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Electron transmission in a one-dimensional quasicrystal
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The resistance of a one-dimensional quasicrystal has been calculated at zero temperature by using

the Landauer formula. Our result shows that two kinds of electron-energy regions exist. One corre-

sponds to localized states with the resistance exponentially increasing with sample length and the
other one corresponds to extended states or resonant tunneling states with finite resistance R. The
localization length 1.,(k) has also been computed as a function of k, and it shows a self-similar

structure for local regions of electron energy.

Recently, quasicrystals or nonperiodic lattices with
long-range order have attracted wide attention as new or-
dered and condensed materials, which seem to be the in-
termediate cases between the truly random and periodic
lattices and possess rather unusual mathematical struc-
tures. ' In this article, we shall study the problem of
single-electron transmission in a one-dimensional (1D)
quasicrystal. Based an our knowledge, it has not yet been
fully studied. In the following, we shall use the iterating
method to generate a quasicrystal, even though the con-
struction of a 1D quasicrystal with two different spacings
by projecting method has been explicitly discussed previ-
ously. Denoting a and b as the two basic lengths, one
can generate a quasicrystal by the following iterating rule:

a~f (a,b),

b~g(a, b),

where f(a,b) and g(a, b) are sequences consisting of the
elemental codes a and b. For example, suppose the two
sequences are f(a,b)=ab and g(a, b)=a One can .gen-
erate the following sequences, starting from element b, by
Eq. (1):

quasicrystal sequence, the iterating equation for the case
of g(a, b)=a is

QN =f(Qtv-»Qtv-i»

where f is the same function of sequence as defined in Eq.
(1). The Fibonacci sequence discussed above belongs to
this class, and from Eq. (2) its iterating equation reduces
to

with Q~~ band ——Qi ——a. We shall consider the Fibonacci
sequence only; other sequences described by Eq. (2) should
yield no qualitatively different results. The electronic
properties of a single electron in 1D random and periodic
lattices are we11 known; the electron exhibits localized
behavior in a random lattice except for some discrete
resonant states. In a periodic lattice the allowed electron
states are extended. For a 1D quasicrystal, the behavior
of a single electron seems to be in between those of ran-
dom and periodic cases. Due to the nonperiodic and
long-range order property of the crystal, we expect that
the unusual feature should appear in the electron-
transmission coefficient.

For simplicity, we shall consider an electron moving in
a 1D quasicrystal along which the 5-function potentials
are located at the lattice sites x; and with strength V. It
can be described by the following Schrodinger equation:

d P(x)+ g 2V5(x —x )f(x)=k~P(x)
dx i=1

(4)

As the iterating number N goes to infinity, we obtain an
infinitely long quasicrystal with Fibonacci sequence. A
trivial example is f(a,b) =g (a,b). This situation reduces
into a periodic lattice. A specific class of quasicrystals
with g (a, b) =a can be explicitly expressed by an iterating
equation which generates the Xth sequence frorp
(N —1)th and (N —2)th sequences. Denoting Q~ as Nth

where k =(2E)'~ and E is the energy of the tunneling
electron, ftt fthm, +fthm i is th——e Fibonacci number, with

fo f i
——1, and the unit of m——=Pi= 1 has been used The.

solution of Schrodinger equation in the region of
x„~x ~x„+l can be expressed as

g„(x)=A„e " +B„e

By matching the wave function at x =x„,we obtain
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V I.ka„
e

ik

where h„=x„+~—x„can be either a or b according to
the sequence. Denoting

fw

as the transfer matrix of Nth Fibonacci sequence, we ob-
tain the iterating equation from Eq. (3),

TN TN —1TN —2 (8)

= —&+&N+&N &+&N 2
—~N&N &&N 2

2 2 2 (10)

here (T,T ')=T+TN ' —T 'T . In fact, A, de-
pends on k but not on E. Replacing (Xs 2,X& i,X&) by
(X, F,Z) in Eq. (10) and setting A, =const, the above
equation determines a 2D surface in space (X,F,Z). If an
initial point (X&,Xi,X2) is chosen on the surface, then the
following iterating points (Xtv 2,X~ i,X~) generated by
Eq. (9) will be on the same surface.

For 5-function potentials, one should choose

with T'=tb and T =t, . Following Kohmoto et aI. '

and defining Xz ——Tr(T )/2, Eq. (8) can be cast into a
nonlinear mapping

~N —1+N —2 +N —3

A conserved quantity A, can be found s as

'Tr(T~, T" —')

=nm/(I —y) touches the A, =0 surface and they belong
to the discrete set of tunneling states in k space. This is
different from the tight-binding model where A, is in-
dependent to electron energy ' or k. There exist two
kinds of k regions. One corresponds to those points
(XO,Xi,Xq) from which the iterating points escape to in-
finit as N becomes large; namely X~~ Oc as X~ oo.
%e shall call these points escaping points, while the other
kind of points do not escape to infinity as nonescaping
points.

We have performed a numerical calculation for the
iteration of Eq. (8) up to N = 100 which corresponds to a
long chain with the length about 10 ' in the unit of a or
b. The dimensionless resistance of the Fibonacci sequence
with 5-function potentials has been calculated bg using
the Landauer formula" Rz ——

~
Ti2 ~, where Tiz is the

off-diagonal element of transfer matrix T . To convince
ourselves we first calculated the resistance R =R too as a
function of k for the periodic lattice by setting y =1. In
comparison with the analytic band structure, the resis-
tance R and

~
X,

~

vs k have been plotted in Fig. 1. It is
easy to see that the resistance is infinitely large at the gap
regions which correspond to

~
Xi

~
&1 and it oscillates

rapidly and has finite value in the conduction bands
which correspond to

~
Xi

~

(1. The smooth upper limit
for the resistance in the band region shown in Fig. 1 is
caused by the reflection at the two ends of a finite chain.
For quasicrystals y&1, the resistance R changes quickly
as a function of k and shows that two kinds of electron
energy regions exist, namely R -C and R -e, where |"
is k dependent and has finite value even for the crystal
length L~ Dc. The regions for R -C originate from the
nonescaping points (Xo,Xi,Xz) which form a Contor set
in k space; these states correspond to the resonance tun-
neling in a 1D random lattice. On the other hand, the
regions that R -e for a long chain can be recognized as
escaping points (XO,Xi,X2) which form a coset of a Con-
tor set in k space. In the following we shall choose
y=0.6180339. . .=(v 5 —1)/2. In Fig. 2 we show

TO
e ik (a —b)

e
—ik(a —b)

'l0

logR y 1.0
in order to satisfy Eq. (8), namely T =T'T . Therefore,
the initial point (XO,X„X2)can be expressed as

Xo ——cos[(1—y)k],
Xi ——cos(k)+( V/k)sin(k),

X2 ——cos(ky)+( V/k)sin(ky),

which is a function of k, where b = 1 and a =y have been
chosen. For a periodic case y= 1, Xo ——1 and X& ——X2,
the initial points are always on the A, =0 surface; the re-
gions that

~
Xi

~
&1 correspond to energy gaps while

~
Xi

~
& 1 correspond to energy bands. ' For a quasicrys-

tal @~1,we have

OC
O

Ch0 Or

-)0
0

(X, J

[
I I P . ggg

0.0
lO

p2
sini[( 1 —y )k], (12)

where only the points (XO,Xi,X2) with k =k„

FIG. 1. The quantities log&0(R) with the resistance R =R&00
and

~
X~

~

are plotted as functions of k for periodic lattices,
where the spacings are a =b =1 and the potential strength
V =0.5.
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~N —~N —1+~N —2 ' (14)

This is the same equation satisfied by the Fibonacci num-

ber f~. Let Zz ——Y~/Y~ ~, Eq. (14) becomes

1ZN-1+
N —1

ln(R +1) vs length L generated from the Fibonacci se-

quence at different values of k which belong to the escap-
ing point set. The dots with large X in Fig. 2, which cor-
respond to several different lengths using the iterating
equation, are closely located on a straight line. For exam-

ple, the last dots at right on line 1 and line 2 are, respec-
tively, for N =24 and 39. This implies the resistance for
the escaping points exponentially increasing with the sam-

ple length L.
The exponential dependence of R on L reminds us of

the electron transmission in a random lattice, where the
electron collides with randomly distributed scatterers and
the ensemble-averaged resistance has the exponential
behavior' R =e —1. Here a is the linear resistivity or
the inverse of localization length. In fact, the reason for
the exponential dependence R-e in a quasicrystal is
different from that of a random phase average. This will

become transparent in the following analysis. Taking the
logarithm on both sides of Eq. (9) and using the notation
Y~ ——ln(XN), we have

Y~ ——1n[2exp( Y~ ~+ Y~ 3)—exp( YN 3)] .

As discussed by Kohmoto et al. , once
l
Xt i l

&1 and

l
Xi

l
&1, Yz ——ln lX~ l

will grow exponentially with N
as long as N & l. For an escaping point and sufficiently
large X, FN »1, and the above equation can be approxi-
mated as

+M+S—+M+S —1

(17)

The associated sample length L =LM+s for the Fibonac-
ci sequence is

LM is =fM is ia +fM is zb

fMis 3a+fM-is 4b
=LM+s-1 1+

fM is —2a +fM+s —3b
(18)

I.et O.
N =fz/fN, and y =a /b. Equation (18) becomes

LM+s =LM+s il 1+1/&-M+s 3( 1+1'/~-M is 3)-
&&(I+)'«Mis-3) ']

and using an asymptotic expression for sr~-cr as N &&1
the above equation reduces to

1
LM+S —LM+S —1 1+ LM+S —1 s0'

(19)

Za ~a as N~oo, here cr=(v 5+1)/2 is the golden
mean value. Therefore, we obtain the asymptotic
behavior for an escaping point

lnXN

lnXN

as N ~ oo. Defining M to be an integer number such that
for X &M the above equation begins approximately valid,
we obtain

Zz converges to the fixed point o of Eq. (15), namely

0
50

Eliminating o from Eqs. (17) and (19) we obtain

'L w+s/'L~'
+M +S—~M

From the expression of transfer matrix

+I+Rye QRJve

QR„e
' ~ +I+R~e

(20)

and the definition of X~, l XM+s l
can be shown to have

the formr
2

Qt
P

~O ~

0 k.
I I

l XMis I
'=(RMis+1)cos'(0M+s) .

By Eqs. (20) and (21) we finally have
r

LM+S
RM +s- exp —2 ln

l cos(QMis )
l

—1,
L, (M)

with the localization length

(21)

(22)

FIG. 2. The quantity ln(E, +1) is plotted at several different
lengths I. (dots along line l are for k =2.2 and line 2 are for
k =2.0). The last dot at right on line 1 is for X =24 and on
line 2 is for X =39. Here the ratio of spacings
a/b=y=0. 6180339. . .—(V 5 —1)/2 with b =1 and the po-
tential strength V=0.5. The upper length scale is for k =2.2
and the lower one is for k =2.0.

L, (M)=
21n XM

(23)

The exponential dependence of R =RM+s on L =LM+s
is rigorously valid for large L. The term 21n

l cospM+s l

in Eq. (22) usually makes a small deviation from the
straight line for ln(R + 1) vs L as shown in Fig. 2.

The numerical calculation of the localization length
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FIG. 3. The quantity log, o[L,(k)] is plotted as function of k
for the Fibonacci sequence with y =0.6180339. . .=(W5 —1)/2
and b = 1. The potential strength V =0.5.

FIG. 4. The quantity log~o[L (k)) is plotted as function of k
for a narrow region which is indicated by a bar in Fig. 3.

L, (k) defined as L iso/In(Rico+ I) has been carried out,
which is a sensitive function of k. In Fig. 3, we plot
L,(k) vs k in the neighborhood of k =2.2. In Fig. 4 the
same quantity is plotted with a finer scale in k space
which corresponds to the region indicated by the horizon-
tal bar in Fig. 3. 200 calculated points have been shown
in Figs. 3 and 4, but the detailed structures of the regions
with many peaks and valleys are not shown clearly here.
Values of L,(k) larger than 10' have been cut off from
the figures. Comparing the smooth regions of L, (k) in
Figs. 3 and 4 clearly shows a self-similarity in local k
space.

In conclusion, we have examined and given the qualita-
tive picture of single-electron transmission through a 1D
quasicrystal with the Fibonacci sequence at zero tempera-
ture. It states that two kinds of energy regions exist. One

corresponds to localized states with the resistance R -e
and the other one corresponds to extended or tunneling
states with finite R. The exponential dependence of R on
L has been analytically studied, as we have shown that it
has a quite different origin as in the case of a random
phase average for a 1D disordered lattice. ' Numerical
simulation shows that self-similarity appears in the locali-
zation length L,(k). This property, embedded by the
structure of quasicrystals, should also appear in other
physical quantities like the transmission coefficient for
electromagnet waves.
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