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%'e present microscopic calculations of the chemical short-range order in amorphous and liquid

alloys of two transition metals. Our approach is based on a model one-band tight-binding Hamil-

tonian and a thermodynamic variational technique founded on the Gibbs-Bogolyubov inequality and
a hard-sphere Yukawa fluid as a reference system. %e calculate the Bhatia-Thornton partial struc-
ture factors of Ni„Ti& „and Ni„Zr& „alloys and find good agreement with experiment.

I. INTRODUCTION

Recently several accurate experimental determinations
of the three partial structure factors of amorphous transi-
tion metal alloys have been reported. The results for
Ni40Ti60,

' and Ni„Zr& „(x=0.35,0.50,0.65), ' as well
as for Ni»Y6s, have shown a degree of chemical ordering
which can vary either with the composition as in the case
of the Ni„Zr~ „system or with the partner species as in
the Ni, M~ „series (M =Ti,Zr, Y). If experimentally it is
difficult to bring the chemical short-range order (CSRO)
to light, a microscopic theory of the CSRO seems an even
harder task.

In principle this goal could be achieved in two different
ways: (a) Given the interatomic forces, computer simula-
tions are used to calculate the structure of the glass.
However, reliable interatomic forces may only be derived
from pseudopotential theory for simple metals and their
alloys; ' for transition metals only empirical potentials of
questionable validity are available. (b) Given an expres-
sion for the free energy as a function of the atomic coor-
dinates, the equilibrium configuration is obtained by
minimization of the free energy. As total energies are
easily calculated in a tight-binding approximation, this
approach appears to be attractive for transition metals as
well.

A straightforward tninimization of the free energy with
respect to the atomic coordinates is, of course, out of the
question —even for moderately large clusters of atoms.
On the other hand, we might parametrize the structure in
a simple way and minimize the free energy with respect to
a small number of relevant parameters. This is precisely
what is done in a thermodynamic perturbation theory of
the liquid state.

The simplest form of a thermodynamic perturbation
theory is the variational approach based on the Gibbs-
Bogolyubov inequality. According to this inequality, the
exact free energy F of a system is always smaller than or
equal to the free energy Fo of a reference system plus the
expectation value of the perturbation evaluated with the
distribution functions of the reference system, i.e.,

F &Fo+ IH Ho~o—

H being the "exact" Hamiltonian of the metal or the alloy
and Ho that of the reference system.

The success of the variational method depends on the
availability of an appropriate reference system; it is clear
that the interesting properties of amorphous or liquid al-

loys with strong chemical interactions are beyond the
grasp of hard-sphere models. However, with a more judi-
cious choice of a reference system some progress might be
achieved. Copestake et a1. ' have shown that a mixture
of hard spheres all having the same diameter but different
charges and interacting through a screened Coulomb (Yu-
kawa) potential is a good model for describing the
structural manifestations of ordering in liquid alloys.
Their idea was taken up by Hafner et a/. "' who demon-
strated that, combined with a very simple treatment of the
electronic contributions to the free energy, the thermo-
dynamic and structural properties of Li- and Na-based al-

loys may be calculated with good success. This has led
the authors' to use the thermodynamic variational treat-
ment combined with pseudopotential-derived pair and
volume forces and to provide the first microscopic theory
of CSRO in simple-metal alloys.

The purpose of the present paper is to show how this
approach can be extended to describe CSRO in liquid and
amorphous transition-metal alloys. Of course the thermo-
dynamic variational approach is strictly applicable only to
liquid systems (where experimental information on the
CSRO is extremely scarce)—for the amorphous alloys we
will have to assume that their CSRO is essentially identi-
cal to that of a supercooled liquid alloy just above the
glass-transition temperature. The thermodynamic varia-
tional technique is particularly interesting in this context
because it requires only the knowledge of the total energy
and is not restricted to pair-potential Hamiltonians.
Indeed a tight-binding d-electron Hamiltonian is more ap-
propriate for transition metals, many methods for calcu-
lating the electronic density of states are based on a tight-
binding scheme. ' However, only a few of them in-
clude both the effects of short-range order and of charge
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transfer; charge transfer is important because the degree
of CSRO affects both the amount of charge transferred
and its effect on the self-consistent one-electron potential
of the alloy. Therefore, we have chosen to work with a
tight-binding Cayley-tree method introduced by Falicov
and co-workers. '

In Sec. II we recapitulate briefly the Bethe-lattice ap-
proximation used to calculate the self-consistent electronic
density of states and the electronic ground-state energy of
the alloy. The properties of the reference system are sum-
marized in Sec. III. We present an application of this new
variant of the variational technique to Ni40Ti60 and
Ni„Zr~ „(x=0.35,0.50,0.65) alloys in Sec. IV. We find
that in Ni-Zr the CSRO varies strongly with composi-
tion, the comparison of the results obtained for Ni-Ti and
Ni-Zr suggests that the CSRO depends on the difference
hEq of the atomic energy levels and on the band filling.
We focus our attention on the structural properties and
we demonstrate that we are able to reproduce the experi-
mentally known neutron scattering data with good accu-
racy.

II. THE TIGHT-BINDING BOND MODEL

In general the total energy can be written as the sum of
two terms, namely,

ET =Erep+Ebond (2.1)

(2.2}

whereas the attractive contribution stems from the
quantum-mechanical bonding between the atoms. Within
the tight-binding approximation this term is given by

Eb,„d ——J N (E)EdE —E,),i+E;,„;,„„(2.3)

where X(E) is the electronic density of states and EF the
Fermi energy. The first term represents the sum of the
one-electron energies, the second the double-counting
correction for the electron-electron interaction which has
been counted twice in the first term. The third term
stands for the interionic Coulomb interactions.

In this paper the electrons are described by a very sim-

ple one-band Hamiltonian

H,i=&E„ls &&s I+& t,.lv&&vl (2.4)

where
I p ) represents a Wannier-type state on site p, for a

given spin. The hopping integral t„, allows for electronic
transitions between sites p and v. In an A&8& „alloy the
atomic energy levels c& assume one of two possible values
c,z and c~, depending on the random occupation of the

where the labels imply that the division has been made in
such a way that around the equilibrium volume the first
contribution is repulsive and the second attractive (bond-
ing). In a tight-binding model it is generally assumed
that the repulsive energy is well described by an empirical
pair potential p,j(R) (ij =A,B is used to label the atomic
species)

A. The electronic density of states in the alloy

The electronic density of states N(E) is given in terms
of the configurationally averaged Green's function (G» )
by

N(E}=——lim[lm(G (E+5))] .
1.

(2.5)
7T 5 0 PP

We use a tight-binding Green s-function technique analo-
gous to the alloy Bethe-lattice method introduced by
Brouers et al. and applied by Falicov and co-workers'
to describe short-range order in crystalline alloys. Other
applications concern liquid s-band alloys like Cs-Au
(Refs. 23 and 24) and crystalline alloys of transition met-
als ' and of simple metals. We refer to these papers
for a detailed description of the method, only the basic
equations are summarized below.

In a crystalline alloy, the configurational average can be
calculated in terms of the three parameters that character-
ize the atomic structure of the alloy: composition x, total
coordination number Z, and chemical sho&-range order
parameter a. In terms of Z and a the partial coordina-
tion numbers Z~ are given by Z;;=Z(x;+xja) and
ZJ=Zxj(1 —a), ij =A, B. With these definitions, the
Cayley-tree approximation leads to the following set of
equations for the configurationally averaged Green's func-
tloil (G» ):

( G„„)=x„G"+x~G~, (2.6)

G'=(z —e; b„) ', i =A,B, — (2.7}

site p, by an atom of type A or 8. The hopping integrals
t&„can take three possible values tzz, tztt, or ttitt accord-
ing to the occupation of the sites p and v.

Note that by using a one-band Hamiltonian we are
treating all d orbitals as degenerate and neglect their
directional properties —thus we are considering only the
spherically averaged part of the d bonds. This is also the
bas1s of Friedel's classical model for transition metals
and of Pettifor's ' recent theory for the heat of formation
of transition metal alloys. Moreover, it is consistent with
our structural model which considers only spherically
averaged pair correlations.

For d-band metals experience suggests a pair interac-
tion of the form P;J(R)=CJ/R with rn =8—10, ' but
little is known about the exact values of the exponent and
of the prefactors. In our work we choose to circumvent
these uncertainties in the following way.

We assume that the density of the alloy is well
described by Vegard's law. For the pure metals the hard-
sphere diameter cr is determined by fitting the excess en-

tropy of the liquid, respectively, supercooled liquid for the
alloy, a mean hard-sphere diameter is calculated assuming
that the total hard-sphere volume does not change on al-
loying. Furthermore we shall assume that E„„ is in-
dependent of the degree of CSRO (this appears to be a
reasonable assumption because the interionic Coulomb in-
teractions, which are affected by CSRO and charge
transfer, have been absorbed in Eb,„d). With these simpli-
fying assumptions„we can determine the equilibrium
CSRO at a given density by varying Eb,„d with respect to
the remaining parameters of the reference system.
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with the self-energies 5; determined by the solutions of

b; =Z;;r;;/(z —e; —b,;)+Z;J.t~j. /(z —ej —AJ ),
b; =6;(Z —1)/Z .

(2.8)

(2.9)

or a

t j (r)= t j(ro/r) (2.11a}

tz(r)=t j exp( 3br/ro), hr =r—ro— (2.11b)

law. In both cases ro is a mean nearest-neighbor dis-
tance, tj. =tj(ro). The prefactor 3 in the exponent of
(2.11b) is determined by general experience —in our case
only the integral over the square of the hopping integral
multiplied with the correlation function enters the calcu-
lation. Because of the rapid decay of t,j.(r} and of the rel-
ative sharpness of the first peak in the correlation func-
tions (typically the width at half maximum is about 15%
of the nearest-neighbor distance) the precise form of the
variation of t;J. with distance is of little importance, we
have adopted the form (2.11b).

B. The charge transfer

The Fermi energy in the alloy is determined by the
charge conservation condition

The quantities that describe the atomic structure of a
liquid alloy are the partial pair correlation functions g,j(r)
measuring the probability to find an ( ij}pair at a distance
r. Following Movaghar and Schirmacher we generalize
(2.8) by replacing Zztj by p f g,j(r)t j(r)d r, p being the

number density. The partial coordination number would

then be given by ZJ 4rrp—— '"
g J(r)r dr with a yet un-

0
determined cutoff radius R,„. Movaghar and Schir-
macher propose to avoid the uncertainty connected with
a choice of R,„by letting it go to infinity: Now elec-
tronic transitions to any site in the system are allowed (for
a deeper discussion of configurational averages on Z-fold
coordinated Cayley trms we must refer to their paper).
Formally this corresponds to Z~ oo and makes a distinc-
tion between 5; and b„unnecessary so that the self-
energies are now the solutions of the equations

px& tzz rg~~ rd r px~ t&~ rg&~ r r
+

~B ~B

(2.10a)

pxz tzz r gzz r d r pxz tzz r}gzz r d r
+

z —cg —bg ~A ~A

(2.10b}

The distance dependence of the d dhoppin-g integrals is
usually assumed to follow a

x~ n ~ +xIin Ji
—— N (E)dE0 0 F

[x N (E)+x N (E)]dE, (2.12)

where n; denotes the number of valence electrons in the
pure metal i and N, (E) is the partial density of states at
the i sites in the alloy. The charge transfer is then given

by

with

05n; =n; —n) (2.13}

EF
n; = f N;(E)dE, i =A, B . (2.14)

A change of the number of valence electrons at a given
site i will shift the energy levels at that site. To calculate
this shift b,c;, we have to specify the electron-electron in-
teractions. Following Holzhey et al. and Giner et al. '

we adopt an interpolation formula

V(r) =e /(r + U 'e ), (2.15)

which smoothly interpolates between a Hubbard-type
model for the intraatomic interactions and a Coulomb po-
tential for the interatomic interactions at long distances.
With this form of the electron-electron interactions, the
shift of the atomic energy levels is given by30

&e~ ——U5n~+x~p5n~ f [g~(r) —g~a(r)]V(r)d'r,

(2.16a)

hemi
——U5ns+xilP5na f [gal(r) g4g(r)]V(r—)d r .

In accordance with our model for the electron-electron in-

teractions, the total intraatomic electron-electron energy is
written as

intra I 2 l 2E,] „———,x„n„U+ 2x~n~U

and the interatomic term as

(2.18)

(2.16b)
Note that Eqs. (2.6)—(2.16) have to be solved self-
consistently: Starting from the pure metal values of the
c.;, the valence charges on both constituents are calculated
according to (2.13), this charge transfer changes the e; ac-
cording to (2.16) and the operation has to be repeated un-
til self-consistency has been achieved.

C. The total energy

If we drop E„~ (because it remains constant when the
CSRO varies), the relevant part of the total energy is just
given by the bond energy (2.3). As in (2.15) and (2.16) we
split the electron-electron interaction energy E,&,&

into an
intraatomic and an interatomic term and combine the
latter with the interionic interactions

Eel-el +Elon-ion Eel-el +(Elon-ion Eel-el )

E;,„;,„E',l",l' ———2~p x~ —[2nq5n„+(5n„)] g„„(r)V(r)r2dr
0

+ gxs( g 5ns+na 5ng +5ng 5ns ) f ggii(r) V(r)r dr

+xii[2ng 5nii+(5ng)] f g~~(r) V(r)r2dr (2.19)
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Equations (2.3), (2.18), and (2.19) complete our expression
for the ground-state energy of a given atomic configura-
tion represented by a set of pair correlation functions

g;, (r).

III. THE HARD-SPHERE YUKA%A (HSY)
REFERENCE SYSTEM

Copestake et aI. ' have shown that ordering phe-
nomena in molten salts, liquid semiconductors, and even
liquid metallic alloys may be modelled by a hard-sphere
Yukawa fluid treated in the mean-spherical approxima-
tion (MSA). The MSA for a system of hard spheres of di-
ameter cr and Yukawa tails is definei by the Ornstein-
Zernike equations for the partial direct and total correla
tion functions cj(r) and h;J(r) in conjunction with the
MSA closure conditions (P=1/ka T)

e;~(r) = —P@,J = —Pg;Qz exp( «r)/r, —r & o, (3.1a)

Peri = w [Z —w/2 exp(Z)]
12 I 1+w [1—exp( —Z) ]/2Z I

[i) is the hard-sphere packing fraction,

ri=p7TCT /6, Z =«CT,

(3.3)

[czar(r), c«(r), and cz, (r) have been introduced by Bhatia
and Thornton ]; the cross term e«, (r) coupling the
number-density and concentration fluctuations is identi-
cally zero in this approximation. The resulting integral
equation for czjv(r) is identical to the Percus-Yeviek
equation for a monoatomic hard-sphere system, so we
know analytical solutions for the partial structure fac-
tors and for the thermodynamic functions. ' The in-
tegral equation for c«(r) has been solved analytically by
Waisman. The result may be expressed in terms of a pa-
rameter w which is the solution of the quartic equation

h; (r)= —1, r &0 . (3.1b} &= —xAx~(QA —Q~) exp( «cr)/o—2

Here the Q; are the charges carried by the hard spheres
and K is a screening constant. %aisman has shown that
if the "charge neutrality condition"

(3.2)

is respected, the three coupled integral equations defining
the cj(r) decouple into two independent equations, one
for the direct correlation function c««(r) describing the
number-density fluctuations and one for the correlation
function c«(r) describing the concentration fluctuations

is the strength of the ordering potential at hard contact].
The direct correlation function e«(r) is then given by

Pew 1 —exp( —Zp) cosh(Zp) —1

2Z exp(Z)
Pe exp[ —Z (p —1)]/p, p ~ 1, (3.4)

with p =r/o.
The Fourier-transform c„(q) of the direct correlation
function is then given by

c«(q) = A i
4irPe

q

q exp( —«Z)[«sin(qcr)+q eos(qcr)]

q +K
+32

q +K

«sinh(Z}sin(qo ) —q cosh(Z)cos(qu)—A3
+K

(3.5)

with

3 i
———

I w/[2Z exp(Z)] —1J,

22 ——a exp(Z) —w/«,

A3 ——w /[«Z exp(Z)] .

The static structure factor is then simply

S„(q}=xAx~[1 nc„(q)]—

The analytical expression for e~N (in real and in recipro-
cal space) and for S&z are well known and need not to be
repeated here. The partial pair correlation functions are
given by

g„(r)= 2 I t [1—pc„(q)] ' —1 j sin(qr)q dq,
2m rp

Xg
gAA(r) gvN(r)+ g

Xg
(3.8a)

Xg
gaa~&) =gxxI &)+

Xg

gAii(r) =g~~(r) g„(r) . —

(3.8b)

(3.8c)

Analytical expressions for the thermodynamic functions
of this reference system may be derived using the coupling
constant formalism with the final result for the free ener-

gy F (Ref. 13)

ao —1gN«(r) =
2 I [1 pc~«(q)] —1—I sin(qr)q dq2' f'p

(3.7b)

and are related to the gAA(r), gA&(r), and gs~(r) through

(3.7a) FHSY 2 kB T+~ord T(~HS+ i~ord ) ~ (3.9)
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AH„d ———em/2 (3.10a}

SHs is the entropy of the hard-sphere system (we used the
Carnahan-Starling expression ) and

IV. THERMODYNAMIC VARIATIONAL TECHNIQUE
FOR CALCULATING THE CSRO IN LIQUID AND

AMORPHOUS TRANSITION METAL ALLOYS

[f(~)—f(0)]
Ord

2Tl
(3.10b)

(3.11)

with

8 i
——Z I 2/[exp(Z) —1]—1],

82 ———3[1—3 exp( —Z)]/2,

8& ——exp( —Z)[1—exp( —Z)]/(4Z),

8q ——[1—exp( —Z)]/(2Z) .

(3.12)

Equation (3.3)—(3.12) contain the analytical description of
the reference system needed in the variational calculation.

are the contributions to the enthalpy and the entropy of
formation associated with a nonvanishing ordering poten-
tial (i.e., with an a~0). The function f ( w) is given by

8) +82' +83LUf(w)=-
728'(1+8&m)

A. Variational expression for the free energy

+ ++HSY+ (H HHSY ~HSY

, kg T+—ET(13',a) TSHsv—(Pe,a) . (4.1)

In the spirit of this inequality we will proceed to a mini-
mization of the right-hand side of (4.1) with respect to the
parameters Pe and ~ which determine the strength of the
ordering effects. For practical purposes the interatomic
interactions are conveniently expressed in terms of the
concentration-fiuctuation correlation function:

With the ground-state energy Ez. as a function of the
correlation functions given by Eqs. (2.3), (2.18)—(2.19),
and the reference system free energy and correlation func-
tions expressed in terms of the parameters e and v of the
HSY model in Eqs. (3.3)—(3.12), we can now give an ex-
plicit expression for the variational upper bound to the
free energy

ET(Pe,~)= f EX(E;Pe,~)dE ——,
' U[x„n„'(Pe,a)+xnan~(. 13',a)].

—27rpxgxa [ 2[5na(PE, K) —5ng ('PE, K)][na(Pe, x ) n„(Pe—,a )]

+[5nz(Pe, ~) 5n~(Pe, ~—)) )
J' g„(r)V(r)r dr . (4.2)

The density of states and the charge transfer depend on
the degree of CSRO expressed by the coordinates Pe and
a, for each set of (Pe,v) they have to be calculated self-
consistently.

In principle the free energy would have to be minimized
with respect to the full set of parameters (O,Pe, ~) of the
reference system. However, as explained in Six:. II, we
choose to fix cr by fitting to the pure-metal entropies and
to vary only the two parameters Pe and v which enter that
part of the free energy which is sensible to the CSRO.
Now we find that this is consistent with our structural
model: In our symmetric HSY model, size effects and
CSRO are completely decoupled, we have grv, (r) =0. Of
course this limits the applicability of the method to sys-
tems where the size effect can be expected to be small: to
replace the individual hard-sphere diameters by a mean
atomic diameter is well justified for Ni-Ti, still acceptable
for Ni-Zr, but not for Ni-Y. This simplification is also
not unimportant in order to make the computational ef-
fort tractable: %e have to minimize Fwith respect to two
parameters, and each single I'(Pe, a) involves a self-
consistent tight-binding calculation. To include a third
parameter would mean to increase an already large com-
putational effort by nearly 1 order of magnitude.

Our method is similar to earlier attempts to calculate
the CSRO in disordered systems which are also based on

the Bethe-lattice approximation and the HSY reference
system. In that work however, the electronic and the
atomic structure calculations mere coupled together by
equating the spectrally defined charge transfer and the
electrostatic charges of the HSY system. We have two
good reasons not to follow this convention: first, the defi-
nition of the charges in the HSY system is not unique (cf.
the discussion in Ref. 13). Second, it is well known that a
spectral definition of the charge transfer can yield quite
misleading results. This method also excludes the con-
ceivable solution of a charge transfer without chemical or-
dering. The varjational method avoids all these problems.

B. Results

Before we discuss our results in detail we should make
an attempt to justify the extension of the variational ap-
proach to amorphous alloys, i.e., to nonequilibrium sys-
tems. It is necessary to make the connection with experi-
ment, since diffraction data on the liquid alloys are not
available, but what can we really learn from such a com-
parison? From both diffraction experiments and comput-
er simulations it is well known that the structure factors
of a supercooled liquid just above the glass transition and
of the glass of the same composition are very similar —the
main characteristic difference being the shoulder in the
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second peak of Szz(q), which is absent in the supercooled
liquid. In our studies of amorphous and liquid simple
metal alloys we have compared the partial structure fac-
tors of glasses calculated with a molecular-dynamics
quench technique with those derived using molecular
dynamics and thermodynamic variational techniques
(again with a HSY reference system) for the liquid and su-

percooled liquid states. Again we find that apart from the
form of the second peak in S~~(q) the result of the varia-
tional calculation is in good agreement with the
molecular-dynamics result and very similar to that of the
glass. As far as the CSRO is concerned, the analogy be-
tween the supercooled liquid and the glass is even more
pronounced. Thus it appears to be justified to compare
the S„(q) calculated for a supercooled liquid just above
the glass transition temperature with the S„(q) measured
for the glass at room temperature. Details might still be
different, but the comparison will certainly allow for a
meaningful analysis of trends.

-5
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FIG. 1. Electronic density of states in amorphous Ni40Ti60.

Solid line: including CSRO; circles: without CSRO, shown

only where different; partial DOS of Ni (dashed-dotted) and Ti
{dashed) sites.

TABLE I. Electronic parameters for Ni40Ti6o alloys. t;~ and
c.;(J) are given in Ry. Xq is the number of d electrons.

p8
Eg

0

9
—0.168

0.026

3

+ 0.168
0.037

'The zero of the energy scale is chosen halfway between the
atomic d levels of the constituents.

%e begin by studying a system in which the assumption
of a size ratio close to one should be reasonably well satis-
fied. The alloy selected is amorphous Ni40Ti60, for this
system both neutron and x-ray diffraction experiments
have been performed and the three partial Bhatia-
Thornton structure factors have been resolved. ' The ex-
perimental S«(q) has significant oscillations over a wide
range of momentum transfers with a main peak at

q = 1.95 A . Sz, (q) shows only very weak
oscillations —this demonstrates that this system is indeed
ideally suited for the HSY-variational calculation. The
input parameters used for the calculation are shown in
Table I. The values of ez and ski are taken from the
tables of Herman and Skillman assuming a d" 's elec-
tronic configuration. In our model, the mean nearest-
neighbor distance ro in (2.11) is set equal to cr; the values

tzz and t/i// of the hopping integrals are deduced from the
known bandwidth of the pure metals, the t„/i hopping
integral is set equal to the geometrical average of t„„dan
t/i/i, i.e., tz/i (t„„t/i/i)'——, which is a reasonable assump-1/2

tion for the alloys under consideration. The variational
calculation was performed with a hard-sphere diameter cr

fixed by assuming that a packing fraction of iI =0.56 is
representative of the alloy just above the glass-transition
temperature. This is the value suggested by the extrapo-
lated values of the excess entropies of the pure metals and
the assumption that the total hard-sphere volume does not
change on alloying. We find that within the uncertainty

of the experimental values and of an extrapolation over a
rather large temperature interval, this value of the pack-
ing fraction fits the Ni-Ti and the Ni-Zr alloys at all con-
centrations. The result of the variational calculation at
T =700 K is c.= —4.8 mRy and ~=2.3 a.u.

The calculated electronic density of states shows the
familiar shape for alloys of the early and late transition
metals (see Fig. 1): Its spectrum is characterized by a
binding energy shift and a splitting of the d band. The
peak at high binding energies is related mainly to d states
of the late transition metal (Ni) and the peak near EF to
those of the early transition metal (Ti) as can be seen from
the partial densities of state shown in Fig. 1. The shift of
the d states of the late transition metal results in a de-
crease of the local density of states (DOS) for Ni near EF.
In the ordered equilibrium configuration, the structure in
the DOS is somewhat more pronounced than in a chemi-
cally random configuration. The narrowing of the sub-
bands is a consequence of the fact that the CSRO tends to
keep like atoms apart.

Figure 2 shows the partial structure factors Sz~(q) and
S„(q) calculated with the variationally determined pa-
rameters. Our results compare very well with those deter-
mined in the neutron scattering experiment. ' However,
we should be fair enough to point out that only S«(q) is a
real prediction of the theory. S~z(q) is determined by the
fitted packing fraction alone, so the agreement of the cal-
culated S&z(q) with experiment merely confirms that our
fitting procedure is reasonable. In some sense our calcula-
tion of the CSRO is the liquid-state analogue of the calcu-
lation of the short-range order parameters on a fixed
mean lattice for a crystalline alloy. The amplitude of the
first peak in S„(q) depends on both e and a, i.e., on the
strength and on the range of the ordering interaction. The
position of the peak in S„(q) at Q~ =0.58Qi [where Qi is
the position of the main peak in S~z(q)] is very insensi-
tive to the model parameters: It is almost independent of
e and tends to shift to slightly smaller values with de-
creasing a. ' The good success of the variational calcula-
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to demonstrate that our model is able to explain this ten-
dency.

The electronic input parameters used in our calcu~ation
are reported in Table II; as for the Ni-Ti alloy, the density
of the alloy is interpolated linearily between the densities
of the pure m.etals. For all concentrations we performed
the calculation at T =700 K, this is within about 100 K
from the glass temperatures. Again we find that a pack-
ing fraction of g =0.56 reproduces the extrapolated entro-
pies reasonably well. The variationally determined order-
ing parameters e and x are also given in Table II; the

00 2 4 6 S
q (A~)

FIG. 2. Partial static structure factors S~~(q) and S~c(q) of
amorphous Ni~Ti60. Solid line: variational calculation; open
circles: experiment. S~,(q) is identically zero in the reference
system; this is well confirmed by the experiment, where the fluc-
tuations in S~,(q) never exceed +0.15.

tion for NicoTi6O prompted us to extend our study to Ni-
Zr alloys where we can in addition investigate the evolu-
tion of the CSRO as a function of composition.

2. Ni-Zr
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Recently several structural investigations have been re-
ported for this system. This provides an opportunity to
study the CSRO as a function of composition. For
Ni35Zr65 alloys, Lee et al. determined the partial struc-
ture factors using neutron and x-ray diffraction combined
with an isomorphous substitution technique. Mizoguchi

42et al. performed an isotope substitution experiment, but
reported only the partial pair correlation functions for this
alloy. For Ni&OZr5O and Ni6&Zr35 the three partial struc-
ture factors were measured using the isotope substitution
inethod by Fukunaga et al. and Lefebvre et a/. , respec-
tively. It turns out that the CSRO is rather strong in the
Ni-rich alloy (Ni6qZr35) and much weaker in the Zr-rich
regime (Ni35Zr65); see Fig. 3(a) which shows the experi-
mental S„(q) for the three compositions. Our purpose is

0

S,c(q)
x(1-x)

I

q(A~)

(b)

TABLE II. Electronic parameters for Ni„ZrI „alloys. t;~

and e;(~) are given in Ry. c (in mRy) and x (in a.u. ') are the op-
timal reference system parameters.

Ni

035 0.65

Ed
0

v —5.9
]c 1.1

9
—0.162

0.026

Ni50Zr50

—4.2
2.3

3
0.162
0.053

Ni, sxr65

—1.1
2.6

4

q(A }

FIG. 3. (a) Experimental partial structure factors S~c(q) for
several amorphous Ni Zr& „alloys. (b) Calculated partial static
structure factors Scc(q) for several amorphous Ni„Zri „alloys.
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FIG. 4. Ordering energy of amorphous Ni„Zr~ „alloys
(AE„d in eV).

0.5-

theoretical S„(q) for the three compositions are shown in
Fig. 3(b). Keeping in mind that this is a calculation
without any adjustable parameter relevant to the CSRO,
the achieved agreement with experiment can certainly be
considered as quite encouraging.

Next we look at the ordering energy; its variation with
composition is shown in Fig. 4. Once more the ordering
energy is maximum for the Ni6qZri5 alloy. The two main
contributions to the ordering energies are the following:

b, Eord ET(e,a )
——ET(0,0)—

=bEi, (e,~)+EE,),)(e,x) . (4.3)

The first contribution bE~, (e,a) is the variation of the
one-electron energy [the first summand in Eqs. (2.3) or
(4.2)] due to the modification of the electronic energy
band upon ordering. This contribution Inay be positive or
negative and depends essentially on the position of the
Fermi level. The densities of state of the Ni„Zr, „alloys
are displayed in Fig. 5. Like for other amorphous
transition-metal alloys, the DOS's are characterized by the
splitting and the shift of the d band. The effect of the
CSRO is to increase the separation of the two d-band
peaks. If the Fermi-level falls close to this pseudogap, the
ordered state will be energetically more favorable because
of the gain in band energy, but we have the opposite effect
for a Fermi-energy which is not in this region. The
Ni„Zr& alloys represent an intermediate case with, how-
ever, an electronic configuration which is more favorable
for CSRO in the Ni-rich alloy.

The second contribution comes from the intra-atomic
electron-electron and the interatomic electron-electron and
ion-ion interactions [see the second and third terms in
Eqs. (2.3) and (4.2)] and their variation with the CSRO.
The first term depends on the transferred charge, our cal-
culation shows that electrons are transferred from Zr to
Ni, and, as a result, the intra-atomic energy makes an at-
tractive contribution to AE„d, which is most pronounced
for the Ni6&Zr35 alloy. The variation of the second term
with the degree of order depends on both the charge
transfer and on the electronic difference between the two
constituents and gives a repulsive contribution to AE„d,
which is again most important for the Ni6&Zr3& alloy.

0.0
0

E (eV)

FIG. 5. Densities of states of amorphous Ni„Zrl „alloys.

Therefore, the ordering energy varies with both the charge
transfer and the distortion of the band near the Fermi lev-
el. Its sign is determined by the competition between the
mostly electrostatic electron-electron and ion-ion interac-
tion effects and the effect of the d-band distortion. Both
are very sensitive to the separation of the atomic energy
levels of the alloy constituents and to the band filling and
for a given composition, the ordering energy can be ex-
pressed as a function of these elemental electronic param-
eters. This result is very similar to that obtained by Gau-
tier et al. , who described the ordering energy in
binary fcc transition-metal alloys using a generalized per-
turbation expansion of the ground-state energy. A sys-
tematic study of the influence of these elemental parame-
ters [e;,tij (R)] on the ordering energy and on the
concentration-fluctuation structure factor S„(q) is under
way and will be presented elsewhere.

V. CONCLUSIONS

We have presented a very promising method for calcu-
lating the CSRO in amorphous and liquid alloys of transi-
tion metals. Our technique is based on a tight-binding d-
electron Hamiltonian and a thermodynamic variational
method. The optimal reference system may be deter-
mined by a free minimization of the upper bound to the
exact free energy as a function of the open parameters of
the reference system. As such it refers —at least in
principle —to thermodynamic equilibrium configurations,
but in agreement with earlier computer-simulation studies
on simple metal alloys we find that calculations for the
supercooled liquid phase yield useful information on the
CSRO in the glassy phase.

First results for Ni4O Ti60, Ni65Zr35, Ni50Zr50, and
Ni35Zr6& alloys have been presented. The variationally
determined concentration-fluctuation structure factors



34 ELECTRONIC THEORY OF THE CHEMICAL SHORT-RANGE. . . 8365

compare very well with those determined from isotope
substitution experiments on the amorphous alloys. The
calculated electronic density of states shows the familiar
splitting and shift of the d band, the calculated values of
the DOS at the Fermi level are compatible with those in-

ferred from experimental data.
Finally we think that the ordering potentials deduced in

our calculations may serve as a basis for describing CSRO
in more sophisticated and more realistic models of the
atomic structure of transition-metal glasses.
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