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Surface-polariton solitons
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The propagation of surface or guided electromagnetic waves is considered for structures consist-

ing of two or more dielectric media, at least one of which is nonlinear, that are separated by parallel,
planar interfaces. The conditions are obtained under which bright envelope surface-polariton soli-

tons can exist in these structures. Two physical systems are analyzed that can, in principle, sustain

such nonlinear surface excitations.

Considerable interest has arisen in recent years' in
the propagation of cw surface electromagnetic waves (sur-
face polaritons) or guided electromagnetic waves in struc-
tures consisting of two or more dielectric media, at least
one of which is characterized by a nonlinear dielectric ten-
sor, that are separated by parallel, planar interfaces.
These nonlinear surface polaritons or guided waves propa-
gate in a wavehke fashion in directions parallel to the
interface(s), and the nonlinearity of one or more of the
dielectric media in the structure supporting these waves
manifests itself in the spatial dependence of the associated
electromagnetic fields through a nonexponential or non-
trigonometric dependence of the field amplitudes on the
coordinate normal to the interfaces.

It is not expected that the types of electromagnetic
waves described in the preceding paragraph exhaust the
waves possible in nonlinear waveguide systems. In partic-
ular, it is of considerable interest to look for surface polar-
iton solitons. These are pulse envelope waves that have
the nature of solitary waves propagating in directions
parallel to the interfaces between the different media. The
solitons can be bright, in which case they are pulses of fi-
nite height moving against a dark or low-int nsity back-
ground. It is also possible, in principle, for dark solitons
to exist, but these are of bttle practical interest.

In a recent search for surface polariton solitons, s it was
argued that a bright surface polariton soliton can exist
only in collisional solid-state plasmas and even then only
in a narrow range of 'frequencies about the surface-
plasmon frequency. This, of course, is overly restrictive.
In general, bright solitons exist in a region where the sign
of the group dispersion of the linear surface polariton is
opposite to that of the effective nonlinear coefficient. In
the present paper the more general %hitham method ' is
used and, with the aid of a mathematically rigorous per-
turbation analysis of the nonlinear dispersion relationship,
two physical systems are investigated in which such non-
linear surface excitations can exist.

The (real) amplitude of an electric field component, or
indeed the total field, at one of the interfaces in a non-
linear, planar waveguide can be denoted by a (x, t) [a pre-
cise definition of a (x, t) will be given below for each of
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where the subscripts denote partial derivatives. In Eqs.
(1)—(3), k and to are the wave number and frequency of
the nonlinear surface or guided wave polariton.

It is also convenient to introduce the phase function
8(x, t) in terins of which 8, = —co and 8„=k. In a simple
cw case 8(x, t) would be (kx —cot), where k and to are
constants. For a pulse envelope the wave number and fre-
quency k(x, t) and co(x, t) are now functions of position
and time. They are, in fact, local quantities because they
differ at different points on the pulse and, for a given
point on the pulse, change as it progresses down the guide.

If we assume that a(x, t) is a slowly varying envelope

the structures we will consider in detail], where x is the
coordinate direction parallel to the waveguide and t is the
time. The restriction to a one-dimensional formulation
will imply that the transuerse variation of the guiding
structure is automatically included in the final pulse evo-
lution equation. ' It is effected through the use of the
nonlinear guided wave dispersion equation that includes
both material and waveguide effects. This is an adiabatic
assumption in which, at any point ( x, t ), the transverse
field solution is equal to the nonlinear cw guided wave
solution. This means, physically, that as the pulse
progresses down the guide the system adjusts to the self
consistent nonlinear field distribution at a rate faster than
the time scale of the pulse envelope.

The equations determining a(x, t) are ' ' the energy
equation
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function then, to a first approximation no[=co(ko)] is

co&(ko), the cw linear dispersion relationship. Equation
(2) is the foMIl tliat is obtailled by a Tayloi expailsloll
about the center coordinates (coo, ko) of the pulse. The
co2(ko)a term arises from another expansion about the
linear limit, to 0(a ), of the cw nonlinear dispersion rela-
tionship. The replacement of co(ko) in Eq. (2) by the
linear cw form means that the derivatives of co(ko) have
not been correctly calculated at this stage. It is con-
venient to leave Eq. (2) in this form until a further
development of the theory has been presented. Later on it
will be shown that a small correction to Eq. (2) will lead
to the prediction that the pulse is a solution of the non-
linear Schrodinger equation.

The boundary conditions on the electromagnetic. fields
at the interface(s) in our nonlinear, planar waveguide sys-
tem, and at infinity, enter the present formulation of the
problem through the dispersion relation (2).

Suppose now that co=~o+G and k =ko+k, where coo

and ko are constants. The phase function 8 then-becomes
e=eo+e, where 6to=kox —coo~ and , = —~, e„=k
Hence, since the cw linear dispersion relationship is
cot (kp),
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Therefore, from Eq. (1),
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so that Eq. (6) becomes
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Now, if A (x, t) =a (x, t) exp[i 8(x,t)], then
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and the differentiation of Eq. (8) with respect to x gives
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Therefore, when this result is substituted into Eq. (9) we
obtain the equation

2
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~

A=0. (12)

Equation (12) is the nonhnear Schrodinger equation
(NLS), provided that the term involving a~ can be dis-
carded. The question arises, therefore, as to whether the
a~ term is approximately absent on physical grounds or
disappears on mathematical grounds. Considering the
physical reason first, we note that the radius of curvature
of the pulse envelope is p=(1+a„) ~ /a . Hence if the
envelope is sufficiently slowly varying then p is large.
This in turn implies that a is small within this approxi-
mation. Thus the NLS, arising from the absence of the

The dispersion relationship, Eq. (2), can be rewritten in
the form

r
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a~ term is simply a consequence of the slowly varying
envelope approximation. Mathematically, if the deriva-
tives of the local frequency co in Eq. (2) are replaced by
their linear cw equivalents, a term involving a„„/a arises.
This term is precisely

( ——, )(8 co /Bk )k k (a /a),
and causes the a~ term in Eq. (12) to be exactly canceled.
Because of the above argument, Eq. (12) reduces to the
standard nonlinear Schrodinger equation

a~, 1 ~) ~0c
i A, + A„+—
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i

A
i

A =0 . (13)

Equation (13) can also be obtained from first principles
by another method ' which proceeds from a Taylor ex-
pansion of the field amplitude about a center, or carrier,
frequency. Also, it is usual to introduce a general
transformation that casts the envelope Eq. (13) into di-
mensionless form and allows the pulse to be studied in a
coordinate frame moving with the group velocity ug. In-
troducing the variables coo ——col ( ko ) and coo ——( i) coL, /
Bk )k k, , the transformation in this case is

'T =S 6)OE

g =s (~o/~o ) (& —» ) (14)

q =—(co2/coo)'i A,
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where s is a constant scaling parameter introduced to en-

sure that r, g, and q are of order unity. This is always a
convenience in an actual calculation. This is a fairly stan-
dard transformation and leads to the nonlinear
Schrodinger equation in the form

The peak amplitude of this solitary wave is
I q~„k I

= l.
This, as will be shown later, gives directly the threshold
power level necessary to launch this wave. In the coordi-
nate system (x, t), the solution of Eq. (13) is of the form

1/2

i + — +IqI q=0.. c)q 1 Bq 2

Br 2 cjoy'2

An alternative form of the NLS is obtained by using the
cw linear dispersion relationship in the form kt (co), after
the transformations

A (x, t)=
(c) coL /Bk )k

cop(kp )

t —(x /uz )
&(sech (20)

g=s'kpx,

r=s[k, /( —k )]'" t ——"
Ug

q= —(k /k )'»A,
S

where kp' ——(c) kL /Bco )„„,, k2 (Bk/Ba——)k k, , and s is

not the same as the quantity introduced in Eq. (14). The
result is

+ Iql q=o.. Bq 1 Bq
c)

If c)q/Br ~ A, =0, the pulse does not change shape as it
moves down the guide and the last two terms in Eq. (15)
are in balance. In a linear guide A, =O implies that the
term (c) cot, /Bk )k k A =0. In other words, the pulse

does not disperse. In a nonlinear guide, A, =O implies
that the dispersion is exactly balanced by the nonlinearity.
Therefore, it is worth emphasizing that the term
(c) coLIBk )k k A, which arises from the a /a term

discussed earlier, is required both for linear pulse disper-
sion and for the formation of solitons.

The lowest-order solitary wave solution of Eq. (15),
known as the single (or N =1) soliton solution, is

i 2w/2
q =p sech(p()e'» ' (18)

where p is an arbitrary scaling factor. Higher-order soli-
tons are also allowed (N =2,3,4, . . . solitons) which are
solutions that are nonstationary, but evolve in such a way
that they periodically return to their original condition.
Notice that Eq. (18) represents a continuum of solutions
having different values of p, in which large values of p
correspond to a tall, narrow soliton while small values
correspond to a low, wide sohton. Obviously, if the pulse
width is given, the height of the single soliton solution is

uniquely defined. It is always possible to transform the
NLS equation using

(c) coLIBk )k k, )0, co2(kp) &0,

(c) cot /Bk )k k, &0, co2(kp))0.

(21a)

(21b)

Only the second of these conditions was considered in
Ref. 5.

We now turn to a consideration of two nonlinear, pla-
nar waveguide structures in which, according to Eqs. (21),
bright surface polariton solitons can exist. The first con-
sists of a (linear) metal characterized by a dielectric func-
tion e (co) in the region z p0 interfaced to a nonlinear
dielectric medium whose dielectric tensor has the form

e; =5,Je;, where co is the frequency and
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(22a)

(22b)

(22c)

in the region z & 0 where e~ is the linear part of the dielec-
tric function and E, E», and E, are the electric field
components. Here a and P are the intrinsic nonlinear
coefficients that are assumed to be constant and the elec-
tric field in our systems has been assumed to have the
form E(x, t) =E(x

I
co) exp( icot) Th—e cw . nonlinear

dispersion relation for this structure, to lowest nonzero or-
der in a and P, for a wave propagating in the x direction
with a wave number k, and independent of y, is given by"

where 5=(c)2coLIBk2)k k /(2ugtf), vg is the linear group

velocity, u =(c)coL /Bk)k k, and t~ is the pulse half-

width. This can be shown from Eq. (20) and the transfor-
mations (14).

This solution describes a bright soliton if
—(c) coL /Bk )k k /co2(kp) is positive. This is the case if
either of the following conditions holds:

r'=p ~, g'=pg, q'=—

so that Eq. (18) becomes q sec'h=(g )exp'(i~ /2) 'It b. e-

comes clear upon substitution of Eqs. (14) into Eqs. (19)
that no loss of generality ensues from setting p =1, since
we can use s to scale the results for any desired pulse
width or height. In the rest of this paper it will be as-
sumed that p =1 in Eq. (18).

&m 1 a 2Pk'+ 6d+ CX 1+ 4 +K Kd 4 ~d4
=0, (23)

where K =k —(co Ic )e, Kd k (co Ic )ed, and-— —
a:E„(x, z =0

I
co) is a—ssumed to be real.

The effective nonlinear coefficient co2(kp) for the single
interface between a nonlinear dielectric and a linear metal
is, for a=@,
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It should be realized that the region defined by Eq. (30)
[as well as part of the region defined by Eq. (31)] is also a
region of negative group velocity. This means that any
pulse propagating with a wave number in this region will
consist of a carrier wave with frequency coo traveling in
the opposite direction to the pulse envelope in a manner
similar to the backward wave devices of microwave tech-
nology. Such a backward wave soliton*' would at least
require some rather unusual launch conditions.

Another cautionary point to note here is that the group
velocity is also quite small in this region. This means that
a fairly short pulse in space will, nevertheless, take a rela-
tively long time to pass the observer and wiH therefore be
quite a long pulse in time. Conversely, it is likely that, for S

k"
p

kp
(32)

the very short (picosecond) pulses predicted for solitons,
the pulse length in space will be extremely short and care
needs to be taken to ensure the validity of the slowly vary-

ing envelope approximation. For example, if a 2-ps pulse
is traveling with a group velocity of 5 X 10 ms ', the spa-
tial pulse width will be only 10 pm.

The definitions in Eqs. (14) and (16) can be used to cal-
culate a characteristic length and time of the waveguiding
structure. For example, suppose that a real pulse exists at
x =0 with half width ti T.his is represented in the solu-
tions of Eq. (17) by an initial pulse of dimensionless half
width ~I so that

20

18"

Ie-
I

I
I

I
I
I

12 — I

10

This fixes the scaling parameter to a value appropriate to
the structure under study. If the peak amplitude at /=0
is qi, say, then the actual field amplitude is

' I/2k,c 2 v., k,"
(33)

co u2 t& kp
0& ~

An estimate of the evolution distance for an arbitrary
pulse can be found by setting g= 1 in Eq. (16). This "rule
of thumb" is very satisfactory when it is realized that the
soliton period, in which the features of an %~ 1 soliton
will repeat themselves, is g=m/2. The evolution distance
is therefore
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where Us
——(BcoL, /Bk)k k,

——coo. The minimum peak in-

tensity required for soliton launching, with a pulse width
t&, is, since the energy is carried mainly outside the metal
film,

&O&d 2 —2I,k- U
I
A,„ I

wm
2

(36)

In detail this expression reduces to

The nonlinearity is unbalanced in the absence of disper-
sion so that individual wave numbers now propagate with
the same speed and interact for long periods. This leads
to pulse distortion and eventual shock formation. Disper-
sion introduces unequal phase velocities and thus prevents
this kind of breakup. It is, therefore, possible to devise a
power threshold, based upon this balance, that will predict
whether a soliton will evolve or not. This threshold fol-
lows from Eqs. (18) and (20). The peak amplitude of the
lowest-order soliton, in dimensionless coordinates, is

I q~,k I
=1. This implies, from Eq. (20), that for a pulse

of half width ti the magnitude of the peak amplitude

I
A ~,k I

at the soliton launch is given by

tl
coo

pCRk I rl

FIG. 3. Normalized inverse group velocity and its normal-
ized second derivative calculated for the thin-film structure of
Fig. l (regions A and 8).
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%' m
672COPt )

(37)
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Equations (34) and (36), can be illustrated for the thin-
film structure discussed above. We assume the values

co~ =8 X 10'~ s ', t i
——10 ps, and ( t, /~, ) =4. 1 X 10

Then if, for example, co/co~ =0.75, ed =1.5, and
+=1.42&10 ' m V, Fig. 2 shows that ~z
= —3, 8X 10 m s V alld coo =(d cot /t)k )k —k

=9.8X10 z m2s ', and Fig. 3 gives ko ——(Bkt, /
Bco)„„=—1.34X 10 s m ', coo ——Us = I/ko ———7.5
X 10 ms ', and kIi =(t) kL /Bro )„„, =21X10
s m '. These data give x —14 cm and
mW/mm . Since the evolution distance in this case is
very large, any threshold pulse that travels only a short
distance will not disperse significantly, even in the absence
of nonlinearity. The nonlinearity does not, therefore, have
much impact unless the system is extremely long. A real
integrated optics system will be g~ 14 cm in length.

The distance x —14 cm is a yardstick or benchmark of

the system. Another yardstick is the distance within
which nonlinear effects would be observed on pulses of
higher power. These higher power pulses result in
higher-order solitons that are associated with pulse
compression' within distances x/(2 '), where N & 2 is
the soliton order. For x —14 cm, %=8 is required for
nonlinear pulse compression to appear within —1 mm.
The intensity needed for this to occur would be —11
W/mm . It should be emphasized that these figures for
x, I~,k, and X are realistic estimates and show that soli-
tons ought to be observable for this particular structure
since N = 13 has been observed in optical fibers. '
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