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Based on the pair approximation of the path-probability method, the frequency-dependent con-

ductivity 0.(~) is formulated both in the ordered and in the disordered phase in a binary system.
Especially in the disordered phase, the effects of pair correlation on o.(co) are analytically shown and
discussed. The present method is found to provide information in a more organized way than in the
commonly adopted master-equation method.

I. INTRODUCTION

The path-probability method (PPM) developed original-
ly by Kikuchi' has been applied successfully to the
stationary-state hopping conduction problems of classical
particles, and was found to be particularly useful in dis-
cussing a role of particle correlation on the diffusion coef-
ficient and conductivity. '

An approach of the PPM may be best understood by
comparing with that of the master equation. In the latter,
the macroscopic rate equation in the mean-field approxi-
mation for p„(t),the probability of finding a particle at
site n at time t, can be written in the form

dpi'(t) = g [I „(t)p (t) —I „(t)p„(t)],

cr=Pc(zea) Oe ~ g (P= 1/ktiT)
XI Xg

(2)

where I „(t)is the transition-probability rate for a parti-
cle to hop from site m to site n In dilut. e systems, I „(t)
is taken to be independent of p„(t),and is thus indepen-
dent of time. ' However, most problems of interest are
cases in which the density of particles is high. ' In
such cases, I'~„(t)should involve correlation among par-
ticles and, therefore, depends on time. In view of this
fact, the PPM seems to be one of the best methods to take
the correlation of particles into account in dealing with
such problems.

A major advantage of the PPM is that a systematic step
of approximation can be taken in a way similar to the
cluster variation method. ' In most cases, ' ' the pair
approximation has been found to be satisfactory. In this
pair approximation, I," (t), corresponding to I „(t)of
Eq. (1), is a function of y;J "(t), the probability of finding
a pair of particles of ith species at site m and jth species
at site n. Thus we need an accompanying equation for
y;~J. "(t) in addition to Eq. (1). The pair approximation
thus consists of a closed set of two equations. In the one-
dimensional system consisting of one species of particles
on equivalent sites, the PPM leads to the expression for
the conductivity as

where c is the density of particles, z is the valence of ions,
e is the charge, and a is the hopping distance as usually
defined. The quantity x; is the probability of finding a
particle on a site, and y;„is the probability of finding a
pair of a particle (i) and a vacancy (v). The conditional
probability y;„/x; is called the vacancy-availability factor
(or inversely the site-blocking factor). The last factor in
Eq. (2) is the bond-breaking factor. Here, the hopping
probability is considered to consist of two terms, He

and g. (Et/ytI/x; ). The quantity y;~ is the probability of
finding a particle (i) and a particle (j) on the nearest-
neighbor sites and E;J is the pair interaction energy e;J ex-

pressed in the form of e ". Hence, the latter term
represents the effect of the presence of nearest-neighbor
ions on the hopping ion. It should be kept in mind that
the last two factors in Eq. (2) come from the pair correla-
tion involved in the corresponding I „(t).If I „(t)does
not have such a pair-correlation effect, the conductivity
simply becomes" '

a =pc (zea ) He

The comparison of Eqs. (2) and (3) immediately tells the
advantage of the pair approximation of the PPM in deal-
ing with particle correlation on the hopping conduction
problems.

In the past, the PPM treatment of conductivity has
been limited to stationary states in homogeneous sys-
tems, ' and little attention has been paid in obtaining the
diffusion coefficient and conductivity in a nonstationary
state. In addition, there has been an abundance of discus-
sions on the frequency-dependent conductivity, especially,
in disordered systems, mostly started with Eq. (1) with
I „'sbeing time-independent variables. ("Disordered
system" implies a so-called random system. "Disordered
phase" or "ordered phase" is used for phases of randomly
distributed particles on a regular lattice. ) Recently, Ishii
has rigorously formulated the conductivity, starting from
the microscopic master equation, and have obtained some
general conclusions with respect to the frequency depen-
dence on various systems.

The aim of this paper is to give a systematic discussion
of the frequency-dependent conductivity o(co) based on
the pair approximation of the PPM and make compara-
tive studies of the present method and results from the
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several points of view. For these purposes, we choose a
system with two species of particles on a lattice with two
sublattices ISp2 on L2I. For the sake of simplicity, we
write "Sp„onL, " for n species of particles on a lattice
with m sublattices. In Sec. II, we discuss a set of the
linearized PPM equations with the pair approximation
based on the condition of the detailed balance. In Sec. III,
the current density is defined, and the conductivity is for-
mulated in the ordered and the disordered phases of the
[Sp2 on L2 I system. In Sec. IV, the conductivity formula
is analytically investigated in several subsystems of the

Sp2 on L2] namely in (Spl on Ll) (Spl on L2» an

(Sp2 on Li), but its investigation of (Spz on Lz) will be
given in a separate report. The simplest system (Spi on

Li ) does not show frequency-dependent conductivity in
the present formalism, but is shown that the generalized
Einstein relation holds. ' Because the one-dimensional
versions of (Sp, on L2) was discussed in the stationary
state by Richards for the case of noninteracting parti-
cles, ' we compare Richards's work with ours, and show
that the present calculation reduces to his result in the
limit of no interaction and zero frequency. The frequency
dependence of the present result is also discussed in com-
parison with the previous result obtained based on the
master-equation approach which takes the site-blocking
effect into account. ' Furthermore, the memory kernel
arising from pair correlation will be discussed in connec-
tion with the frequency dependence of cr(co). We further
discuss the frequency dependence of the third subsystem

(Sp2 on Li) and its possible relation to the frequency
dependence of the so-called mixed-alkali effect. '6'

II. PATH-PROBABII. ITV METHOD

i3x;"(t)

i3t
= g [I';" (t) —YP"(t)],

where summation is over all the nearest-neighbor sites of
n The quantity . I;." (t) is the probability rate for a parti-
cle of i species jumping from m to n, and is written in the
pair approximation of the PPM as

I;" (t)=r," (t)x, (t),

r Ipll
( ) gltl i

m
n An Xi

The argument t of y's and x's in Eq. (6) is dropped as will
be done hereafter, unless otherwise stated. Equation (4)
with Eq. (5) is equivalent to Eq. (1), except that the exph-
cit form of the transition-probabihty rate of a particle
I," (t) is given in terms of the pair correlation as in Eq.

A. Path-probability method

Let us consider an assembly of interacting particles on a
lattice, with interaction energy eV between particles of i
and j species on nearest-neighbor sites. The possibility of
the double occupancy on one site is excluded. If the prob-
ability of finding a particle of i species at site n at time t
is defined by x;"(t), the PPM leads to the equation for the
change of on-site probability as [Appendix A (Ref. 1)]

I
I
I

E))
I
I

~ '

A3

FIG. 1. Configuration subject to change due to hopping: the
atom i () on m jumps to a vacant site n by breaking bonds,
say, with atoms j (0 ), i and i sits on n j, n2, and n 3, respective-
ly.

(6). The meaning of Eq. (6) can be clearly understood in
Fig. 1 as follows. Suppose that a species i on site m is
about to jump to its nearesi-neighbor site n with the at-
tempt frequency 8; and the vacancy availability y„"; /x; .
Then this particle has to break bonds paired with itself
with probability g„.+„A;"jx;~, where tn'} are the
nearest-neighbor sites of m, and

At~ = g KVytj.
J

—pc"
E,J ——e

where the summation with respect to j' is over particle
species and vacancy U. This particle has also to go over
the barrier of activation energy UP . If there is no in-
teraction, a;J =0, then

(9)
J

which naturally results in the bond-breaking factor of uni-

ty. In this special case, I ™(t)of Eq. (6) is equivalent to
that of the mean-field approach of the master equation
with the site-blocking effects. ' '

In the pair approximation, Eq. (4) needs accompanying
equations for the change of pair probability as given by'

nm mn
'
~ nm

yV y ~jU ynm y
m'n 'pV

+ vr mn' ~~n 'm Jl~~'

J

(10)

which can also be understood similarly as in Eq. (4). The
first and third terms in the right'-hand side mean the prob-
ability rate of creation of the particle pair, i on n and j on
m, while the second and fourth terms express annihilation
of the particle pair (i,j)
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B. Detailed balance and cluster variation method

In equilibrium state, we assume the following detailed
balance conditions on the two equations (4) and (10):

nm

y m 'n 'J~IJ
pnpFl

eq eq

where the subscript "eq" indicates "equilibrium state" but
for convenience the subscripts "eq" will be suppressed
hereafter. Once Eq. (11) holds, then Eq. (12) also holds
because of the pair-approximation results of the cluster
variation method (CVM). Inversely speaking the cluster
variation method helps to guarantee the principle of de-

tailed balance of the PPM.

C. System configuration and linearized equations

Since the case of weak external electric field is of our
interest, we examine the linearized equations. Let us treat
the system [Spq on L2'I which contains two species of
particles and vacancies distributed over a lattice of coordi-
nation number 2y (see Table I). The two sublattices are
intrinsically specified such that an isolated particle, for
example, of i species on a site of one specified sublattice,
can jump to any site of the other sublattice next to it by
the same transition-probability rate I; "=8,"exp( —PU;"),
with U~" ——U;" defined. For our two sublattices, there-
fore, we have two kinds of elements for 8 or U as
8; = I 8,",8,". + '

j and U~ ——
I U;", U;" + ' I. The external elec-

tric field E(t) is applied to the lattice in such a direction

A-2

FIG. 2. Configuration of two sublattice systems: One sublat-

tice consists of planes t. . . , n —1,n + 1. . . ) and the other sub-

lattice of I. . . , n 2, n—,n +2, . . . ).

x;"(t)=x;"+5x;"(t), (13)

(14)

Then Eqs. (4) and (10) are linearized to the first order in
E(t) as"

that a plane perpendicular to the field consists of only one
kind of sublattice, as shown in Fig. 2. In the presence of a
small E(t), we may work on the deviations of x and y
around the equilibrium values defined as

(@n,n —1+@n,n +1)

nn+1
LJ

dt

n+1, n g5 n

Bt

n+l, n

C n, n + 1 + ~JI)
n

n+1, n~n, n+1

[y I';"'" '+ (y —1)I;"'"+']5 ln
U I) IJ

nn+1 gg n+].+'" J
x"+'

U

n, n+l n, n + 1pn +],n
C,n+ I, n + 'U

[ yn +in+2+( , 1)yn+1, n]51
'" J

J n+] J J n+1 n+],n
U U Jl

4; "=I'P"[5lnI'; "+Pz;e(R —R„)E],
51n1', "=Bin( Y; "yI,"™). (18)

ZIe
j; ( t) = —g R„5x;"(t)

V Bt

V
y Q (R„+i—R„)4,"+'",

In Eq. (17), z;e is the charge of an i particle and
P =ke T. Here we have introduced the definition

51nI; "=51'P"(t)/(I;- "),q,

for F™and similarly for any quantity, and used R„as
the position vector of the site n. As is understood from
Eq. (17), the antisymmetric relation holds as

III. CURRENT DENSITY AND CONDUCTIVITY

In the present system, the current density for a particle
i can be defined by the use of Eqs. (15) and (20) as"

and thus the component along the field is

j;(t)=mLz;eay , (4,"+ '"+4,"'" '—),

where V is the volume, mL is the number density of site
given by mL ——M/V, with M as the number of site on the
lattice, and a is the distance between the adjacent planes
shown in Fig. 2. Two kinds of terms are kept because of
two kinds of sites, and therefore n will be regarded as the
name of the sublattice hereafter.

In the stationary state, Eqs. (15) and (20) lead to
' which is independent of the position n
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and thus Eq. (21) becomes

Jl =VlLZl. fe04]

For the discussion of time-independent diffusion coeffi-
cient or conductivity, ' calculation of 4&";+'"=const is
enough.

Now we examine the frequency-dependent conductivity.
%hen we are concerned about loca/ properties, we write
the translational symmetry of sites for the two sublattice
system explicitly as

n+2, n+1 g n, n —1

3lJ 3lJ
n+1 g n —1

l

Furthermore, in equilibrium state,

n, n+1 n, n —1

3lJ
nn+1 n —2n —1

lJ 3lJ
n+1 n —1
l l

also hold. Thus we obtain from Eqs. (5), (6), and (18),

(23)

51nP"'" '+51n1'"+'"=— 1 1 1 1

n, n+1 n+l, n + (X;(—1)
n, n+1 n+1, n

lU lU l l

n, n+1

1 K 1
1 n n+1 & 1 n+1 n

, +(; — ) „„,by;J' + „,„+(K;—1) „,„by;.
3'lU' pn, n

3'lu
(25)

where

n, n+i 5 n, n+i 5 n, n —I
(26)

The frequency dependence of by;z'"+'s can be solved from Eq. (16) with the help of the Laplace transformation
straightforwardly although being lengthy. Slmultanmus equations for by,j +'(~)'s in frequency N are shown in Appen-
dix 8, from which one can obtain a set of solutions. Thus the Laplace transformation of Eqs. (21) and (25) gives the con-
ductivity in terms of by, j'"+'(co)'s in the form

o;(co) =PmL (z, ea) yI'; 1— 1

2Pz; eaE

X
1 1 1 1

+(K;;—1) „„,—„,„by;""+'(co)
3'lU lU

K,J —1..+i + n, n+i bV
3lU A,

KlJ 1

„+,„+„+,„&y;", '"(a~)
3'lu

'
Ar'

(27)

where Y,
" is independent of n and m so the superscripts

have been dropped, and j&i for by,j should be observed.
Equation (27) is the desired formula of frequency-
dependent conductivity applicable to the ordered and the
disordered phases of the t Sp2 on L2 j system, in which it
generally gives

A. One species of particles on equivalent sites—
generalized Einstein relation

n, n+1 g n+ 1,n
3'lJ —3'lJ (29)

Since there are only one species of particles, say, i, one
can take

o; ( oo ) IPm I (z; ea ) y Y; =f; ( oo ) = 1 .

IV. INVESTIGATION OF SUBSYSTEMS
IN DISORDERED PHASE

(28)
In the disordered phase we have

n, n+1 n+1, n
lU lU

g n, n+1 g n+ l, n
l l 0

(30)

Let us discuss Eq. (27) analytically. In doing so we
choose subsystems of (Spi on L i ), (Sp, on L2), and (Sp2
on Li) in the disordered phase, discussed in Secs. IVA,
IV 8, and IVC, respectively. These can be specified as
follows: If x, 8, and U are represented by Q, the above
subsystems have the properties I Q;"=Q;"+' I,
I Q;"&Q;"+'I, and I Q;"=Q;"+', Q;~QJ I, respectively.
The more complicated subsystems, sometimes associated
with the ordered phase, will be discussed in separate pub-
lications together with numerical calculations. First we
examine the system made of one species of particles on
equivalent sites.

Then we find the conductivity from Eq. (27) to be in-
dependent of frequency, as given by

o;(co)=cr; (0)=o; ( oo ),
o;(oo)= pc;(z;ea) yO;e

3'lU 3'lv +&ll3'll
X

x; x;

being identical to Eq. (2) where y;„and y;; can be given by
solving Eq. (12) with j=i, and Eq. (9) which is now writ-
ten as
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3 lv +3 II (33) reduces to

Kikuchi has obtained the diffusion coefficients in this

system. ' Thus it is quite instructive to see whether the
generalized Einstein relation holds, which has been dis-

cussed in the electronic conduction problem. ' ' For sim-

plicity we consider the coordination number 2y=2. The
chemical potential p is given in the CVM by

tu=p 'ln (34)
&r' 3'UU

and the detailed balance condition of Eqs. (11) and (12), or
the CVM equilibrium relation, yields

(Viu} =e V(1Vuu .

Utilizing Eqs. (33)—(35), we define the diffusion coeffi-
cient by

o;(al) = ( oo, s;; =0)

(f n+1, n f nn+1}( n+1 n}
l— —lN —A"ll

o';(m,'s;;=0)=PmL(z;ea) yY;(e;; =0),

Ult + 1,lt
I- n+1 n gn

(40)

(41)

cr(0)=a 8e
(z;e) Bc;

X 1+(e "—1)

x 2 0—=D.
R (8 +1) (36)

n

1+2(y —1) „1I,"+'"
I

n+1
1+2(y —1)

„

I,""+'
X.

(43)

where

R =[1+4(e "—1}x;(1—x;)]' (37)

Two different kinds of lattices result in the frequency
dependence in the conductivity, which originates in the
pair correlation. If we start from Eq. (1) with

The diffusion coefficient D; is exactly the same as that
directly calculated for co =0 under the gradient of particle
density in Ref. 1. This is the first example to show that
the generalized Einstein relation holds in an interacting
lattice-gas system. In a noninteracting lattice-gas sys-
tem, Eqs. (31), (32), and (36) simply become

—PUo;(0)=Pm'(z;ea) 8;e 'x;(1 —x;), (38)

D; (0)=a 8;e (39)

respectively. Equation (38} is exactly what has been ob-
tained previously by Richards' and Ishii' using the
master-equation approach.

B. One species of particles on two sublattiees
with different activation energies

Comparisons with Richards s method

Discussions in Secs. IV 8 1 and IV 8 2 will be limited to
the noninteracting case s;;=0. In this case Eq. (27)

I „(t)= I 1 —p„(t)I I
„

m PU Sttt
(44)

cr;(co) = cr;( oo,'e;; =0;y =1)

(p n+ 1,n j , n+n1)( n+ 1 n)

x +(f n+l, n+ f n, n+1}

which reduces to Richards's result when ~~0.
Now it is of interest to see the difference of his and our

equations for V;; "(r) For e;;=.0 and y= 1, our Eq. (10)
leads to

we do not have the frequency-dependent conductivity. '

Richards has calculated the dc conductivity in the same
system of one dimension by considering an equation for
the change of pair probability. ' Equation (40) for y= 1

becomes

n, n+1
EL

3t

n, n+1 n+1, n+2
~~n+1 n+2 lv Ul

n+1

n, n+1 n+1,n+2~ „+2„+13'it 3'IU

n+1

n —1,n n, n+1
13'iv 3'w

+ j X„

n —1,n n n+1
n 1n3ui 3ii'

Xf

while Richards's equation in our notation is
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n, n+l
n+In, +2I nn, +2 n, n+ln, +21 f n+2, n+II n, n+I n, n+ln, +2)

+I n, n —lq n —I,n+ I n —ln, n,+ I) I n —I,ng n, n+ n I—n,n,+I
)l R ll ill Ll ill

I n+1,n+2 n, n+ I,n+2 I n+2, n+1 n, n+ i,n+2, P n, n —1 LL —I,n, n+] I n —1,LL n —1,n, n+1

The second equality in Eq. (47) follows from the similar
relation to Eq. (33), y; =g,. „y;J'",for y;; and y; "
in which y;;;" is the probability of simultaneous occupa-
tion of three sites I, m, and n Wh.en the nearest-neighbor
pair is used as the basic cluster, as in the present case,

y;J'"+'yjk+'"+ /xi" +'. This type of decoupling makes
Eqs. (46) and (47) identical.

information in the present system. If x;"+'=x;", the
problem of Sec. IV A, the memory effect naturally disap-
pears.

Equation (48) explicitly gives the formal conductivity
as11, 12, 15

(z;e)
a;(co)= P

V

2. Eormal discussion on the non-Markov process

The present system (Spl on L2', e;;=0; y=1) is very
convenient in formally discussing the memory effect. Us-
ing the properties in equilibrium state, one can derive the
equation for 5x; (t) from Eqs. (15) and (46) in the form"'

X(e~L~ Ri@&.
i co—[1+F/( i co—+g)]+H

There is a conspicuous difference from the result obtained
from the mean-field approximation of the master equa-
tion with the site-blocking effect, ' in that in the present
calculation, there is an additional term in the denominator

—IC0+g
(56)

(48)

In other words, the present treatment is expected to give a
different frequency-dependent conductivity from that ob-
tained so far when applied to a disordered system. ' ' '

4= [x;(1—x; )]1~2,

I. = —404
(49)

(50)

where a vector ~:-& corresponding to operator = is de-
fined by ~:-&=g ~m &(m ~:-&, with [ ~m &I forming
the basis vectors. Furthermore, in Eq. (48) we have used
the definitions

C. Two species of particles on equivalent sites

The expression (27) for cr;(co) is not simple enough to
make an analytical discussion. Here in this subsection, we
examine one more accessible case, the disordered phase in
a binary system. In this case the coefficient of by;" "+' in
Eq. (27) equals zero and hence

1 1 K; —1

J= L "R=(l—x;—) 'J, (51)

where J and R are the flow operator and the coordination
operator, respectively. ' ' Operators H, F, and g are the
Hermitian operators, having their respective symmetric
elements as

n"

n, n+I ~ n+I, n)

J

(57)

where each species has its own activation energy. Then
from Appendix B we have the conductivity

( P nn p n n)I/2 (52) o;(co)=cr;(oo, y)f;(co;y),

cr;(no, y)=Pmt (z;ea) yI';(y), (59)
(I- n+II- +l,n)( n+ I n)2/I,

Fnn'
0, n&n'

( p n, n + Ip n + I,n)[(@n)2+ ( q&n + I )2]/y
nn'

0, n&n' . (54)

The memory effect in Eq. (48), stemming from the pair
correlation, is expressed in terms of the diagonal matrices,
and thus the correlation serves to induce the feedback of

f;(co;y)= 1+2

K"—1
LJx„y;„A;

i co+A,J. —S;J-

E"—1LJ

&L O'lL—2
i e+S"—S-.

LJ LJ

ZJ
Y~(y )

ZL

(60)
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fiU

N; —S; = Y;.(y)gJ lj X

2 2y —1 2y —1+ +-
3 JU 3 lU 3'iJ

E;j —1
+ (2y —3)

AJ.

+ ' I';(y)
XU

2 2y —1 2y —1+ +
3 JU 3lJ3'iu

E,j—1
+ (2y —3)

A;
(61)

g —1

Ag =qi9j~sj (62)

(63)

Thus we obtain

f;0;y =1
2y —1(2y —3}(q;urj +qj &; }

2qj Wj ZJ

2y —1 —(2y —3)(q.g +q te;) zi

The factor f;(co=0) has sometimes been called the per-
colation efficiency factor and associated to the origin of
the mixed-alkali effects, 2 which have been found ex-
perimentally. ' In the disordered phase we can analyze

f;(r0 =0) by utilizing the definitions

then

OJ(~; —,
'

) (oj(0;—,
' ), (69)

f(i(0;y)= 1 —2
9i 7J

A.
t qI'Zi +gjgjZj

(w; —ic z /z;) 2

X
I J J

2y —1(2y —3)(q;w +q &;)

Since 2y —1 (2y—3)(—q;to~+qi&;) &0, the real part of
the conductivity behaves in a usual manner of hopping
conduction, which is

cr;(0)+ai(0) (Re[0;(co)+o'J(oi)] (cr;(oo )+oj( oo) .

(72)

This general trend is naturally consistent with the
frequency-dependent mixed-alkali effect which tends to
vanish as the frequency of measurement increases. ' '

V. DISCUSSION AND SUMMARY

and vice versa, since fj(0;3/2)=1+q;(&; —&J). This is
true for any y and z;/zj, implying that if the real part of
the conductivity of one species increases with the frequen-

cy, that of the other species absolutely decreases. On the
other hand, the total conductivity of the system becomes

g;(0;y)+O'J(0;y)= [u;( oo, y)'+~, ( oo', y) [f~,(0;y),

where

W;
W] =

Wi+ WJ.
W;=

~i 'Vl

and g] = 0 (65)

f, (0; —,
' )=1—qj(&; —&J), (66)

which agrees with the result of a stationary-state PPM
calculation. ' However, the present configurational sys-
tem described in Sec. III C does not cover the honeycomb
lattice, and hence a separate calculation is required. This
can be straightforwardly performed to result in

whose zero-frequency value is the same as the previous re-
sult 24, 29

It is quite interesting to notice that if

o';( oo,' —, ) )cr;(0; —,
' ),

Note that i and j in Eq. (64) are for the two species of the
binary system we are working with. The second term of
Eq. (64) originates from modulation of the current i car-
rying due to j, and the third term is related to an induced
current of i by the current ofj.

In the case of y= z which corresponds to the two-

dimensional honeycomb lattice, and if z; =zj, Eq. (64) be-

comes

The master equation is generally understood to be the
most general and basic equation which governs the time
evolution of configuration probabilities. But in actuality
in hopping conduction problems, the applications are
mostly limited to the mean-field approximation with a
few exceptions. ' ' There is no definite guideline how we
approximate the master equation when we go more than
the mean-Beld approximation. On the other hand, the
PPM offers systematic approximation steps, and at the
same time, it never fails to take the particle correlation
into account under the pairwise interaction among parti-
cles.

In this paper we have first formulated the frequency-
dependent conductivity o(co) based on the pair approxi-
mation of the PPM in the [Sp2 on LiI system, both in
the ordered and the disordered phases. The calculation
has been carried out on local properties of the system with
the help of their translational symmetries. One of the im-
portant results of the co dependence is that the conductivi-
ty changes with frequency in the (Sp, on Li) system,
while the mean-field approximation of the master equa-
tion does not lead to any frequency dependence in this in-
finite system. ' ' This new result of such m dependence
is due to the correlation effects. In the (Sp, on L, ) sys-
tem, however, both previous' ' and present approaches
lead to the conductivity which is independent of frequen-
cy.

Another important result of the present work is the fact
that in the (Sp2 on Li ) system if the conductivity of one
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species rises with frequency, then that of the other species
falls with frixluency. This opposite co dependence of con-
ductivity can be physically understood in terms of the
"drag effect, " which is represented in the se:ond term of
Eq. (66): From Eq. (66) if w; &to~, for example, then i
particles are dragged by j to decrease the i current, and
vice versa. However, the total conductivity of the system
shows a consistent behavior with the frequency-dependent
mixed-alkali effect. The mixed-alkali effect has been dis-
cussed in terms of the percolation efficiency factor f; by
Sato and his co-workers. Equation (27) consists of
self- and cross terms as in the form

o;(co)=o;( oo )f~(ra),

f~(a)) =f;(;)(a))+f;(,)(a)) .

When ~~ oo, f;~;)(a))~1 and f;~J)(co)~0, or the self-term
approaches one while the cross term approaches zero both
in the ordered and the disordered phases.

The present ISp2 on I 2] systems give a great deal of
information analytically. The generalized Einstein rela-
tion, first illustrated by the present work a) =0 in the in-
teracting lattice gas on the (Sp) on I.i ) system, states that
in a strict sense the usually used Einstein relation does not
connect the charge diffusion constant D (0) to the con-
ductivity o(0),

o(0)&13c(ze) D (0) . (74)

One more significant matter to be mentioned here is an
explicit presentation of non-Markovian nature of 5x;"(t),
Eq. (48), from which one can know its kernel form. The
discussions on o(co) previously done in disordered systems
were mostly started with the Markovian rate equation, to-
gether with a distribution function for each disorder quan-
tity. ' ' ' In this sense the present non-Markovian equa-
tion would give rise to a different form of o(a)) from the
results obtained so far by the master-equation approach.

So far we have limited ourselves mostly to analytical
discussions, but yet have shown many interesting results.
Numerical calculations of the conductivity including the
frequency and concentration dependence, which might be
related to the mixed-alkali effect, will be reported in
forthcoming papers. These are especially to illustrate the
correlation effects of o(co) both in the ordered and the
disordered phases which have been lacking in the
equivalent treatment of the master-equation approach.

TABLE I. y values for various geometries.

Lattice

2D square net
sc lattice
bcc lattice

Dlr ection of field

[111]
[111]
[100]

system can change into any one of many states taI at
t+ht. This change during a small-time interval ht can
be specified by A (t, t +b,t), called the path uariable. The
most probable path A(t, t +b r), which determines the time
evolution of the system, can be obtained by maximizing
the path-probability function p[A (t, r +bt)), the probabil-
ity that a path A ( t, t +b t) occurs in b t. The details of
the construction of the path-probability function and of
its maximization process should be referred to Ref. l.

B. Pair approximation of the PPM in diffusion (Ref. 1)

Let us apply the PPM principle to the diffusion of clas-
sical particles in crystals, assuming the vacancy mecha-
nism. Here, for simplicity, the system consisting of iden-
tical particles on a one-dimensional lattice with equivalent
sites is considered (Fig. 3); the test particle in Fig. 3 can
jump into a vacancy next to it with attempt frequency 8
and energy U or U+ E needed for activation in which the
particle pair contributes to a binding energy —c. No two
particles can interchange places. Thus given parameters
8, U, and e are defined.

The pair approximation is to approximate the system in
terms of Ix;"(t),yj

"+ (t)'I, x;"(r) being the probability of
findin~ a particle of i species on site n at time t while

y,j'"+ (t) the probability of finding the particles pair, i on
n and j on n +1, at t. The subscripts i and j can take 1

and u for "particle" and "vacancy, " respectively, in the
present system. The path variables are given by

X;";'"(t,t+b, r) and Y;",'";~+'""+'(r,r+b, r), (Al)

corresponding to the variables x;"(t) and yJ'"+'(t), respec-
tively. The variable X indicates the probability that i par-
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APPENDIX A: PATH-PROBABILITY METHOD

A. Principle of the path-probability method (Ref. 1)

Suppose a state of the system is specified by a set of
variables Ia),a2, . . . ,a„I=a which is called the state
uariable. Starting from a given state a(t) at time r, the

FIG. 3. Potential energy of a test particle put on three vacan-
cies A, 8, and C. Solid circles are particles.
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Y;" (t)=Y;„".„," (t, t+ht)/ht . (A2)

ticle on n at t changes to i' on the same site n at t +At.
The variable Y means the probability that a particle pair,
i on n and j on n +1, at t changes to i' on n and j' on
n + 1 at t +ht. By maximizing the path-probability
function P [X( t, t +b t), Y ( t, t +b t )] constructed by Eq.
(Al) with energies U and e, we obtain the most probable

paths X and Y in terms of Ix(t),y(t}J. The extension of
the method to the ISp2 on 1.2I system leads to Y;" (t) of
Eq. (S) in the text, which is defined by

Thus we can obtain the difference x;"(t+At) x—;"(t) or
yij™(t+bt) y—J (t) in terms of Y(t, t+bt) for the change
of state at t, and then differential Eqs. (4) and (10) where
x (t) and y(t) should be solved.

APPENDIX 8: LINEARIZED EQUATIONS

Here we evaluate hy, j'"+'s of Eq. (27). Equation (16}
leads to

n, n+I
EJ

n+1, n n+1, n
Jn (~nn -1 ~nn+1)+ Jn

(2 I)Y ~i
XU XU

n, n+1 n, n+1

XU XU

n +1,n~n, n +1
JU

n, n+1
/J

n, n +1~n +1,n
3'EU

n+1, n
3 Jl

n —1,n ~n, n —1

3'JU

n, n —1

3lJ

n, n —I An —1,n
3'/U'

n —1,n (81)

which is based on the assumption that symmetry relations (23) and (24) hold. Further calculation of Eq. (81) and La-
place transformation give a set of simultaneous equations for by;J"'"+'(ti))'s where all I 5,"(t)I terms have been canceled,

G(~)by(~) =QE(co),
T

+~n, n+1

~n)n+1
ll

~n + 1)n
/E

gn, n+1
/J

ico+E '
l)

Sn, n+1
Jl

~n+I, n
JE

~n+1, n
EJ

~n, n+1
EJ

~ +~n, n+1
J/

~n, n+1
Jl

0
~n+1, n

JJ

Mn, n+1
JJ

+~n, n+1
JJ

(82)

n +n1( )

hy(co)=
& „,„+~,b,yj,

' (ci) )

n, i) + j(
JJ

(84)

n, n+1
EE

n, n+1
El

Q= —2 nn+i (BS)

gn, n+1 ~ n, n+1, ~ n+l, n
l l ll ~ /l

n+1, n

Mn, n+1 2$ t y ~JU

n+1 J+ n
XU XU

n+1, n

~ n, n+1
/l n /

XU

2(y —1) 1 2y —1

n+1, n n, n+1 n, n+1+ +
lU /U ll

2(y —1) 1

1 1
X~; n+1, n n, n+1

lU lU

n + 1)n
E/nn+1» , Y 2( 1)'J n E ~nn+1 nn+1

U l lU

n, n+1
yi'n' &~g

—1 2( y —1)
n+1 l ~n, n+1 n, n+1

—(K- —1) 2(y —1) 1

~n, n+1 An+1, n
l l

~n, n+1 ~ n, n+1, ~ n+1, n
/J EJ ~ Jl

(89)

(810)
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n, n+1
~ n, n+1

&J n+1 J
U

2y —1 1 2y —1

n, n+1 + n+1, n + n, n+1
O'I'U' 3'J'U

'
3'~J'

K,~ —1
+ 2(y —1)

J

(811)

n+1, n n, n+]
n„n+1 JU IU

Q;J' =pea „z;Y,—,ziti
XU XU

(814)

n, n+1
3'JU

~n, n+1 g n, n+1, ~ n+1, n
iJ fJ ~ Jl

n, n+1
g n, n+1

~J n+1 J
K; —11J

pn, n+1
J

(812)

(813)

Equation (27) evaluated with an aid of Eqs. (82)—(814)
holds for any system contained in a binary system of I Sp2
on I.z I, where it is applicable to cases of the disordered as
mell as the ordered phases.
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