larger than 0.1. Thus, our
physical conclusion is that the cobalt impurity can make
the nonlocalized magnon mode as active as the localized
one. The antiferromagnetic nature of the real system is
probably not an essential factor in that problem.

We can also conclude that the expression (3.46) can be
used to predict experimental results with several types of
impurities embedded in a magnetic crystal for which J
and S are known. For these impurities there is a spin-
orbit coupling and JO, SO are determined.
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