
PHYSICAL REVIE% B VOLUME 34, NUMBER 12 15 DECEMBER 1986

Accelerating the convergence of self-consistent linearized augmented-plane-wave calculations
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The applicability of Broyden's second method for accelerating the convergence of self-consistent
electronic-structure calculations based on the linearized augmented-plane-wave method is discussed
in terms of a %(001) surface calculation. It is found that its use results in a significant improvement
in the convergence of' the calculation, and based on this it is concluded that its use should increase
the size of the systems for which such calculations are feasible.

INTRODUCTION

In electronic-structure calculations one seeks a self-
consistent solution of the Kohn-Sham equations. This is
generally done iteratively as follows. Given an input
charge density p;„, the corresponding potential is con-
structed and the resulting Kohn-Sham equations for the
density-functional wave functions are solved. These yield
an output density p«„which in general differs from the
input. Using the input and output densities of this and
the previous iterations one then constructs an input for
the next iteration p;„, the goal being to find a density
which when input to the self-consistent loop yields an out-
put equal to it within a specified tolerance.

One of the most efficient (in terms of the number of
iterations required) methods for constructing the new in-

put density is Broyden's modified Newton-Raphson
method. ' This technique and modified versions of it have
been used in electronic-structure calculations on a variety
of systems almost invariably with a significant reduction
in the number of iterations needed to achieve the desired
self-consistency. As far as we know, however, no at-
tempt has been made until now to use Broyden's method
to accelerate the convergence of self-consistent linearized
augmented-plane-wave (LAPW) calculations. This is

perhaps a result of the representation of the charge densi-

ty in the general-potential LAP% method. This repre-
sentation divides space into an interstitial region I, and re-

gions inside atom-centered spheres S„. In the interstitial
region the charge density is expanded in symmetrized
plane waves while in the spheres it is expanded on a
discrete radial mesh in terms of symmetrized spherical
harmonics, i.e., lattice harmonics. Thus

+to, P, (r), r EI

where the P, are symmetrized plane waves, the K„t are
lattice harmonics on site n and r„ is with respect to the
position of atom n This repre. sentation introduces two

complications. The first is that it gives the charge density
in terms of a large number N of parameters, p;,
p= lp„p„j(r„)), often tens of thousands. The second is
that the nature of the dependence of the charge density on
some of the parameters (those describing the interstitial
volume) is radically different from its dependence on the
others (the numerical meshes). The first complication
makes any scheme requiring the storage, inversion, or
multiplication of N&&N matrices undesirable, while the
second makes it questionable whether a scheme such as
Broyden's method which treats all the parameters on the
same footing will be effective. Thus self-consistent
LAP& calculations have generally been converged by tak-
ing linear combinations of the last iterations input and
output densities, i.e.,

(&)

where a is a mixing parameter. This scheme will be re-
ferred to as straight mixing. For surfaces and other sys-
tems with large unit cells it is often necessary to use small
values of a for the procedure to be stable, a (0.1 being
common. Schemes using linear combinations of the input
and output densities of the last two iterations are some-
times used to improve on this. However, often unaccept-
ably slow rates of convergence are still obtained, especially
for large unit cells with low symmetry, as in surface cal-
culations.

Recently, Srivastava developed a scheme for imple-
menting Broyden's second method which avoids the
storage of N)&N matrices as well as requiring no N)&N
matrix inversions or multiplications. In view of the fact
that in many cases the size of systems on which
electronic-structure calculations can be performed is limit-
ed by the computing time required, it was of interest to
study the applicability of this approach in LAP& calcula-
tions. Here we report its first use in this context and dis-
cuss its efficiency in terms of a test calculation on a
moderately large (N =4744) system described below. It is
concluded that the method is very effective in accelerating
the convergence of these calculations and that its use may
result in substantial reductions in the number of iterations
required to treat other systems.
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SROYDEN'S SECOND METHOD

Since the implementation of Broyden's second method
is discussed in detail in Ref. 9, we only summarize it here.
As discussed above the goal is to construct an input
charge density p' +"such that F' +" is zero, where

F{m} {m} (m}
=pout pin

The strategy used is to set

(m+1} (m} G{ppg}F{pg}
pin =pin

where 6™is an approximation to the inverse Jacobian
matrix which the method attempts to improve after each
iteration using the information contained in p;„and F.
According to Broyden's second method the updating pro-
cedure for G is

[ (m) (m —1) G(m —l)(p(m) p(m —l)))(p(m) p(m —1))T
G{yg} G{pg 1} plfl pm

(p(m) p(m —1))T(p(m) p(m —1))

(m+1) (m) g())p(m) y U(j)yT(j)p(m)
pin =pin

J=2

U(i) G(1)(p(i) p(i —1))+ (i) (i —1)
pin pin

(7)

yT{i}
(F(i) p(i —1))T

(p(i) p(i —l))T(p(i) p(i —1))

Thus the scheme as implemented in Ref. 9 only requires
the storage of a relatively small number of vectors con-
taining the information in the input and output charge
densities of the previous iterations.

In the calculations presented here the initial guess 6"'
for the inverse Jacobian was taken to be a constant diago-
nal matrix so that the input to the second iteration was ef-
fectively constructed using straight mixing. Other initial
guesses could be envisioned, but constructing them for the
LAPW representation is not straightforward since one
must ensure that the resulting scheme conserves the total
electronic charge. This is guaranteed only if the initial

guess is charge conserving.

formula. "
In order to study the convergence of the calculation

three quantities are monitored. These are the total energy,
the average potential in the center of the vacuum layer
(with respect to the Fermi energy), which is sensitive to
the surface dipole, and the distance between the input and
output densities, d, defined by

d = f d r(p;„p,„t) IQ—
where 0 is the volume of the unit cell.

In Figs. 1 and 2 the distance in the charge density, d,
and the error in the total energy (with respect to the con-
verged energy), respectively, are shown for each iteration
as obtained using Broyden's method started with 10%
straight mixing and using straight mixing. The initial
charge density was constructed from overlapping atomic
charge densities. In spite of the fact that the mixing pa-
rameter, a=0. 1, is close to optimum for this system, it is
apparent that Broyden's method is significantly more ef-
fective than straight mixing in converging the calculation.

The performance of the straight-mixing scheme is lim-
ited by instabilities which appear as the mixing parameter
is increased causing the iterative process to diverge. In

f000

THE TEST SYSTEM
n =O. l

Here the efficiency of Broyden's method is examined
using a tungsten (001) surface calculation. The model
used for this surface consists of a periodic array of five-
layer W(001) slabs at the bulk lattice spacing separated by
five empty layers. The resulting unit cell is 10 times as
large as a bulk unit cell. The calculations were performed
using about 410 basis functions, which is somewhat un-
derconverged for this system. This underconvergence is
not expected to have any material effect on the relative
performance of the mixing schemes. The k-space sam-
pling was done using a set of three special points' in the
irreducible wedge of the two-dimensional Brillouin zone.
Exchange and correlation were treated using the %'igner
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FIG. 1. The distance [in 10 ' electrons/a. u. ', cf. Eq. (9)] be-

tween the input and output charge densities as a function of
iteration number.
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FIG. 2. The error in the total energy with respect to the final
converged energy.

ITERATION
FIG. 3. The planar-averaged potential at the center of the

vacuum relative to the Fermi energy.

surface calculations one such instability involves an oscil-
lation of charge between the surface layers and the interi-
ors of the slabs. In Fig. 3 the vacuum potential, which is
sensitive to such charge displacements, is shown at each
iteration. By inspecting Fig. 3 it may be noted that the
oscillations present in the vacuum potential using straight
mixing with a =0.1 are suppressed when Broyden's
method is used. This is a manifestation of the adaptive-
ness of the technique which allows it to rapidly converge
the calculation while avoiding instabilities.

Since Broyden's method is a linear method one might
expect its performance to suffer if it is started when the
charge density is very far from the. converged charge den-
sity. In some surface calculations faster convergence is
obtained at the end of the calculation if the Broyden's ma-
trix is restarted after the first few iterations, thereby dis-
carding the information contained in the input and output
charge densities of these iterations. We have also ob-
served this in some calculations on bulk f-band materials.

CONCLUSION

Based on the rapid convergence obtained using
Broyden's method in general-potential LAPW calcula-
tions, we believe the method to be very effective in ac-
celerating the convergence of such calculations in general.
It is expected that the use of the method will lead to signi-
ficant reductions in the computing requirements for self-
consistent electronic-structure calculations and should in-
crease the size of the systems which can be treated.
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