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Microscopic stress tensors are derived for the local-density-approximation and Hartree-Fock
models for quantum systems. Dynamically derived stress tensors appear as elements of a continuity
equation for the force density in direct correspondence to Newton’s laws of classical physics. Equili-
brium stress tensors S, derived from the dynamics of the model satisfy a simple, microscopic rela-
tionship, divS=0, balancing electric field and momentum-flux contributions at each point in a
quantum system. Stress tensors are well-behaved, integrable functions of position which tend to
zero as r ~* at large distances r from finite Coulombic systems. The microscopic stress tensor and
pressure are shown to be consistent with macroscopic expressions for these quantities. Comparisons
are made of the present work to related work on microscopic stress.

I. INTRODUCTION

This, the first of two papers on the theory of micro-
scopic quantum stress tensors, is concerned with general
aspects of the theory. The antecedents for contributions
to the theory of stress tensors are long and often illustri-
ous, indicating a continued interest over many years in the
theory of stressed systems. Probably, part of the motiva-
tion of the earliest work! ~7 was to establish the close rela-
tionship of quantum theories to their classical correspon-
dents and thus give credence to the then dubious quantum
theory. The emphasis was on the concept of force and
pressure in quantum systems. Force and pressure remain
a subject of theoretical interest,®~!? but the focus now is
on formulations which lend themselves to efficient calcu-
lation. Complete stress tensors for quantum systems have
been derived in various forms,>*!*~!5 but only recently
have there been serious attempts to calculate the stress
tensor in nontrivial quantum systems.'*!> The common
feature to Refs. 1—15 is that they treat force, pressure, or
stress as a macroscopic average quantity. Please note that
the references to the theory of macroscopic forces, pres-
sures, and stresses are intended only to be representative in
acknowledging the conceptual foundations to the theory
and in no sense are claimed to be exhaustive.

The objective of the present work is to explore further
the theory of forces, pressure, and stress at the microscop-
ic level. It is shown that stress tensors derived from the
dynamical equations for the quantum system are valid at
the microscopic level. The physical systems considered
are nonrelativistic models of many-electron systems, in-
cluding the local density (LDA) and Hartree-Fock (HF)
approximations.

At the microscopic, quantum dynamical level, stress
tensors S occur in a continuity equation,

>

Fhe(r)+divS(r)=0, (1

relating the net force density F, acting upon a system to
the divergence of the stress tensor. The stress tensor itself
is expressed

S=K+M, )

where K (kinetic) involves terms which are interpreted as
momentum-flux densities in direct correspondence to clas-
sical kinetic theory and M (mechanical) involves force
fields including the Maxwell stress tensor with obvious
classical significance and additive contributions of a pure-
ly quantum-mechanical origin.

In a macroscopic sense, stress tensors are ambiguous
quantities because the stress tensor defined by Eq. (1) is
unaffected by the addition to it of the curl of a dyadic
field and because macroscopic quantities based on a
volume integral of S will be unaffected by the addition to
S of the gradient of a vector field which vanishes on the
volume surface or whose contribution to the surface in-
tegral over the volume surface vanishes. It is found here
that a stress tensor which is derived from the quantum
dynamical equations has an essential microscopic signifi-
cance of itself.

Stress tensors appear physically transparent in that it
seems that one should be able to simply write down a
stress tensor based on physical arguments and not be con-
cerned with deriving one from basic principles. Such ob-
servations tend to give the apparent ambiguities more
weight than they really deserve.

Another source of potential confusion in the theory of
stress tensors is that numerous “stress tensors” may be de-
fined for a given physical system. For example, each of
the terms in the right member of Eq. (2) has a legitimate
interpretation as a stress tensor in its own right. In this
paper the term “stress tensor” is reserved for tensors
which occur in a continuity equation of the form of Eq.
(1) where the force density includes all forces acting on
the system. When a system is in eqilibrium, by definition
the net force density at any point in the system is zero and
the divergence of the equilibrium stress tensor is zero.
Further examples illustrating this point are given in Sec.
IIL

In the following section Hartree-Fock and local-
density-approximation models are briefly summarized and
the notation used in describing these models is established.
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In Sec. III stress tensors for LDA models are derived
from their dynamical equations. The presentation em-
phasizes the intimate correspondence to classical physics.
Microscopic stress tensors have been considered previous-
ly using similar techniques.'®~2¢ The present formulation
is compared and contrasted with related work at the end
of Sec. III. Stress tensors for the more involved HF
model are derived in Sec. IV by evaluating the HF expec-
tation value of the many-electron stress-tensor operator.
In Sec. V macroscopic stress tensors are derived and
found to be identical to stress tensors derived from scaling
arguments. In the final section the main results are sum-
marized briefly and discussed. In the companion paper?’
applications of the theory are made to closed-shell atomic
systems. The objective of the applications is to provide
explicit examples of the concepts of stress.

II. ONE-ELECTRON APPROXIMATIONS

The currently popular one-electron LDA where the
self-interaction energy of an electron is approximated by a
local operator is closely associated with the HF approxi-
mation. In either model the total energy of the electronic
system has the form

EtotzEk +EN +Ee +Ex ) (3)
where
E=2X($1.p°¢1)/2m )
I

is the electronic kinetic energy and the sum in Eq. (4) in-
cludes only occupied one-electron states ¢;. The term

EN=—2fd3r1n(r1)ZNe2/r1N (5)
N
is the interaction energy of nuclei of charge number Zy

(or any other charges external to the electronic system)
with the electrons of number density

n(r)=3 |¢;(r)|2. 6

The interaction energy of the electronic system is
E=3 [dr [ d’rnizon(re/ry . @

The exchange-correlation energy of the electrons is
represented as

Ex=%2(¢]1Ux¢1) ’ (8)
I
where in the HF model,
Urr(r))=—3 [d’r, ¢;(r)*6,(x2)(e2/r 1)), (xy)
J

(9a)

is an integrodifferential operator and in the LDA models
is a multiplicative operator,

U, =2¢,(n) (9b)

which depends upon the electron number density n.
The dynamical equations for the one-electron models
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are found by minimizing the total energy with respect to
variations in the one-electron functions constrained to
remain normalized to unity and expressed by the eigen-
value equation

Hor=e d; . (10)
The one-electron Hamiltonian operator
H=p*/2m+V+V, (11)

includes kinetic and potential-energy terms in direct
correspondence to the partition of the total energy, Eq.
(3),

V=Vy+V,, (12)
where the nuclear-electron potential energy is

VN(r1)=2(—ZN'e2)/r1N' (13)
N’

and the electron-electron potential energy is

Vo= [ d*rye’n(r)/ry; . (14)
The HF exchange-correlation operator is V,=U, of Eq.
(9a), while for LDA models,

V.= [ne,(n)]. (15)
on

In deriving the stress-tensor operators and their expec-
tation values it is assumed that the dynamics of the one-

electron system is governed by the appropriate
Schrodinger equation
3
=ifi—¢ .
H¢=i at¢ (16)

III. LDA STRESS TENSORS

The equation-of-motion (EOM) method is used to
derive the stress tensor. In the presentation here one ex-
ample will be given in detail and after that the results will
simply be listed. The detailed example is given to avert
any possible misunderstanding about the method and to
point out the origin and nature of certain ambiguities
which have been associated with microscopic stress ten-
SOrs.

It is convenient to consider operators in the Heisenberg
represenation

A" =exp(iHt /%) A exp( —iHt /#) , (17)

where the EOM for a time-independent Schrddinger
operator A is expressed

i A" =(4H —HA)" (18)
and where the convention established in Eq. (17) that
Heisenberg operators are distinguished from the corre-
sponding Schridinger operators by a superscript H is
maintained.

Consider the one-electron mass density operator

m(r)=mydlr—r;), (19)
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where m, is the electron mass, 8(x) is the Dirac § func-
tion, and the explicit reference to the position of the elec-
tron r; is suppressed in the notation for m. The EOM of
m for the LDA is expressed as

9
ot

in the form of a continuity equation in which the operator
corresponding to the mass flux density is found to be

P(r)=5[pd(r—r;)+8(r—r1))p;], 21

m(r)¥ +divP(r)¥ =0 (20)

where p, is the electron momentum operator. Alterna-
tively, P may be interpreted as the momentum density
operator. The EOM for P leads to a continuity equation
in which the momentum-flux density operator has the
properties of a stress tensor.

In the context of Eq. (20) operator P is unaffected by
the addition of the curl of an arbitrary vector field and in
this sense is ambiguous. A current proportional to the
curl of a magnetization density is expected from classical
considerations. However, as the Hamiltonian for the
model system does not include spin-dependent contribu-
tions, such terms in the momentum density will have no
dynamical manifestations. A model including spin-orbit
coupling or a Dirac model will produce spin-dependent
contributions to the momentum density operator. It is
hypothesized here that the microscopic operators found
using the EOM technique uniquely represent the dynam-
ics of the model. In particular, it is assumed that the ex-
pectation value of P(r) corresponds within the context of
the dynamics uniquely to the observable momentum den-
sity of the system at position r.

Another situation which suggests that the microscopic
operators can not be defined uniquely is one in which only
a macroscopic quantity is observed. For example, suppose
the expectation value, (¢(r;),P(r)¢(r;)), of the microscop-
ic momentum density operator above is integrated over a
volume V,

P,=[ d’r(,P(r)$) . (22)
Equation (22) can be reorganized into the form
P.= [ d’r (¢*p+ tih grad( |4]2)) . (23)

If the volume considered is the volume of the system, then
the second term in the right member of Eq. (23) must van-
ish so that the momentum operator is Hermitian. Of
course, by definition expectation values are evaluated with
respect to the volume of the system. Integrals over the
volume of the system allow several equivalent forms of
the operators and in this sense the operators are ambigu-
ous. However, if the volume is arbitrary, then no ambi-
guity of this type occurs.

The same sorts of concerns over uniqueness as
described above affect stress tensors. Stress tensors de-
rived from scaling arguments occur as integrals over the
volume of the system and it is not possible to infer on this
basis alone operators having a unique microscopic signifi-
cance.

The EOM for the momentum density operator in the
LDA is
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2[R = —div(K,,)"

—{8(r—r))grad[ V(1) + V ()]} ¥, (24)
where the tensor operator with Cartesian coordinates
i,j=1,2,3

(Kop)ij=[puP(r);+P(r);P;1/2m (25)

corresponds to the momentum-flux density. The second
term in the right member of Eq. (24) corresponds to the
force density of the entire Coulombic system acting on an
electron at the point r.

At this point it is convenient to consider expectation
values of these one-electron operators. Expectation values
for the electronic system are defined for operator A4 by

A, )= (¢;(r)),[A(D)1 (1)) , (26)
I

where the sum includes “occupied” electronic states. The
expectation values are time independent when the elec-
tronic states are eigenstates of the Hamiltonian. For ex-
ample, the expectation value of the mass density operator
is

m(r,t)=mgn(r,t) , (27)

where n is defined in Eq. (6). Since a primary concern
here is with eigenstates, the possible time dependence will
be suppressed in the notation but should not be forgotten.
The expectation value of the operator, Eq. (24),
d

3 P0= —divK(r) —n(r)grad[ V(1) + V,(r)], (28a)

where the expectation value of K, Eq. (25), is

Ki;=3 {[$1pipjdr+(pid1)*pjd1]+c.c.}/4m . (28b)
1

Equation (28a) is recognized as a microscopic form of
Ehrenfest’s theorem. The conventional form of
Ehrenfest’s theorem' is found by integrating Eq. (28a)
over the volume of the system. In this case, divergence
terms vanish as discussed above. The integral of Eq. (28a)
corresponds to the classical relation,

d

:1_’Pelec= Fnet(elec) . (28¢)

Even closer correspondences to classical physics may be
found. The force density terms corresponding to the in-
teraction between the electrons can be reexpressed as

n(r)grad[ V,(r)+ V(r)] =div(M, + M, ) , (29)

in terms of the (negative) Maxwell stress tensor for the
electronic system,

M, (r)=[+1E,(r)*—E,(r)E,(r)] /4T , (30)

where the electronic contribution to the electric field at
point r is

E.(r)=grad[V,(r)]/e , (3D
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where V, is defined by Eq. (14) and an exchange term
(LDA) (Ref. 10)

M, =Tn(r)(V, —g,) . (32)
Equation (28a) becomes

9
ot

The integral of Eq. (33a) over the volume of the system
corresponds to the classical relationship

P(r)= —div(R+M, +M,)—n(r)grad[Vy(r)] . (33a)

2 puec=Fux (33b)
where F,,, is the resultant “external” force applied to the
electron system.

The divergence terms in each of continuity equations,
Eqs. (28a) and (33a) correspond to “stress tensors” with
obvious physical interpretation. However, as noted above
the designation stress tensor will be reserved here for ten-
sors which occur in continuity equations in which the
force density of the total system is included.

Let the “system” be extended to include both the elec-
trons and the nuclei. To do this a term must be included
in the left member of Eq. (33) corresponding to the reac-
tion force density of the electrons on the nuclei and the in-
teraction of the nuclei with one another,

FN(!')_—"ES(I'—I'N')ZN'Q E,_,(r)+ 2 EN"(I) , (34)
N’ N"(£N")
where E, is defined in Eq. (31) and
Ey(r))=—grad(Zye/ry) (35)

is the electric field from nucleus N at a point r;. The
force density of Eq. (34) is added to both sides of Eq. (33)
and the right member is reorganized into the form

%p<r)+FN(r>=—div[‘s”<r>], (36)
where the stress tensor for the entire system is

S=K+M,y +M, (37)
in which

M,y (1) =[1TE y(r)?—E.n(r)E y(r)] /47 (38)
is the Maxwell stress tensor for the entire system, where

E.v(r)=E.(r)+ Y Ey(r)=grad[V(r)]/e (39)

-~

is the total electric field of electrons and nuclei. In
evaluating Eq. (38) it is understood that terms involving
nuclear self-interactions are to be excluded. [Note that
this condition follows from the algebra and the fact that
infinite nuclear self-interaction electric fields are excluded
in Eq. (34). It is not an imposed condition based on phys-
ical reasoning.] This exclusion of nuclear self-interactions
has the counterintuitive consequence that the stress field
from the electrons is not completely screened by the nu-
clear fields, even in the case of neutral systems. As a re-
sult, the Maxwell stress tensor, Eq. (38), for a finite sys-
tem behaves asymptotically as the square of the electric
field of a point charge r~* To simply include nuclear

self-interactions results in stress tensors with more physi-
cally sensible asymptotic behavior but introduces nonin-
tegrable singularities at the nuclear sites. Explicit exam-
ples concerning this point are discussed in the application
to atoms.?’ For the present purpose it is preferred to treat
stress tensors which are well behaved everywhere.

For localized systems of nuclei and electrons the in-
tegral of Eq. (36)

F net(total) = F net(elec) T Fnet( nuclei) = 0 (36"

is closely associated with the Hellman-Feynman
theorem.%”° In Eq. (36') the time rate of change of the
total electron momentum has been replaced by the net
force on the electrons using Eq. (28¢c). An isolated system
does not exert a force on itself. The integral of the diver-
gence terms in Egs. (28a), (33a), or (36) will be zero be-
cause of the charge localization and because the Maxwell
stress-tensor term approaches zero as r—* at large dis-
tances.

For the entire system to be in equilibrium the net force
on each nucleus must be zero and the electronic states
must be eigenstates. Hence, the left member of Eq. (36) is
identically zero. A direct evaluation confirms that
divS =0 if the net force on each nucleus is zero and the
electronic states are self-consistent eigenstates.

The stress tensor obtained through the EOM technique,
Eq. (37), contains no terms which may be manipulated
away at the microscopic level and still satisfy the equili-
brium condition divS =0. All terms are needed and are
essential. The equilibrium condition is utilized in Sec. V
to make the connection between the microscopic theory
and time-honored macroscopic results.

The integral over an arbitrary volume of the left
member of Eq. (36) is interpreted to be the net force on all
charges inside the volume,

Fo( V)= (—dA)-S(r), (40)

AN
where the divergence theorem is used to express the in-
tegral of the right member of Eq. (36) as a surface in-
tegral. The minus sign is associated with the differential
area vector, giving it the appropriate sense of an inward
normal.?® Thus, S has the properties of a directed force
per unit area or a stress tensor. In equilibrium these con-
tributions to an integral over any closed surface must
completely cancel to give zero net force. Adding to S the
curl of a dyadic field has no effect in Eq. (40) in equilibri-
um or otherwise. By Stokes theorem such a contribution
to S has zero contribution to Eq. (40) since A(V) is the
surface enclosing volume V. A special case is the curl of
a dyadic field equal to a constant dyadic. If such a term
were added to S, then S must be understood as a “gauge”
stress tensor. However, as noted above for localized sys-
tems the stress tensor properly tends to zero outside the
region of charge localization and the constant dyadic
must be zero.

Stress has an immediate observable physical signifi-
cance. While it has not been established that microscopic
stress is directly observable in a general sense, any physi-
cally meaningful representation of these quantities should
be well-behaved, integrable functions everywhere and van-
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ish at large distances from finite systems at a rate greater
than 2. The latter condition assures that a finite sys-
tem will have zero stress at large distances. It is desirable
that stress vanish at a more rapid rate, so that intergals of
the microscopic stress over the volume of the system
remain finite.

Nielsen and Martin?> (NM) have also considered micro-
scopic stress in quantum systems. NM use the EOM
technique to derive microscopic stress tensors. However,
the resulting formulations of microscopic stress appear to
be very different. This paper is concerned with single-
particle models for systems of electrons with fixed nuclei.
Since the system and the forces are stipulated, the present
approach incorporates the forces directly into the micro-
scopic stress tensor and they physically motivate its form.
NM consider a system of particles with general forces.
These general forces can then be specialized to the
Coulombic case. In order to maintain generality, NM fol-
lowed Kugler!” in treating “force” contributions to the
microscopic stress tensor N (14). In the case of Coulom-
bic systems, the Kugler treatment of force terms leads to
troublesome technical difficulties. NM are aware of these
problems and consider them in their appendices. The
Kugler approach is also discussed here in the context of a
many-electron formulation of microscopic stress tensor
operators in the Appendix.

The main difference between the present and NM for-
mulations concerns how the microscopic results are ap-
plied.” NM use their microscopic stress tensor to derive
the total force on a finite volume of the system, N(16).
When specialized to Coulombic systems in equilibrium,
the corresponding result in this paper is obtained by tak-
ing the integral over the same volume of Eq. (28a). For
this application the Kugler approach leads to the same re-
sult. The rest of the NM paper is concerned with obtain-
ing identities for the macroscopic stress. Thus, as far as
the microscopic theory is concerned, the only point of
contact between NM and the present work is N(14). The
reader might be warned not mistake N(18) for a micro-
scopic stress tensor, as I did. This is clearly described by
NM as a “planar” stress. The force terms in this tensor
are designed to reproduce the macroscopic stress, but they
are not consistent with the EOM in the sense that a mi-
croscopic stress tensor must be. In particular, the diver-
gence is nonzero. However, NM do use this tensor as a
microscopic stress tensor to obtain alternatives to the scal-
ing form of the macroscopic stress and pressure. This
point will be reconsidered in the context of the connection
between macroscopic and microscopic stress discussed in
Sec. V.

The presentation in this paper has emphasized the clas-
sical correspondences between quantum and classical
dynamics as evidenced at the macroscopic level by Egs.
(28c), (33b), and (36'). These are general results in the
sense that there is no requirement that the systems be in
equilibrium. A central point of the paper is to observe
that the underlying microscopic relationships, Egs. (28a),
J
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(33a), and (36), are equally valid and general. The special
case of equilibrium as defined above implies that the
divergence of the microscopic stress tensor for the entire
system is zero at each point in the system. As will be seen
in Sec. V this equilibrium condition is essential for estab-
lishing the relationship between microscopic and macro-
scopic stress tensors.

IV. THE HARTREE-FOCK STRESS TENSOR

The HF model poses problems when one tries to apply
the EOM technique to derive stress tensors in parallel to
the derivation of LDA stress tensors. For example, to
parallel the LDA derivation of a momentum density
operator, Egs. (20) and (21), is complicated by the failure
of the HF exchange operator to commute with the mass
density operator. It is possible to “force” the EOM
method to produce a momentum density operator corre-
sponding to Eq. (21) following the methods of Refs. 17,
25, etc. However, the present approach parallels the HF
approximation to the many-electron energy. The stress
tensor is evaluated simply as the HF expectation value of
the many-electron stress-tensor operator.

The many-electron dynamics implies a many-electron
stress-tensor operator.?® For a finite system of electrons
and nuclei the stress-tensor operator has the form of Eq.
(2) where the kinetic term

Kop(r);j=2[p1,-PI(r)j+P1(r)jp1,-]/2m (41a)
I

is summed over electrons at positions r; and where the
momentum density operator for electron I is

P,(r)j=%[p1j8(r—r1)+8(r——r1)p1j] . (41b)

The Maxwell stress-tensor operator

Mo(r)=3 [+1E;(r)-E,(r)—E,(1)E,(r)] /4m (42a)

1,j
I+£J

is summed over both electronic and nuclear coordinates
and

El(r1)=~—grad(e1/r”) (42b)
is the electric field at position r; from a particle of charge
e at position 7;.2

The stress-tensor operator consists of one-electron and
pair interaction terms and the evaluation of the HF expec-
tation value proceeds in exact parallel to the evaluation of
the HF expectation value for the many-electron Hamil-
tonian. The form of the result is identical to Eq. (37), ex-
cept that the exchange contribution to the stress tensor is

M, =—3 (¢:(1)¢,(2) | ($TE-E,—E,E,) | $,(2)$,(1)) /4rr , “43)

LJ



where the electric field operators for electron, k =1 or 2,
are

Ey(r)=grad(e/|r—r|) . (44)

The divergence of the HF stress tensor is zero if the
resultant force on each nucleus is zero and the electron
states are self-consistent eigenstates of the HF one-
electron Hamiltonian. Thus, the same conditions for
equilibrium are found for the HF and LDA models.

V. MACROSCOPIC STRESS TENSORS

Stress tensors derived via scaling arguments have the
form of macroscopic averages. A connection between the
microscopic stress tensors considered here and macroscop-
ic average stress tensors can be made for localized systems
by considering volumes in Eq. (40) which extend to infin-
ite distances on a hemisphere and are enclosed by a planar
surface which slices through the system,

Fo= [(—d4ad)§. (45a)
The result is interpreted as the force exerted on the charge
inside the volume by the charge outside the volume. The
only contributions to the integral occur on the surface
slicing the plane. In equilibrium this force is zero for
each such surface. The volume integral,

E.= [ dx(—d4a?)Sn=— [d*aSr),  @sb)

where dx is a displacement normal to the surface normal
to unit vector n, has units of energy, and may be viewed
as a measure of the potential for the stresses to do work.
In equilibrium E,, is identically zero. For approxima-
tions to an equilibrium solution E,, is subject to cancella-
tion effects and may be a spurious indication of equilibri-
um.

Similar arguments may be used for infinite systems
with periodic boundary conditions (PBC).2® Then, the in-
tegral over the PBC volume V,

So¥=[d*Sw), (46)

may be interpreted as a macroscopic average stress tensor.
Integrals over the system volume allow gradient-type ma-
nipulations. These are used to express the macroscopic
averages of the terms of the stress tensor as given in Eq.
(37) in a more familiar form:

Kijan=21(r) | pip; | 1) /m , (47)
1

M= [ d°r V(V,V;—+8, V)V /(4me?) 48)

where V is defined by Egs. (12)—(14) [intranuclear in-
teractions are excluded in the evaluation of Eq. (48)] and
in the LDA model

ﬁx(av)zYI d3rn(r)(Vy—g,) . (49)

The HF exchange term can be reorganized in the manner
of Eq. (48). The result will not be quoted here.

The average trace of S is defined to be the pressure.
Thus, the macroscopic average pressure is given by
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3PavV=2Ek +ENN+EN+Ee +Exc ’ (50

where Ey, Ey, and E, are defined in Egs. (4), (5), and (7).
The nuclear interaction energy is

Evw=7% 3 ZyZye /Ty - (51)
N,N'
N#£N'

In the LDA the exchange-correlation contribution to the
mMacroscopic pressure is

E(LDA)=3 [ d’r n(x)(V, —¢,), (52)
while in the HF
E.(HF)=E,, (53)

where E, is defined by Eqgs. (8) and (9a). Of course, Eq.
(50) is just a form of the virial theorem and is in complete
agreement with results from scaling arguments.®

A remarkable formulation of the macroscopic pressure
in equilibrium has been noted by Liberman.!° Liberman
showed that the macroscopic pressure can be described by
the surface integral of a “virial” of the momentum-flux
density. Liberman’s virial,

J

is macroscopically equivalent to ﬁ-r, where K is defined
by Eq. (28b). Consider the integral over the volume of the
system of the quantity,

div(K-r)=(divK)-r+ Tr(K) . (55a)

Using the equilibrium specialization of Eq. (28a) to re-

place divK and recognizing the trace of K to be twice the
kinetic energy density gives the identity

J dA(K-1)=2E;— [ d*r nr-grad(V+V,) . (55b)

The manipulations described. by Liberman!® for LDA ex-
change and the manipulations of Slater’ for the r grad
opeator acting on Coulomb potential energies produces
Liberman’s identity

[ dA-Kn=3P V+3Sry-fy— [dAM,r. (56
N

In Eq. (56) fy =ZyeE,y is the total force on nucleus N
(excluding self-interactions). In equilibrium the force on
each nucleus is zero. The exchange surface virial in the
right member of Eq. (56) is identical to the “missing” sur-
face term that prompted Liberman’s paper.!® In the case
of HF exchange no exchange surface term occurs and
Liberman’s identity is

[ dAa-K-n=3P,V. 57

It is shown in the Appendix that Eq. (57) is also valid in
the many-electron case. In Egs. (56) and (57) the quantity
3P,,Vis defined by Egs. (50)—(53).

However, it should be noted that Liberman’s identity
cannot be simply applied to Coulomb systems infinitely
extended with PBC’s. Conventional treatments of the
conditional convergence of the Coulomb interactions pre-
clude this facile use of the Slater manipulations. Sham
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has previously pointed out the need for corrections to
Liberman’s identity for systems with PBC’s.>® The neces-
sity of such corrections may be seen in the present context
as follows. Consider for a PBC system the identity

div(S-r)=(divS)-r+Tr(S) . (58)

In equilibrium div(S)=0 and the integral over the PBC
periodic cell [using Eq. (50)] is

3P V=[dASr. (59)

A conventional formulation of an infinitely extended
Coulomb system will result in microscopic stress tensors
in which the kinetic, mechanical, and exchange terms are
each periodic. For simplicity suppose that the PBC cell is
a cube. Then, using the periodicity, Eq. (59) can be
evaluated to be (the r-dependent terms from the opposing
.sides of the cell cancel)

3P V=V 3 P,i), (60a)
where
P ()= [ dA%;-8(r)%;/4 (60b)

is the average compressive stress exerted on the PBC cell
surface of area 4 normal to unit vector X;. This result
may be generalized to PBC cells of arbitrary geometry.?
Since S includes all contributions to the stress tensor, not
just kinetic terms, the “corrections” to Liberman’s identi-
ty in the case of PBC systems cannot be ignored.

The Nielsen and Martin formulation of macroscopic
stress tensors N(30) agrees in every detail with the macro-
scopic results here. However, their expression for the
macroscopic pressure, N(35), is incorrect. This can be
proved by following the argument above, Egs. (58)—(60),
but regarding NM’s “planar stress,” N(17) or N(18), as a
genuine microscopic stress tensor. For PBC’s the integral
of Tr(S) gives the same macroscopic pressure that is
found here, but since the divergence of N(18) is nonzero,
in general, there will be a volume integral correction to
their expression for the pressure involving this divergence.

VI. CONCLUSIONS

Microscopic stress tensors occur in the context of a
continuity equation for the force density of an entire sys-
tem, Eq. (1). Their occurrence as a divergence has
motivated concern about possible additive terms and sug-
gests that they may represent a relative measure of stress
or gauge stress. It has been observed above that such ad-
ditive terms have no relevance in applications in which
the stress tensor is used to calculate forces. The stress
tensors described here are easily shown?’ to be well-
behaved, weakly singular (integrable) functions of position
which for finite systems approach zero as »~* at large
distances from the system. In equilibrium the divergence
of the microscopic stress tensor is zero at each point in
the system. At the microscopic level no terms may be dis-
carded or manipulated away. However, while such obser-
vations may alleviate concerns about possible ambiguities,
that does not eliminate them. Rather, one must conclude
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that considerations of forces can never resolve such an is-
sue.

Microscopic stress tensors provided detailed informa-
tion about how the equilibrium momentum and electric
field fluxes balance one another, on how the nonequilibri-
um fluxes do not balance. Each of the contributions to a
microscopic stress tensor has an immediate physical inter-
pretation. This suggests that only terms which can be
physically motivated should be added. Of course, this can
be done. The easiest way to find such contributions is to
consider a dynamical model with more structure, such as
a relativistic model. However, such considerations exceed
the scope of this paper.

One of the original motivations for studying the HF
model along with LDA models was the possibility that
the study of microscopic stress tensors might lead to an
insight about electron correlation. It was not obvious to
me that the HF expectation value of the many-electron
stress tensor operator would have equilibrium conditions
completely parallel to the LDA model as, indeed, was
found to be true.

The crucial requirement for a model system to be in
equilibrium is self-consistentcy. By comparing different
models one can observe how their differences affect the
way in which self-consistency is achieved. This is one of
the questions which is pursued through detailed calcula-
tions and analysis of atomic models in the companion pa-

per.?

ACKNOWLEDGMENT

I thank Richard Martin for “stressing” to me that finite
systems and infinitely extended PBC systems are neces-
sarily of different character.

APPENDIX

It is claimed above that the Liberman expression for the
macroscopic pressure!® is a general many-electron result.
Liberman does not explicitly make this claim in his paper,
but it appears from Egs. (2) and (3), Ref. 10 that he was
fully aware of the generality of his result. A derivation of
the many-electron Liberman form is given here using the
EOM technique. The derivation provides a convenient
context in which to compare the Maxwell and Kugler for-
mulations of mechanical stress. This is done in the con-
cluding paragraphs of the Appendix.

The many-electron momentum density operator,

Pop(r); =3 Py(r); , (A1)
I

is defined in terms of the momentum density operator,
Eq. (41b), for an electron I. The EOM for this operator is
H

%[Pop(r)],-ﬂz C[divR (0] + 38— [Fr(0); |
1

(A2)

where the kinetic operator is defined by Egs. (41) and the

force operator for electron I,
F;(r)= —gradV;(r), (A3)

is expressed in terms of the operator



Vii)= 3 e¥/|rt—1;| =3 Zye*/|r—1y| (A4)
J (£I) N
corresponding to the potential interaction energy of all
other electrons and nuclei with electron I. If the operator
corresponding to the force density of the electrons and
other nuclei on each nucleus is added to both sides of Eq.
(A2), then the force terms in the right member may be ex-
pressed as the negative divergence of the Maxwell stress
tensor operator, Eqgs. (42).
A Liberman-type operator is defined,

[Lop(r)]izzrj[Kop(r)]ij . (AS)
j

The divergence of L is reexpressed using Eq. (A2) as

GV Lopl 1)1 = | 1S Po()+ 2E i op(1)
H
+2 6(r—r1)r~F,(r) ’ (A6)
I
where
Eiinop(T) =73 Tr[K (1] (A7

is the kinetic energy density operator. Slater manipula-
tions® cannot be performed on the microscopic force den-
sity terms.

Macroscopic observables involve an expectation value
of the corresponding microscopic operator and an integral
over the volume of the system. The macroscopic equation
corresponding to Eq. (A6) is

[ & |aiv[Lir] v =2Ek+<2r,-F1(r,)>,
I

(A8)

where the expectation values of the Liberman and
momentum density operators are

L(r)=(L,(r)¥) (A9)
and

P(r)=(Py,(n)") . (A10)
The macroscopic kinetic energy of the electronic system,

Ex=3 (pi/2m) , (A11)
I

is the total kinetic energy of the system. The Coulomb
force terms in Eq. (A8) are amenable to Slater manipula-
tions. For example, the electron-electron interaction term

Ee= 2 (r,-gradl(ez/ru))
I(£J)

(A12a)

is easily reexpressed as the electron-electron potential en-
ergy

E,=3 3 (e*/ry). (A12b)

I (s£J)

Similar manipulations on the nuclear terms allow Eq.
(A8) to be written as
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f d’r ‘divL(r)—{-r-—z%P(r)

==2Ek + Vpot_'er'FN N
N

(A13)
where the total potential energy

Voot =Ee+E.y+Eny (A14)

also includes nuclear interaction energy, Eq. (51), and
electron-nuclear interaction energy

EeNz—E(ZNeZ/rIN> . (AIS)
LN

The remaining term in Eq. (A13) is a nuclear virial where

the force is

FN=—gradN 2 ZNZN:eZ/rNN'——E(ZNeZ/rIN).
N’ (£N) I

(A16)

In equilibrium the nuclear virial and electrons force
terms are zero and the result is a many-electron version of
Liberman’s form for the macroscopic pressure.

It should be noted that a choice was made in Eq. (A2)
in treating the force term. The force term was regarded
as a force field evaluated at the position ». Because of the
8-function property the alternative “Kugler” choice!” of
considering the force factor in Eq. (A2) to be evaluated at
the electron position appears attractive because then the
replacement of the 8 function by the Laplacian of the
standard Coulomb Green’s function, 1/ |r —r; |, immedi-
ately leads to a form which can be interpreted as the
mechanical contribution to the microscopic stress-tensor
operator,

MK(f)jizz gradj(l/ | r—ry I )grad,,- V,(r,)/41r . (A17)
1

For nonequilibrium situations I argue that to regard
this quantity alone as the mechanical stress operator is
conceptually incorrect because the stress tensor does not
involve the total force on the system. For equilibrium sit-
uations this point is moot because the force density on the
nucleus which is added above and whose addition makes
it possible to express the total force density as the diver-
gence of a stress tensor is zero by definition. For general
stress tensors this concern can be resolved by including
the Kugler version of the nuclear force terms.

Practically, it is difficult to contemplate making a cal-
culation based on the Kugler form as compared to the
Maxwell form. Some terms in the Kugler form have no
obvious physical meaning, such as a stress tensor which
gives a finite stress asymptotically on a surface subtended
by a finite solid angle. Formally, it may be noted that a
tensor formed from the difference between the Maxwell
and Kugler forms have zero divergence. This suggests
that this difference may be represented as the curl of a
dyadic field and the forms are in this sense equivalent.
However, the weak (r~2) asymptotic behavior of the
Kugler form may preclude an actual calculation of this
dyadic field using conventional techniques of vector cal-
culus. While these observations express concern about the
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Kugler form they do not demonstrate that it is in some
sense “wrong.”

The strongest argument that I have found against the
Kugler form is that its connection with macroscopic
quantities is ill-defined. Macroscopic quantities in this
appendix and in Sec. V are found by integrating the mi-
croscopic quantity over the volume of the system. The
comparison is simplest in the case of the macroscopic
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pressure. The integral of the trace of the Kugler tensor
over the volume of the system is

f derr(MK)=fdA-grad,V,(r,)/|r—r1| . (A18)

The result is ambiguous, but would appear to be zero for
finite systems. The corresponding result for the Maxwell
operator is the potential-energy operator for the system.
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