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Effect of surface scattering on optical properties of metallic double-layer films
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The effects of free-electron scattering at film surfaces and at the interface upon the reflection,

transmission, and absorption coefficients of metallic double-layer films are studied on the basis of
the Maxwell equations and the Boltzmann transport theory. In order to calculate the surface elec-

tric current generated by the electric field of an incident electromagnetic wave, the microscopic

transport parameters analogous to those introduced in the existing models of dc conductivity are
used. The anomalous nature of the skin effect is taken into account. Formulas found for the optical

coefficients are valid in the near-infrared, visible, and ultraviolet spectral ranges as well as at low

frequencies ~here the skin effect is nearly classical. It is also shown that the model developed may

be used to find the optical coefficients for systems which consist of a bulk metallic base and metallic

covering. The results obtained for both kinds of structures are apparently dependent on the values

of scattering parameters of electrons at the surfaces and the interface, Among others, the oscillatory

nature of the absorption spectrum is observed. The amplitude and period of the oscillations change

with the boundary conditions for free-electron scattering. This enables the verification of the values

of the scattering parameters found.

I. INTRODUCTIO&

Interest in optical properties of thin metallic films has

been substantial over recent years. Reuter and Sondhei-
mer' were the first to theoretically study the effect of the
surface scattering of electrons on these properties of bulk

metals. They consider a semi-infinite metallic sample and

derived equations for the electric field in metal for two

limiting cases when electrons are exclusively specularly or
diffusely scattered at the sample surface, i.e., the specular-

ity parameter p =1 or 0, respectively. Dingle gave a
very detailed analysis of the optical properties of bulk
metals within the Reuter and Sondheimer theory. More-
over, he developed an approximate method of solution of
the integro-differential equation obeyed by the electric
field in metal and he apphed this method to films of arbi-
trary thicknesses with totally diffuse electron scattering at
the surfaces (p =0). Hutchison and Hansen tried to im-

prove upon the solution given by Dingle. They took into
consideration a case with arbitrary values of the speculari-
ty parameter p, but a boundary condition describing the
electron scattering was formulated for the external surface
of the film, only, i.e., for the surface upon which the elec-
tromagnetic wave is incident. The other surface was
treated, without employing an appropriate boundary con-
dition, as the one scattering the electrons diffusely. This
limitation resulted from the fact that they used the elec-
tron distribution function in the form derived by Reuter
and Sondheimer' for bulk metal, where the electric
current generated by the dectromagnetic wave becomes
negligible sufficiently far from the surface. Thus the for-
mulation of the wave equation given by Hutchinson and

Hansen is valid when the specularity parameter at the
other film boundary equal zero and, consequently, their
model is valid with the same restriction. The facts men-

tioned above cause the Hutchinson and Hansen theory to
show a weaker influence of free-electron surface scattering
on optical properties of thin metallic films than can be
seen in the case of the general approach. It was not until
Dimmich and Warkusz raised the arguments used for
deriving the second-order integro-differential wave equa-
tion that the general form of this equation was obtained.
Based upon the work by Reuter and Sondheimer' the au-

thors developed the model for the case of thin metallic
films. It has been formulated by use of the Lucas
boundary conditions and by means of the Mayadas-
Shatzkes method. Thus the electron scattering at both
the film surfaces and at the grain boundaries was taken
into account. However, using the general form of the
wave equation Dimmich and Warkusz derived the exact
expression for the optical reflectance of a polycrystalline
bulk metal with specularity parameter p =1, only. The
solutions of this newly formulated wave equation for
single-crystalline and polycrystalline metallic films were
obtained by Szczyrbowski et aI. ' '" They used the Din-
gle methods for this purpose. On the basis of the solu-
tions found, Szczyrbowski et al. ' *"derived formulas for
reflection and transmission coefficients in thin metallic
films. This set of expressions and the model of dc con-
ductivity by Mayadas and Shatzkes represent a unified
physical description of the optical and electrical properties
of metallic thin films. It permits the optical characteris-
tics to be related to the dc conductivity in terms of the
microscopic parameters when both the optical and electri-
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cal characteristics are measured simultaneously. Such ex-
aminations have been performed for Au, Ag, and Cu
films, *' ' where reasonable agreement between the
theoretical and experimental values for both kinds of
analyzed quantities has been obtained for the same set of
free-electron parameters.

In this paper, the theory of optical properties of metal-
lic double-layer films is formulated. Approximate rela-
tions for the reflection, transmission, and absorption coef-
ficients are obtained where the previously developed cal-
culation method" ' is used. The resulting model pro-
vides optical characteristics, both in the case of thin
double-layer films and bulk metals with thin metallic cov-
erings.

H. WAVE EQUATION

The two-layer thin-film configuration considered in this
analysis is shown in Fig. 1. The overlayer with surfaces at
z = —d and z =0 is made of metal 1 and the base layer
with surfaces at z =0 and z =h of metal 2. It is assumed
that the conduction electrons in both the layers (metal 1

and metal 2) have an identical Fermi momentum, i.e., no
contact potential difference arises at the interface z =0.
The electric field E(z)e'"' is taken to be in the x direction
and the magnetic field H (z)e'"' in the y direction. In fur-
ther considerations, the time-dependent factor e'"' will be
omitted. On eliminating H from Maxwell equations,
these are reduced to the following wave equation:

+,p(1+&)E(z)=, J(pi,z), (1)
dz' e' C 60

where J(pi,z) is the free-electron current density generated
by the electric field E(z) of the incident radiation, co/2TT

is the field frequency, 1M is the relative magnetic permea-
bility, and ep is the permittivity of free space. The quanti-
ty 1+ S arises from the displacement current, internal
photoelectric absorption, and atomic polarization.

e8diUm
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FIG. 1. Metalhc double-layer film in the field of the elec-
tromagnetic wave.

(2)

where v = (u„u~, u, ) is the electron velocity,
wi 2

——1+i AT, 2, Ti 2 and m 1 2 are the relaxation times
and the effective masses of the electrons. The general
solution of Eq. (2) for a plane electromagnetic wave in-
cident along the z direction (Fig. 1.) has the form

The current density J(pi, z) can be obtained from the
linearized Boltzmann transport equation for the distribu-
tion function f(v,z) of the conduction electrons. For the
sample in the electric field f(v,z)=fp+f1 2(v, z), where

fp is the Fermi-Dirac equilibrium distribution function
and f1(v,z) and f2(v, z) are the deviations from this func-
tion induced by the electric field for —d &z &0 and
0&z&h, respectively. Then the notation that index 1

refers to metal 1 and index 2 to metal 2 will be inade.
The Boltzmann equation for each layer takes the form

df 1,2 W1,2f 1.2 e ~f0
z

BZ Ti 2U» m1 2U» Bu»

fi 2(v,z}=exp
w 1 2(z +d) e

F1 2(v)+
7Pl

Bfo z

J dt»(t)exp
1,2us "»

w12(t+d)
T'& 2U&

where Fi 2(v) are the arbitrary velocity functions deter-
mined by the appropriate boundary conditions at the film
surfaces and the interface. These conditions should serve
as a description of the electron scattering processes. We
use the boundary conditions and the microscopic parame-
ters for the surface and interface scattering given by Dim-
mlch and %arkUsz,

fo+f 1'(u., Z= d) =p1 [fo+f 1 ( U—., Z= d)]+H1»— —

fp+f2 (U„z=h)=p2[fo+f2+( u„z =h)]+H, , —

fo+f 1 (U„Z=O)=R;[fo+f,+( —U„z=O})

+T;[fo+f2 (u. ,z=o)]+Ii,
fp+f2+(u», z =0)=R;[fo+f2 ( —v„z =0)]

+T [fo+f1+(U. z =o)]+I2,

I

where f1+2(v,z)=f1 2(v, z) for v, p0, f12(v,z)=f12(v,z)
for u, & 0, and H 1, H2, Ii, and I2 account for the diffuse-
ly scattered current carriers at the respective surfaces. R;,
T~, pi, and p2 are the phenomenological parameters
which can be interpreted as the probabilities that an elec-
tron is speeularly reflected at the interface z=0 (8;),
crosses it without diffuse scattering ( T1 ), and is specularly
reflected at the external surfaces z= —d (p1) and z =h
(p2) of the double-layer film, respectively. The parame-
ters range between the assumption of complete speculari-
ty, 8;= 1, T; = 1, p i ——1, p2 ——1, and complete diffuseness,
8;=0, T;=0, p&

——0, p2 ——0, where the restriction that
8;+T~ & 1 must be fulfilled. This is because R; and T;
describe the additional electron scattering occurring at the
interface between the two layers where an electron can un-
dergo two processes, a reflection and a transmission
through the interface.

The above treatment of the surfaces is quantitative and
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there is no information in our boundary conditions [Eqs.
(4)—(7)) about the nature of scattering mechanisms. Vari-
ous mechanisms have been proposed' for the origin of
surface scattering. For example, scattering from charge
centers located randomly on a crystal surface was con-
sidered by Greene and O'Donnell. ' Scattering from neu-

tral atoms chemisorbed on a film was derived by the use
of quantum-mechanical theories by Watanabe and Hira-
tuka. ' ' Scattering from a rough surface in the
geometrical-optics limit was studied by Ziman and
Soffer. ' One of the consequences of the above-mentioned
works is a conclusion that the scattering parameters must

I

at least be dependent on an angle of incidence upon the
surface .Thus the boundary conditions in Eqs. (4)—(7) are
too simple to be realistic. It should be emphasized, how-
ever, that there will be no problem with the generalization
of our results by means of the substitution of an expres-
sion appropriate for the considered mechanism of scatter-
ing into the final formulas (cf. next section) instead of the
parameters introduced in Eqs. (4}—(7).

Using the boundary conditions given by Eqs. (4)—(7)
and introducing the polar coordinates ( u, 8,$) with
u, = u cos8, we obtain the current densities J, 2(co,z) in the
layers as

U~ ) dU~ Uy Uz

2tr(em I uF )

h

2sN ) (z +d)/l )
(p1 +e ) 2 2sts2h/I2

[P2TI +R;(e ' ' —P&R;)]
Wy S

0

h—sts)z/I( f d E( )
—sw2(t —2h)/I&

0

sttt((t+z)/—I) z
d @( )

sts((t —z)/I(

—d d'
0

E ( )
—SIU) (t —z)/I)

(8)

Jz(cu, z) =,—2e

'3

Ux 2 de Uy Uz

2tr(etn zuF }
dS

h $3
2'&(h —z)/l2 su2z/l2

V»+e 2)e 2 2

st@ (t+Zd)/l 0

d
' —d

Wy(s)

sw (t —z)/l h

0 z

f sw2(t +z)/I&h

2sm& d/l
& 2sru2h /l& 2Wz(s) =(e —p)R;)(e —S»& }—p)p22
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where U~ is the Fermi velocity and Ii 2 are the mean free
paths of electrons. It is convenient to introduce dimen-
sionless coordinates in the layers z =z/I„ t =t/Ii for
—1&z &0 and z =z/12, t =tl!2 for 0&z & It and to use
the reduced values of layer thicknesses 1=1/Ii and
Ii =It/12. The wave equation for the electric field Ei(z)
and E2(z) within the layers takes the form

1 Ei 2(z) c0 I i 2+,'

(u(, 2(i+~i,2)Ei,2«)1z' C

Icdl i 2'
p, , 2Ji 2(~0,z) . (10)

C 6'O

Generally, this equation cannot be solved in compact
form. However, the approximate solution may be found
by use of the Dingle method. In order to obtain the elec-
tric field, we first consider the possible field contribution
in the external layer as

—u(w((z+d)
(11)

which when substituted into Eqs. (8) and (10) and after
the integration over t leads to

(12)

6011
(S(+1)(ui,

1K(ui)= 1s
1 $ $3

1+
S —Q1 5+91

I 1Ai= f 1$
$ $3

2sw((d+z)pi+e
Wy s

—SN l (z+d)

—SN1Z —8
1

N ld

+T
u1+sa

N2h —h(ui wl N2S)
(e —e

e
+F2 ~i'

—SN
1

Z —Q ) N l d
e

(
h(sw2 —u(w()

1)
sa —u1

N211 Pl 2a=
N112fPZ 1

—SN &(z+d)

$ +Q1

2SN2h 2$N )Z 2SN)Zp2~')(1+~ e)+p2T'( e 2gw d (s —u )w d —gw (d+z)i e ( ( )e (

(ui+s ) Wz(s)

SN|Z —Q ) N)d
e e

(13)

2m(em iUF) 3 3 I,
C260 h3Ni 2 N3152i

g, = [2e@ /(uitdoi(0)]' is the classical penetration depth,
and oi(0) is the dc conductivity of bulk metal 1. The
closest agreement between the left-hand and right-hand
sides of the relation (12) may be attained by choosing u i

such that

ui ——$)E(ui)+rI( . (14)

Thus the contribution Ei [Eq. (11)]will leave us with un-

compensated terms g)A). The next possible contribution
to the electric field may be taken in the following form:

(1S)

Now, we have for the electric field E, =E'i" + EI ' from
Eqs. (8) and (10) that

It is obvious that the two contributions applied here leave

only terms of order gi so the process can be repeated to
form a series in g( which converges for

~ g) ~

&1. The
solution is of the form

Ei+(z)=E'i" (z)+E'i '(z)+O(g)) .

Since E(u)) is an even function of ui, —ui is also a root
of the transcendental Eq. (14). Thus there is a further
solution, Ei (z), obtained from (17) simply by replacing
ui by —ui. Thus the electric field within the layer of
metal 1 is a linear combination of these two solutions:
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E](z)=w]E+](z)+B]E](z),

where A& and 8& are constants.
The method of solving Eqs. (9) and (10), i.e., the wave

equation for the layer of metal 2, follows essentially the
I

same lines as those described above. The general solution
may be written in the form

E2 (z) =A 2E2+ (z) +B2E2 (z),

E+ (z) =E',"(z)+E',"(z)+0($2), (20)

(21a)

E(2)( }
w2 2~2~2

S —'g2
2 '

2

u 2
——(2E(u2)+7)2,

s s

2sw2(h —z) SLo2Z

(p2+e )e

Wy(s)

2s]s]d (1—e
[p] T, +R;(e ' —p]R;)]

—(s+u2)w2h

S+Q2

(21b)

(22)

2SL0 ( d+T;"
s —QQp

d(u&w2+Lo&s)—d(m, —u, w, ) (e —1)
(1 e ] 2 2 )+p T(2

S +aQ2

—SLO2Z

(e ' p]R;)(1—+R;e ' )+p] T; e
(e ' ' —l)e

(s —u2) W„(s)
—(s + u2 )w2h SLo2z

e e
(23)

CO!2

'2
l2

2

(S2+ 1)P,2, (2——!—
CLU2 3/2

and E2 (z) is found by using —u, instead of u2 in
E+(z).

III. OPTICAL PROPERTIES

It is evident from the preceding section that the validity
of the presented considerations is determined by the as-
sumption

I g] 2 I
& 1. We will extend this assumption tak-

ing
I k, 2 I

«1 Analyzing the dependence of g] 2 on co

we find that this restricts the validity of our formulas to

—u]]s](z+d) u]]s](z+d)
E] z =A]e +8)e

Also, we can approximate E'](z}by the expression

(24)

I

two spectra ranges: low frequencies where the skin effect
is nearly classical and high frequencies from the near in-

frared (NIR) and visible (VIS} up to the ultraviolet

(uv). s'0 In the above frequency ranges an inequality

I rl] 2 I
«1 is also fulfilled. Consequently, we have

lu]2 I
«1. Thus we may take for the external layer

with a sufficient accuracy that

where

E'](z)= [A]E]+(z)+B]E](z}j'=A]n](z)e ' ' —B]n', (z)e ' ' (25)

n
n](z) = F](u],z), — (26a)

n'](z) = +F](—u],z), (26b)

I ) ~p
F](u „z}=—

4 LU) UF

1 1f ds ———
3 5

s]s] (z+2d) —s]s]z
e —p)e

Wy s 0

2$Lo2 h —h ( u I Lo l
—slo 2 ) Tj —Q l Lol d h(sLo2 —u

1 Lo1 )X(e )+p2 e ' '(e ' ' ' —1)
0
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2SN2 A SN i Z —SN ]Z SN iZ

(e ' p—2R;)(R;e ' —e )+p2T(e
8' (s)

SN i d —Q i N i d
(e ' —e )

SNIZ —Q INid —SN i {Z+d} Q i Ni (Z+d}—(e 'e ' —e ) e
(27)

91l81=
C

2
COp S1

(1+5)) —i P1
AALU 1

(28)
I

The quantity n)b, i.e., the complex refractive index of the
bulk metal, is introduced by means of the following rela-

tion:
1j2

which is obtained from Eq. (16} taking into account that
IC(u))= —', for the neglected surfaces contribution [Eq.
(13)]. to& is the plasma frequency.

The considerations for the layer of metal 2, similar to
those carried out above, yield the optical constants n2(z)
and n 2(z) as follows:

7l 2b
n2(z) = —F2(u2, z), (29a)

n2y
n2(z)= +F2( —u2, z},

P2
2

p2 pF ce

F2(u2, z) =—
4 to2UF C 1

1 1

SN2Z SN2(2A —Z)

(J12& 2sw) d (s —Q2}N2h
X I[@)T +R;(e ' —p)R )](1—e ' '

)

Wy(s)

(
2sw)d lu2w2+ w))d) T (

)u)w2+ 1)d
1) )+P1a, e

2SN i d SN2Z —SN2Z 2 —SN22
(e ' p)R—)(e ' —R;e ) —p)T;e

Wy(s)

(s —Q2 }N2h SN2Z —(S +Q2 }N2A —SN2Z Q2N2Z
X(e —1)—(e e —e ) e (30)

The definition of n2& is analogous to that of n)b. The ex-
pressions for the reflected (r) and transmitted (t} ampli-
tudes of the electric field may be obtained using the in-

terference matrix M defined as

E) ( —d) E2(h)

H)( —d) —H2(h)

I

the boundary conditions describing the fact that the
tangential components of the electromagnetic field must
be equal across the surfaces and across the interface. It is
then calculated that these elements are

(n ) ( d)e ' '—+n, ( —d)e

n') ( d)+n)( —d)—
m11 m12

m 21 P7l 22

1 1
'

2 2
m11 m 12 m11 m12

1 1 2 2
771 21 Pl 22 7Pl 21 m 22

Q, N, d —Q, N, d—ePl12=
n') ( d)+n)(——d)

and

( m ) ) +m )2 n 3 )1)1)
—( 11)2) +m 22 n 3 )

m ) ) +m )2 n 3 )n 1) + (m 2 ) + rn 22 n 3 )

2no

(m11+m21n3)n0+(m21+m22n3 }
(31)

The elements of matrices M) and M2 can be found from

n)(0)n)( d)e ' ' —n'1(0)n)( —d)e-
n ) ( d)+ n)( —d)—

n'(0)e ' ' +n (0)

n)( —d)+n, ( —d)

n2(h)e ' ' +n2(h)e

n2(h)+n2(h)
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2Pl 12=

2Pl 22=

n2(h)+np(h)

n2(0)nq(h)e ' —ni(0)n2(h}e

n'q(h)+n2(h)

nz(0)e ' ' +n2(0}e ' '

ni(h)+nz(h)
0.$

belli o g
0,1)
0,0)

The intensity coefficients R and T for reflection and
transmission of the double-layer film on a transparent
substrate are given by

8 30
R =R'+ T'

30

(1—RM)T'
T=

1 —R3PR"

(33)

0.6

—0.3

where T'=(n3/no)
I

r
I

R =
I
"

I R3o =[(ni —no)/
(ni+no)], and R" is the reflection coefficient of the fil
for the electromagnetic wave incident through the semi-
infinite substrate. In Eqs. (33} for R and T the term
RMR" is much less than unity so we can neglect surface
contributions to the skin effect in the calculations of R".

IV. DISCUSSION

—0.1

l, ), io0 S.2 S.6 2.O 2.t,

0w fpV}

The relations obtained in this paper for the reflection
and transmission coefficients of the double-layer film de-

pend on both the layers thicknesses d and h and the
scattering parameters p&, pi, R;, and T~. Moreover, it is
apparent from Eqs. (26), (27), (29), and (30) that there
exists a mutual influence of the transport parameters
characterizing one of the metallic layers on the optical
constants of the other one. This results from both the
feasibility of coherent passages of conduction electrons
across the interface (for T, & 0}and the nonlocal character
of the relationship between the electric field and the sur-
face current in the wave equation. The above-mentioned
facts reveal the complexity of the problem and indicate
the necessity for numerical evaluations for further discus-
sion.

In order to see the effects of surface and interface
scattering, the reflection R, transmission T, and absorp-
tion A = 1 —R —T are calculated for a hypothetical
double-layer system with a base layer of Ag (metal 2) and
an overlayer of Au (metal 1). It is assumed that Ii ——30
nm, I2 ——S3 nm, m]=~e~ 2 0 8S~es S1=7, S2 ——2.SS,
and the e1ectron concentrations N1 ——N2 ——5.9X 10
cm .' Values n0 ——1 and n3 ——1.5 are taken as the opti-
cal constants of the medium and the substrate, respective-
ly. The theoreticaI results are presented in the standard
form versus energy fun.

The optical reflection and transmission of the double-
layer films are illustrated in Fig. 2. The plots demon-
strate both the limiting cases in which the surfaces do not
scatter the electrons diffusely (p& ——pz ——1}and the surface
scattering is exclusively diffuse (pi ——pi ——0) as well as
limiting cases for the interface scattering, i.e., exclusively
diffuse (R; =T~

——0) and the coherent transmission of the
carriers across the interface (R; =0, T; = 1). These curves

&.2 4.6

FIG. 2. Reflection and transmission spectra of a hypothetical
double-layer film with layer thicknesses d =5 nm (Au) and
k =10 nm (Ag) (solid curves) compared with the spectra of a
single layer with thickness h =10 nm (Ag) (dashed curves) for
(a) the diffuse and (b) the specular scattering of electrons at the
surfaces.
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FIG. 3. Absorption spectrum of a hypothetical double-layer
film (Au: d =5 nm, Ag: h = 10 nm} for (a) the diffuse and (b)
the specular scattering of electrons at the surfaces.

The oscillations appear because mI 2 are complex quanti-
ties and, consequently, the integrals derived in our model
are periodic functions of cupid and cor2h. One can see that
their amphtudes depend on the efficiency of the surface
and interface scattering where the most distinct oscilla-
tions of A appear for low values of the parameters pi, p2,
8;, and T;. It is obvious that such effects should also be
revealed in the reflection and transmission spectra, but on
the other hand they are more pronounced in the absorp-
tion.

The obtained oscillations result from the nature of the
electron movement in the film in the field of electromag-
netic wave. On its way between the film surfaces the elec-
tron collects the energy from the field and loses this ener-

gy, being scattered diffusely at the surfaces and interfaces.
The maximum of dissipatmi energy is attained when the
electron approaching the surface has the maximal energy,
i.e., duration, of its movement between the scattering sur-
faces is equal to the period of the electric field or a multi-
plicity of this period. On the other hand, the process of
the energy dissipation should be most efficient for the
electrons moving perpendicularly to the plane of the film.
Therefore, the periods of the oscillations depend on the
distances between the surfaces and interface which scatter
the current carriers diffusely or partly diffusely. The
described influence of the scattering at the particular sur-
faces on the oscillations of A is illustrated in Fig. 4, where
two fragments of the plots from Fig. 3 are enlarged.

Finally let us discuss the optical properties of metallic
samples which consist of a thin covering and a thick base.
In order to obtain the reflection spectrum of such a sys-
tem, the expressions for the refractive indices given by
Eqs. (26), (27), (29), and (30) are calculated in the limit
h ~ 00. The explicit relations for the optical constants are

0.030

)
(, al -p -0

2

are compared with those for the double-layer films of Ag
and Au with the neglected surface and interface contribu-
tions (labeled bulk) and with the curves for the single
layer of Ag. The results of the absorption for the analo-
gous films are illustrated in Fig. 3, where additionally the
cases of the partially coherent transmission of the elec-
trons across the interface have been included.

The theoretical plots show that the influence of the pa-
rameters pi, pi, R;, and T, on the reflection spectrum is
relatively large in the low-energy region and slightly de-
creases with the increasing energy of the electromagnetic
wave. As one can expect, the energy dependence of
transmission is reversed. However, for both the spectra
this influence remains significant in the NIR, VIS, and uv
ranges. The changes of the absorption spectrum evoked
by the surface and interface scattering are more essential
when compared to the bulk. The additional contributions
may enhance the absorption calculated for our hypotheti-
cal example by about 2.7%. It should be stressed here
that in general the values of the described effects depend
on d and h, and increase with decreasing thicknesses.

The curves in Fig. 3 also demonstrate absorption oscil-
lations. They were predicted by Dingle for single films.
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FIG. 4. Influence of the parameters of the interface scatter-
ing on the oscillations in the absorptions spectrum for (a) the
diffuse and (b) the specular surface scattering of electrons.
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In this case only the contributions of the external covering
surface and of the interface between the two metals are
significant. The theoretical results obtained for the Au
base and the Ag covering are demonstrated in Fig. 5. One
can see the infiuence of the surface and interface scatter-
ing on both the value of the reflection coefficient and the
appearance of the oscillations. The second derivative of R
reveals differences in periods of these oscillations for some
cases where the previous elucidations are adequate. It is
apparent that the oscillations may also be observed in the
case of thick metallic samples on condition that two sur-
face scattering electrons are operative.

V. CONCLUSION
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It is worth noticing that the values of the scattering pa-
rameters may be determined from optical measurements.
Furthermore, the detailed analysis of the oscillations
should enable a distinction between the surface and inter-
face scattering. It seems that a combined analysis of the
optical and electrical data should be the most effective
tool for investigating the microscopic parameters of free
electrons in double-layer films. The first successful at-
ternpts of such studies were made for single films. '
In the case of double-layer films, the theoretical models
for dc conductivity (Ref. 15) and optical properties (the
present paper) create the analogous feasibilities.
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