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Nonradiative lifetime of excited states near a small metal particle
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The nonradiative lifetime of excited states near a small {&2 nrn) metal particle is investigated

within a purely electromagnetic model. The excited state is described as a point dipole, and the met-

al particle is characterized by its self-consistently obtained nonlocal density-density correlation func-

tion. Resonant coupling, between excited states of adsorbates and various electronic excitations of
the metal particle, is shown to be an important lifetime-determining decay channel.

I. INTRODUCTION

The lifetime of excited molecular levels in contact with
metal surfaces plays a crucial role for, e.g., the accurate
determination of enhancement factors pertinent to various
problems related to surface-enhanced Raman scattering
(SERS}.' Because of the roughness sensitivity of SERS it
is not surprising that the simple problem of a molecule in
contact with a dielectric or metallic sphere (or spheroid)
was studied very often in order to obtain deeper insight
in the various aspects of the electromagnetic contribution
to SERS at rough surfaces.

In all of these studies the dielectric properties of the
metal particle were described either by a simple Drude
model or by a local bulk dielectric constant whose fre-

quency dependence was taken from experimental data.
Hence both nonlocal size effects and nonlocal surface-
response properties were completely neglected. As a re-
sult of these approximations, the electromagnetic coupling
of molecules to metal particles is dominated by the classi-
cal surface plasmons of the underlying local-response
model. However, as we know from our earlier studies of
related problems, ' the dynamical properties of uery

small metal particles (typically in the range of 2 nm and
less) are governed both by collective modes and by
electron-hole pair excitations. Depending on the experi-
mental conditions, the role played by the collective modes
is sometimes completely negligible, and all the informa-
tion is obtained from the coupling to single electron-hole
pairs. For instance, in Ref. 12 it was shown that the in-
elastic scattering of electrons from small metal particles
is, at large scattering angles, completely determined by its
coupling to electron-hole pairs. The reason for this
"anomalous" behavior is simply that at larger wave vector
transfer, the collective modes (the higher multipole sur-
face plasmons) carry less and less oscillator strength. This
result is very similar to what hss been found for planar
surfaces by Inglesfield and Wikborg. h4

In a purely electromagnetic framework the lifetime of
excited molecular states will be determined by the cou-
pling matrix elements of the fluctuating electric field set
up by the oscillating dipole in front of the metal sphere.
Hence, on the basis of a multipole expansion, the transi-

tion rate can be shown to consist of both low-l multipole
contributions and higher- l contributions as well (see
below). Because classical macroscopic electrodynamics is
not valid for larger wave vectors (which means higher l

values in spherical geometry), we conclude that classically
obtained results become less and less meaningful for ex-
perimental conditions under which the high-l part of the
coupling is dominant. As we shall see below, this is (obvi-
ously) the case in the immediate neighborhood of the
spherical surface. It is for this reason that we have reex-
amined some results on the lifetime of molecular states in
contact with a metal sphere.

There are two recent papers directly related to the prob-
lem under discussion —namely, the work by Gersten snd
Nitzan, and the work by Ruppin. Both works consider
rather large distances of the molecular states to the
sphere. Hence their results are more or less consistent
with the application of classical electrodynamics. Howev-
er, for reasons we have discussed above, their results can-
not be used to understand experimental findings for mole-
cules which are a few atomic units away from the spheri-
cal surface. It is this region we are investigating in this
paper.

II. THEORY

An oscillating point dipole at any point r& in space sets
up a "bare" electrostatic potential of the following form:

1
hach (r rh)=p'~. ,

Here, p has—in our context —the meaning of a dynamical
molecular dipole transition-matrix element from the
ground state of the molecule to a certain excited state
(vibronic or electronic} and r is any point in r space. Pc;~
acts as an "external" perturbation on the ground state of
the metal particle under discussion. Consequently, the
perturbation Hsmiltonisn 0' is given ss follows:

0'= drp r dp r r] (2)

Here, p(r) is the operator of the electronic charge of the
metal particle. VA'thin linear-response theory, application
of Fermi's golden rule leads to the following expression
for the transition rate I (in Rydberg atomic units):
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In Eq. (3), ImX means the imaginary part of the retard-
ed density-density response function of the metal
sphere' "a'nd BI(r„r&) is short for

(4)

with e(x) the Heaviside step function. Of course, for a
spherically symmetric particle only the diagonal elements
of Eq. (3) with I =I contribute to I'.

If the point dipole at r, is well outside the electronic
charge being polarized, the expression for I is consider-
ably simplified. In this limiting case evaluation of the
right-hand side of Eq. (3) gives

I =4 g Imal(co)/R '+'(R/r, ) '+'p /r&[(I+I) cos 8+P/'(x) ~„ isin 8] .
1=1

e(co) —1

e(co)+(I + 1)/I
(6)

we see immediately that Eq. (5) transforms to an expres-
sion derived by Ohtaka and Inoue. ' The difference
from their expression is that we see how it originates from
the general microscopic expression for the nonradiative
lifetime, Eq. (3), and that we are using the microscopically
obtained polarizabilities ai(~). As a consequence, our
near-surface results deviate considerably from theirs.

III. RESULTS AND DISCUSSION

Experimentally, the answers to the following three
questions are of utmost interest.

First, how does I depend on the frequency co with the
position r& of the dipole held fixed'?

Second, how does I depend on r& with the frequency cg

held constant?

In this expression ai(co) is the dynamical l-pole polari-
zability of the sphere, R is the radius of the sphere, 8
means the angle between the dipolar axis and the line con-
necting the point dipole with the center of the sphere, and
Pi is the derivative of the 1th I.egendre polynomial Pi.
Of course, on the basis of the results we have obtained for
X in our earlier work, "' we could use the exact for
mulation (3) and study more complicated situations (e.g. ,
the dipole embedded in the electronic surface) How. ever,
as we know from the corresponding work of Hellsing and
Persson' ' for a flat surface, in this situation it might
be necessary to study the modification of the electronic
wave function in the presence of the dipole in a nonlinear
way. We think that in this latter case we face a compli-
cated chemisorption problem which is definitely beyond
the scope of the present work and which has not yet been
addressed in the existing literature.

If the Drude dielectric constant e(co) is used in the for-
mula for the classical I-pole polarizability of a metallic
sphere of radius R, namely

Third, what is the dipole contribution to I and what is
the contribution of the remaining multipoles?

The answer to the second question is also of some in-
terest for flat surfaces, as in this way one should be able to
disentangle surface and bulk contributions, respix:tively, to
1. For the present case this latter problem is of minor
importance, simply because everything is mixed up.

However, there is a related problem, and this is, in fact,
problem 3. For a dipole far away from the metal particle
only the 1=1 part of the coupling should be important.
This is a consequence of the long range of the Coulomb
coupling. On the other hand, for a dipole near the surface
rather large-1 components come into play. Because for
low l ai(co) is governed by the collective mode'
whereas for large 1 the single-pair excitations gain more
and more oscillator strength, "we obtain a true change in
the character of I when the dipole approaches the sur-
face. This is a completely new result which is necessarily
missing in any classical investigation.

As an example we study in the following a spherical jel-
lium particle corresponding to 92 valence electrons of Na
(r, =4ao). Hence the particle has a radius of
R =92' )&4ao ——18.057ao. The self-consistent calcula-
tion of the response functions al(co) was described in full
detail in our previous work. ' " Therefore this discussion
will not be repeated here, and the interested reader is re-
ferred to the already published work.

In order to see more clearly the importaace of the self-
consistent nonlocal properties of small metal particles (in
comparison to their classical counterparts) we calculate, in
addition, results following from the use of the classical
a&(co), Eq. (6), with an e(co) given by a Drude-like dielec-
tric constant

e(co)=1—co~/(co +ice@) . (7)

Here, cu~=4mne /m is the b.ulk plasma frequency of Na,
r, =4ao, and y is set equal to IO meV. For a discussion
of this "numerica) damping" see Ref. 10.

%'e are now in a position to discuss our results. Figure
1 shows I (in Rya. u. =2.068)&10' s ') for a dipole with
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a dipole moment p of p = leac at two different distances
d from the spherical jellium edge, namely at d =ri
—R =3ac and at d = 1 lac. The first value of d is on the
borderline of the applicability of formula (5), because r, is
not well outside the induced charge. However, a glance at
the induced charge density at various frequencies, ob-

FIG. 1. Frequency dependence of the transition rate I as de-

fined by Eq. (5) of the text. The parameters describing the met-

al particle correspond to 92 valence electrons of Na. The dipole
moment assumed was p = 1eao (e being the electronic charge, ao
the Bohr radius) and two dipole positions r& are considered. In
both cases the upper panel shows the dipole contribution I = 1 to
the total I . The angle 8 was set equal to zero. The frequency co

is given in units of the classical dipolar surface plasmon fre-

quency of Na, co=ro/(co~—'IV 3), d =r, —R [see Eq. (5)], and

log~oI is given with I in Rya. u. Continuous line: microscopi-

cal result, obtained with aI(co) of Ref. 11. Dashed line: classi-

cal result, obtained with the use of ai(co) of Eq. (6) in calculating
the transition rate 1 in Eq. (5). Note the pronounced resonant
character of the coupling. For other p values I is easy to calcu-
late lxeause I' scales with p~ [see Eq. (5) of the text).

tained especially in Refs. 10 and 11, shows that
ri —R =3ac might be acceptable (r, —R =0 definitely
would not). For each value of ri the I =1 result is
separately given. By comparing this contribution with the
full-I result we are able to estimate the importance of a
complete theory if r, approaches the surface of the parti-
cle. Not surprisingly, a pure dipole theory (1=1 part of
I only) breaks down near the surface.

The resonant character of the coupling can very nicely
be seen from the figure. Whenever ci approaches a
particle-hole pair frequency, I is drastically enhanced.
Near the surface, ri —R =3ac, I is dominated by the
coupling to electron-hole pairs whereas further away,
r, —R = 1 lac, the coupling is smoothly transformed to a
purely collective low Icou-pling.

Generally, these curves correspond to similar results ob-
tained by Ruppin, ' but in contrast to his work our result
is based on the truly microscopic (model) response func-
tions of Ref. 11. Hence all nonlocal and size-dependent
effects are included from the very beginning, and there is
no need to use a local bulk dielectric constant as in Ref. 5.

The classical results, shown as dashed lines in Fig. 1,
are governed by the I-pole surface plasmons. The relative
importance of the / =1 dipolar surface plasmon can nice-
ly be seen by comparing the r~ —R =3a0 result with the
r~ —R = 11a0 result.

Bath classically and microscopically I is sensitively
dependent on whether or not the frequency ci of the oscil-
lating dipole is in resonance with the various elementary
excitations of the metal particle. Classically, there are
only collectiue I-pole resonances, whereas quantum
mechanically all the I-pole particle-hole pairs come into
play.

Figure 2 gives the distance dependence of I at three
characteristic frequencies r0. Once again, the I =1 contri-
bution is separately shown in each case. The first fre-
quency, co=0.07 in the units used in the figure (see cap-
tion to Fig. 1), corresponds to ci=250 meV and is off

i=1, @=0.07 l=1, 9=0.27 l=1, 9=09
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FIG. 2. Distance dependence of I for three different frequencies corresponding to off-resonant (co=0.07), resonant electron-hole
pair (6=0.27), and resonant collective (G=O.90) coupling, respectively. The distance d from the spherical jellium edge, d =r 1

—R, is
given in Bohr. In addition to the microscopic result (continuous line) and the classical result (dashed line) we give the independent
electron result (dashed-dotted line). This latter curve is obtained from the use of unscreened a~(cu) in Eq. (5). For a discussion of
aI(m) in comparison to aI(u) see Ref. 11.
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resonant to all the electron-hole pairs in the metal particle
under discussion. Consequently, the transition rate I is
rather low. The second frequency, co=0.27, corresponds
to a resonant coupling to the lowest 1=1 electron-hole
pair excitation frequency (see Fig. 1, 1=1 result). As a
result, I' is enhanced dramatically by approximately 3 or-
ders of magnitude (note that the logi&I is given on the or-
dinate). Finally, the third frequency ca=0.9 corresponds
to the collectiue i = 1 resonance frequency. This results in
a further enhancement of I' which, however, is not as
large as one might think. The reason is simply that the
resonant character at co =0.27 is already very pronounced.

For theoretical reasons, we show in Fig. 2 as a dotted-
dashed line microscopic results obtained without electron-
electron interaction. That means, in the calculation of I
[Eq. (5)) we have used the independent electron polariza-
bility al(ca) instead of the correct at(co) pertaining to the

I l 4
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FIG. 3. Comparison of the frequency dependence {upper
panel) and the distance dependence (lower panel) of I for the
Kohn-Sham potential barrier (Refs. 10 and 11) and the energy-
minimizing step-potential barrier {Ref. 15}. The frequencies

=0.90 (for Kohn-Sham) and 8=0.93 (for the step potential)
are those pertaining to the collective dipolar surface plasmon
frequencies of the two different models. It is due to these slight-

ly different frequencies that the classical curves on the left-hand
side of the figure do not exactly agree with those of the right-
hand side.

system of interacting electrons. The relative importance
of self-consistency at low frequencies can nicely be seen.
Interestingly enough, at co =0.9 the difference between the
two results is not very large (for the full-i result).

In Fig. 3 a comparison is given for I obtained on the
one hand for the Kohn-Sham potential and on the other
hand for the total-energy minimizing step potential of
Ref. 15. In both cases the lower panel shows I at the
value co corresponding to the 1 = 1 surface plasmon fre-
quency, which is ca=0.90 for the Kohn-Sham barrier and
ate=0. 93 for the step potential. Except for the more pro-
nounced electron-hole pair structure in the Kohn-Sham
potential' the results are rather similar. Note that the
small difference in the dassical result corresponding to
the dashed lines in the lower panel of the figure is caused
by the different values of co.

Finally, we want to comment on absolute numbers for
I as compared to I values at fiat surfaces. First of all,
we have to assume values for p, d, and for ca. For
p =O. lean-0. 25 D, d =3ao, and ca=0.07 [these num-
bers correspond to the C-0 stretch mode on Cu(100)] we
obtain for the spherical case I =6X10 7 a.u. =1.2)&10'
s which is smaller by approximately 1 order of magni-
tude than for the planar case (and for r, =2.67ao). The
reason is clearly that ca=0.07 is off resonant to every
electron-hole pair excitation of the spherical particle
under discussion. If ca=0.27 is assumed to be typical for
the resonant coupling, we would end up with
I =2.3)& 10 a.u. =4.6X 10' s ', which means an
enhancement of 3 orders of magnitude. This is larger by
a factor of 45 compared to the planar case. Hence we see
that it depends sensitively on the frequency co whether or
not I,~i„~ is reduced or enhanced as compared to I ~&,„,.
We think that is a natural consequence of the resonant
character of the coupling in the case of very small metal
clusters.
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