
PHYSICAL REVIEW 8 VOLUME 34, NUMBER 12 15 DECEMBER 1986

Plasmon linewidth in metals and semiconductors: A memory-function approach
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The relation of the plasmon linewidth 1/v~ to the transport lifetime ~, is investigated for an elec-

tron system interacting with charged impurities in three-dimensional (3D) and two-dimensional (2D)

metals and semiconductors as well as in modulation-doped 2D systems. We calculate the dielectric

function and the dynamical structure factor within the memory-function technique introduced by

Gotze and Wolfle, and read off the plasmon width directly from the structure factor. We find that

for large electron densities ~~ and ~, are roughly equal, while for low densities ~~/~, may be as small

as 0.2. For 3D systems, the plasmon line has a strongly non-Lorentzian shape, and an anomalously

large width. All these results are interpreted as resulting from the screening properties of the elec-

tron gas. Together with a recent comparison of ~, with the single-particle lifetime ~„ they show

how to extract information about the disorder in the system by observing experimentally the electron

mobility or the plasmon resonance.

I. INTRODUCTION

The problem of electronic transport in disordered solids
is of considerable interest form both academic and practi-
cal viewpoints. In particular, the study of two-
dimensional (2D) electron systems has been very fruitful. '

One particular problem one encounters in the theoretical
analysis of experimental results is the fact that the relaxa-
tion rate for single-particle excitations I/v, and the trans-
port relaxation rate I/~, are not simply related. The basic
difference is that correlations between two different elec-
trons scattering off the same impurity enter v, but not r, .i
In the technical description of transport by perturbation
theory, these correlations appear as vertex corrections.
Despite this difference, it has been common knowledge
(based on experience in metal physics) that v;=~, usually
is a good approximation. ~, cannot be measured directly,
but it is an important parameter for the effects of disorder
on thermodynamic quantities like the density of states„or
the wave-vector-dependent compressibility, which in turn
describes the screening properties of the electrons and
therefore influences r, Recently . it was found that in
GaAs-based heterojunctions an estimate of v, from the
above-mentioned approximate equality yields values far
too large to be consistent with experimental findings.
These materials appear to have a much larger mobility
than the amount of disorder observed by other means
would suggest. On the other hand, in Si inversion layers,
r, =r, holds to the usual accuracy, which is about a fac-
tor of 2. These observations have been explained very re-
cently by Das Sarma and Stern, who showed that the
suppression of backward scattering in the heterojunctions
due to the peculiar microscopic geometry in these samples
is sufficient to yield a r, 20 to 70 times larger than r,

A natural question arising in this context is how relaxa-
tion times for other electronic excitations, e.g., plasma or
cyclotron resonance, compare to ~, and v, This is partic-
ularly interesting from an experimental point of view,

since these resonance lifetimes can be measured directly as
widths of peaks in a spectrum, while to extract ~, from
data a theory is necessary, and for ~, this task is even
more difficult. On the other hand, theoretically the
plasmon or cyclotron resonance linewidths cannot be ob-
tained from the standard Boltzmann equation solved in
collision time approximation, since in the region of in-
terest the relaxation rates are strongly frequency depen-
dent. The cyclotron resonance problem is further compli-
cated by the fact that one has to deal with screening phe-
nomena in a strong magnetic field. In this paper we con-
fine ourselves to the plasma resonance which is simpler to
deal with.

%e consider an interacting electron gas in the presence
of randomly distributed charged impurities. We want to
investigate the plasmon linewidth I/~~ in comparison
with the scattering relaxation rate I/r, for two different
kinds of systems. The conceptually simpler systems are
homogeneous 3D metals or semiconductors. Of more re-
cent interest is the case of modulation doped 2D electron
systems, where the electrons are confined to one plane and
the impurities to another, parallel to the first at a distance
z;. A strictly 20 system is obtained as the special case
z; =0.

%e will consider the plasma resonance at long wave-
lengths, where it is well defined, and consider broadening
due to impurity scattering only. %'e will neglect other
damping mechanisms, such as interband transitions, or
multiple electron-hole pair production. As a tool we
choose the memory-function technique developed by
Gotze and Wolfle, supplemented by Gotze's generalized
relaxation time approximation for the density correlation
function. The latter is a generalization of Mermin s ap-
proach, where the relaxation time was a phenomenologi-
cal constant. The memory-function technique is ideally
suited to handle effects at nonzero frequency and wave
number, and its result for the relaxation time reduces in
the static long-wavelength limit to the well-known Mott-
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Jones formula. Recently, a self-consistent version of this
formalism has been applied by Gold and Gotze' to
strongly disordered interacting electrons. While Ref. 10
focused on properties of systems near a metal insulator
transition, we are interested in relatively clean systems.
We will therefore not make the theory self-consistent, and
instead keep the wave-number dependence of the memory
function. We will also neglect all effects arising from the
interplay between diffusive modes and the electron-
electron interaction. " This is justified since the plasma
resonance occurs at high frequencies well outside the dif-
fusive regime. We flnd that for both 2D and 3D systems,
~~/~, is mainly determined by the density parameter
y =kF/qrF, where kF and qrF are Fermi wave number
and Thomas-Fermi screening wave number, respectively.
For y &0.5, we find r~/v, =l. In d =3 dimensions, the
sudden breakdown of screening at the plasma frequency
leads to a strongly non-Lorentzian shape of the plasma
resonance, but this does not spoil the approximate equali-
ty of ~z and r, . On the other hand, for low density
(y (0.2), the strong frequency dependence of the screen-
ing leads to values of vz/r, as small as 0.2. ~z /~, is essen-
tially independent of the separation parameter z; in the
heterojunctions, in sharp contrast to the ratio r, /~, .

II. THE MEMORY-FUNCTION FORMALISM

S(q,co) =[1/iru(q)]@2(q, co)
~
e(q, cu)

~
(2.1)

where ez is the imaginary part of e. By definition, ' the
dielectric function is determined by the response X~(q,co)
of the electron system to a screened external field. In a
clean system, the random-phase approximation' (RPA) is
obtained by assuming 7„ to be identical to the response
X' '(q, co) of a free-electron gas. In the presence of impuri-
ties, it is natural to include the electron-impurity interac-
tion into X . If we denote the irreducible polarizability of
the disordered system by X, our approximation for e reads

e(q, co) =1 U(q)X(q—,~) . (2.2)

For g, we use an approximation proposed by Gotze, who
expressed X in terms of X' ', and a generalized wave-
vector- and frequency-dependent current relaxation rate
M(q, co). The result is

X(q,co) =X' '(q, co+M(q, co))[co+M(q, co)]

A. Random-phase approximation

We consider a system of electrons which interact mutu-
ally via a Coulomb potential v (q), and with static impuri-
ties via some potential u(q). We are interested in the
electronic dynamical structure factor S(q, r0), which may
be expressed in terms of the dielectric function e(q, co)
(Ref. 12)

tion kernel M(0, co) has been calculated to lowest order in
the impurity concentration n; by Gotze and Wolfle. The
relaxation kernel or memory function technique as op-
posed to using diagrammatic methods or kinetic equations
has been discussed at length in the literature, ' so we use
it here without any further comment. The zero-wave-
number result of Ref. 7 is readily generalized to obtain

M(q, co) =—[P(q, co) —P(q, 0)],1
(2.4a)

P(q, co)= (n;/—nm)g
~
u(q —k)

( s(q —k)

&([(q—k)q/q] X,(k, co) . (2.4b)

Here n;, n, and m are impurity density, electron density,
and electron mass, respectively, and s(q) is the impurity
structure factor. X, denotes the response function for the
clean, interacting electron system, within RPA it reads as

X,(k,co)=X' '(k, co)[1—U(k)X' '(k, ~)] (2.4c)

The functions U(q), u(q), and s(q) determine the model.
Once they are specified, Eqs. (2.1)—(2.4) reduce the task
of calculating the dynamical structure factor to the
evaluation of one d-dimensional integral in Eq. (2.4b).

Very recently Gold and Gotze' have studied a self-
consistent version of Eqs. (2.3)—(2.4b), which uses the
self-consistency idea of Gotze to describe the disorder-
induced metal-insulator transition in an interacting elec-
tron system. These authors also have included local field
corrections to the RPA within a Hubbard approximation,
and discussed, among other things, plasmon excitation
anomalies due to strong disorder. In contrast, we are in-
terested in the variation of the plasmon linewidth with
electron density in relatively clean systems. We therefore
neglect all self-consistency effects, but keep the q depen-
dence of the current relaxation kernel, which for technical
reasons had to be neglected in Ref. 10.

u(q) =(ne /K)(2/q) (2.5)

where K is a static background dielectric constant. Here
and in the following d denotes the dimensionality of the
system, and all formulas are valid for d =2 or 3 only.
The dielectric function for the clean system is then given
by Eq. (2.2), with X replaced by the free-electron polariza-
bility

B. Basic properties of the madel

En order to introduce some notation and provide a basis
for the discussion in Sec. III, let us briefly recall the RPA
result in the clean limit.

The electrons interact via a bare Coulomb potential

X' '(q, co) = pFK~ (q/2kF, co/4eF)—, (2.6a)

xX' '(q, co+M(q, co))/X' '(q, 0)] (2.3)

If M(q, co) is replaced by a simple relaxation time i /~, Eq.
(2.3) is familiar from kinetic theory, and has been derived
in the present context by Mermin. The current relaxa-

here pF (g„m/n )(kzln ——) is the density of states at
the Fermi level with a possible valley degeneracy factor
g„, e~ ——kF/2m is the Fermi energy (we choose units such
that i)i'=1), and K' ' is the Lindhard function. For d =3
it reads as
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K3 (x,z)= —+ [1—(x —z/x) ]ln(0) 1 1 z x+1—z/x +[1—(x+z/x) ]ln
x +1+z/x

2 Sx x —1 —z/x x —1+z/x
(2.6b)

and for d =2,"
Ez '(x,z)=1+ I[z —x(x —1)]'i [z —x(x+1)]'~

—[z +x (x —1)]'~

X [z+x (x +1)]'i I . (2.6c)

From Eqs. (2.2), (2.5), and (2.6) one easily finds

lim lim e'+(q, r0)=1+(qTF/q)"
q ~0cubo

(2.7)

with the Thomas-Fermi screening wave number

q =2(~ezp /E)'/t~ ') and

llm E(q,N) ='1—co&/co
q~o

%'ith the dimensionless electron density parameter
y =kF/qTF, the bare plasma frequency sos reads for
d=3

q/2k@

I

with coo——4eF /2v 3y, and for d =2,

+0(q') (d =3), (2.8b)

cov =4e~(q/2k~)'~2/2y'~ +O(q) (d =2) .

Notice that the basic difference between d =2 and d =3
is the softening of the 2D plasmon in the long-wavelength
limit. Apart from kF and qTF, there is another length
scale in the system, given by the wavelength q, at which
plasmon damping due to electron-hole production first be-
comes possible. For d =3, q, has becui obtained by Fer-
rell'~ as solution of the equation

q, '/2kF [(I+q,——/2k')»(1+2kF/q, ) 1]' ' . —
p2 2

To further specify our model, we assume scattering off
charged, uncorrelated impurities. Then we have s (q) —= 1,
and the scattering potential can be written as'

u (q) =Zu(q)e (2.10)

Here Ze is the charge of the impurities, and the exponen-
tial describes "two-dimensional" systems where electrons
and impurities are confined to two different planes which
are separated by a distance z;. With this spatial separa-
tion between electrons and impurities we simulate modu-
lation doping of a 2D heterostructure within our model.

In a real 2D system such as an inversion layer or a het-
erostructure one has the additional complication of a fi-
nite width' of the electron layer which shows up as quan-
tum form factors' modifying Eqs. (2.5) and (2.10). These
form factors do not affect the long-wavelength (q ~0) re-
sults, and change finite wave-number results only quanti-
tatively. Consistent with the fact that we have neglected
local field corrections in this paper we also ignore these
form-factor effects. Their incorporation in the theory is
straightforward with the right-hand side of Eqs. (2.5) and
(2.10) being multiplied by form factors given in Ref. 1. In
this paper we do not wish to do realistic calculations for
any specific system, rather our goal is to provide a generic
comparison of relative magnitudes of rz and r, which is
qualitatively unaffected by form factors. Our 2D results
are therefore strictly vahd only for systems of zero thick-
ness. If detailed experimental results on rz become avail-
able it will be simple to apply this formalisin to obtain re-
sults for a specific system.

It is convenient to introduce dimensionless units. We
will measure wave numbers in units of 2kF, energies in
units of 4cF, and the polarizability '" units of pF. Then
we have from Eq. (2.4b)

Z tl.
P(q, ~)= ',„„Jdk k~ 'Vg{q,k)X, (k,a))

for d =2, one finds

(2.9a)

with the vertex function

(2.11)

q,
=

/2kF [{1+2k@——!q,)'~ —1] .
2g

C. The current relaxation kernel

(2.9b) V (q, k) =(2/q )E3 '(k/q, 0),
1

dy (q —k cog)
qz+k2 2kq cosP—

(2.12a)

The sharp plasma resonance in the clean system is due
to the fact that for q & q, energy-momentum conservation
cannot be fulfilled in procieses where the plasmon decays
i.nto a single electron-hole pair. However, in the presence
of impurities these can absorb excess recoil momentum,
and the process becomes possible, leading to a finite dc
conductivity as well as to a nonzero width of the plasma
excitation. Within the present formulation, the damping
is expressed in terms of a nonzero current relaxation ker-
nel, Eqs. (2.4).

Xexp[ —( Iz lqTF)

X4y(q +k 2qk cog)'~ ) . —

(2.12b)

Before we evaluate Eq. (2.11) numerically, we discuss a
few results which can be obtained analyticaHy.

In the static long-wavelength limit, the current relaxa-
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tion kernel yields the transport relaxation time in the
Drude formula: q;=i/M{O, iO) F. rom Eq. (2.11) one ob-
tains

1/~, =(Z'n; /g„n)fg(y)

with'"

fq(y)=(2n/3) I dkk [4y k +K'3 '(k, O)J

1 —
~ I s, ~ qTFi4yk

(1—k')'" (4 'k'+1)'

{2.13a)

(2.13b)

(2.13c}

ImM'(q, co=coo)

10n( —)' ' (co—co ) (d =3) .
g~ lf

(2.14)

This formula is valid only for 0&co—coo«q /coo, for
q /coo«co/coo —1«1 it crosses over to an (co —coo)'~

behavior and for q =0 the square root singularity is found

Equation (2.13b} is a generalized Mott-Jones formula,
and (2.13c}is its 2D counterpart. '

At nonzero frequency, the integration in Eq. (2.11}may
pick up a singular part because of the plasma pole in-
herent in X, . In d =3, this will happen only for frequen-
cies coo&co. For frequencies near the threshold, we can
use long-wavelength expansions to obtain for the singular
part of Xq.'

ImX', (k~O, co)

gqry co—k 10coo5(k 3coo(—co—coo)—) (d =3) .

This yields for the singular part of the current relaxation
kernel

down to co=coo. For d =2, there is no threshold, and the
nonanalyticity has to occur at zero frequency. Indeed we
have for small frequencies

ImX', (k~O, co)=qryk 5(k' 2y—' co) (d =2),
which leads to

Z2
ImM'(q, co=coq~O)= —

'
2 ny ~co

~

(d =2) . (2.15)

gyral

Contrary to d =3, there is no difference between the lead-
ing result for nonzero q and the one for q =0.' The
qualitative difference between the threshold behavior in
d =3 and the singularity at co =0 in d =2 will have a pro-
nounced effect on the dynamical structure factor.

As a last point of our general discussion we consider
the plasmon pole itself. For small wave numbers, particle
number conservation quite generally enforces the follow-
ing expression for the polarizability [which can also be ob-
tained from Eq. (2.3)]:

1 qX(q, co)=— (2.16)
d co +coM(q, co)

Using Eqs. (2.2) and (2.1) this leads to the following pole
structure of the dynamical structure factor

coqco ImM(q, co)
S{q ~=Qq)= {q/—qTF)' '

7T (coi —Qq) +(co21'q)

(2.17a)

where the dressed plasma frequency Qq is obtained as
solution of the equation

Qq =coq coqReM {—q Qq ) (2.17b)

The plasmon lifetime qz ——(21
q ) is given by

2I q=lmM(q, Qq) 1+ ReM(q, Qq) —Qq ReM(q, x)1

X
(2.17c)

Equation (2.17c) shows that the plasinon lifetime is not
just given by the imaginary part of M, but rather the reac-
tive part gives a substantial contribution. It has been em-
phasized in Ref. 10 that for this reason the Drude results,
which are obtained by putting ImM(q, Qq):i/q; and—
ReM(q, Qq)—=0, are not correct even in the limit q~O.
Exactly this is the reason why we will obtain nontrivial re-
sults for the ratio q~/r, : As we will see, for different elec-
tron densities the frequency dependence of M(q, co) is
rather drastically different, which via Eq. {2.17c) yields
different results for q~/r, Since Eqs. (.2.17) [as well as
Eqs. (2.5) and (2.10)] are valid for small wave numbers
only, they may be quantitatively misleading in d =2,
though they describe the phenomena q~~3itatively correct-
ly. To be closer to what is actually done in experiment,
we will therefore calculate S{q,co) from Eqs. (2.1)—(2.4),
and read off r~ directly in Sec. III. For a discussion of
these results, we will come back to Eqs. (2.17}.

III. RESULTS AND DISCUSSION

We have calculated the dynamical structure factor from
Eqs. (2.1)—(2.4},and determined the plasma lifetime q~ as
the inverse width at half height of the resonance in
S(q,co). We discuss first the results for d =3. There are
three length scales in the system: kF, qTF, and q, . We
have chosen q =O. lqTF, other choices of q do not yield
significantly different results. In Fig. 1 we show q~/q, as
a function of the density parameter y, in Fig. 2 we show
Imilf, and ReM for two different densities. The most in-
teresting features are that for low densities, qz la, it signi-
ficantly smaller than 1, and that the plasma resonance has
a strongly non-Lorentzian shape. To understand this
behavior, we start at low densities. At low frequencies,
there is strong screening, and S(q, co) is strongly
suppressed. However, due to the low electron density the
screening is frequency dependent even for frequencies
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FIG. 1. Ratio of plasmon and transport lifetime, ~~/v„
versus electron density parameter y, for d =3. See text for fur-
ther explanation. d=5

y=0.2
q=O. I QTF

0.5
s

I 1 I
I

0
4l/4)0

smaller than the plasma frequency. At y =0.2, Fig. 2(a),
ImM rises by a factor of 3 if co varies between 0 and coo.
This co dependence of Irrdlf, which tends to decrease r~,
also results in a nonzero ReM, which counteracts the de-
crease of ~z according to Eq. (2.17c), but this is a com-
paratively small effect. At the plasma frequency, the
screening breaks down completely, and the electrons see
the bare Coulomb potential. Consequently, the dissipative
part of M decreases dramatically, and its real part shows
the corresponding resonance behavior. This increase of
absorption manifests itself also in S(q,co), which de-
creases much more slowly towards high frequencies than
towards low frequencies. The resulting resonance is trian-
gle shaped rather than Lorentzian, cf. the insert of Fig.
2(a). This anomalous shape is the counterpart of the peak
in the homogeneous conductivity discussed by Gotze and
Wolfle. The larger width of the triangle curve as corn-
pared to a Lorentzian further decreases rz, and the result-
ing ~~ is smaller than ~, by a factor of 5. Within the
present formalism, the current decays into bare (with
respect to disorder) density modes, Eq. (2.4b). Conse-
quently, the breakdown of screening occurs at the bare
plasma frequency coo, rather than at the dressed one,
Q~ 0. This somewhat unphysical feature is cured by the
self-consistent formalism of Ref. 10. However, since we
are working at nonzero wave numbers q&0, the peak in
S(q, co) occurs at Q~+0& Q~ 0. For the small disorder
chosen (cf. Table I), we still have Q~ —,'

~~ & &00, see Fig.
2. Therefore the breakdown of screening is fully reflected
in the plasmon peak, as it would be in a self-consistent
calculation, and our lowest-order theory is valid. %ith in-
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FIG. 2. Imaginary part (solid line), and real part (dashed line}
of current relaxation kernel M(q, m) versus frequency co, for
d =3, and (a) y =0.2; (b} y =0.7. The inset shows the plasmon
peak in the dynamical structure factor S(q,co). M is given in
units of 4m~, S is given in arbitrary units.

TABLE I. values of disorder parameter Z n;/n used for the results shown in Figs. 1—3. The numbers are obtained by scaling
Z2n;/n with y (y~) for d =2 (3). According to the criterion given in Ref. 10, these values are sufficient to always be far from the
metal-insulator transition.

10 Z n;/n (d =2)
10 Z n)/n (d =3}

0.1 0.2 0.3

9
18

0.4 0.5

15
50

0.6

18
72

0.7

21
98

0.8

24
128

27
162

1.0

30
200
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creasing density, screening becomes better and better, and
ImM becomes less and less frequency dependent for
co & coo. Consequently, ~~/~, increases. Also, the rise of
ImM at too is less dramatic for larger y, cf. the prefactor
of the nonanalyticity in Eq. (2.14). Therefore also the
non-Lorentzian shape of S(q, to) with its anomalously
large width gets less and less pronounced, Fig. 2(b), and
~z/~, approaches unity at larger y.

For 2D systems, the picture is somewhat different.
Since the nonanalyticity in M(q, to) due to the bare plas-
ma pole occurs at to =0, Eq. (2.15), M shows no particular
structure at the plasma frequency. However, as in d =3
the overall frequency dependence of M is more pro-
nounced for small densities, hence v~/r, increases with in-
creasing y. Contrary to d =3, however, the result at
small densities depends rather strongly on the wave num-
ber chosen. The reason for this is the fact that in 1=2
the plasma frequency goes to zero with vanishing wave
number. At small densities, where q, and the correspond-
ing frequency to, are larger in the natural Fermi liquid
units (2k' and 4sF), different choices of q result in very
different plasma energies. It is clear that for small q, and
therefore small Qe, the difference between M (q, Qe ) and
M(0,i 0) will be smaller than for larger q. Consequently,
~~/~, will be larger for smaller q. We have chosen the
disorder as shown in Table I. Since z; enters only via the
vertex function V2, Eq. (2.12b), its effects on M(q, Qe)
and M(0, i0) are not very different, and we have found
v~/~, to be only weakly dependent on z;. For simplicity,
therefore, we put z;=0. For these parameters, Fig. 3
shows ~~/v; for q =0.1 qrF, and q =0 2kF, ~esp.ecti~ely.
Since qrF in d =2 is independent of the density, the first
choice results at low densities in a larger Qe/4sz, hence
M(q, Qe) is substantially larger than its zero-frequency
value, and w~/~, is strongly suppressed. For the second
choice of q, this effect is much less pronounced, and r~/r,
is of order unity except for the very lowest densities. This
conclusion should remain valid even in real 20 structures
because form-factor effects are small in the long-
wavelength limit.

In conclusion we have studied the plasmon lifetime
compared to the transport relaxation time for 2D and 3D
electron liquids by means of the memory-function tech-
nique. For 3D systems at metallic densities, we have
found ~~=a„but r~/7. , is considerably smaller at semi-
conductor densities. The plasma peak in the dynamical

q=0.2 kF

06

I

0.3 05
I

07

FIG. 3. Ratio of plasmon and transport lifetime, ~~lr&,
versus electron density parameter y, for d =2. See text for fur-
ther explanation.
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structure factor has an anomalous shape. This has been
shown to be due to the breakdown of dynamical screening
at the plasma frequency. At densities typical for bulk
semiconductors, the screening shows a relatively strong
frequency dependence, and ~~/r, may be as small as 0.2.

For 2D systems, rz/r, also increases monotonously
with increasing density, and its value at low densities de-
pends strongly on the wave number. For large wave num-
bers, i.e., large plasma frequencies, and low density vzlr,
may be as small as 0.2, while for smaller plasma frequen-
cy one has always r~ =~,. In sharp contrast to the ratio of
~, and the single-particle lifetime r„which in Ref. 6 has
been found to be strongly dependent on the distance pa-
rameter z; of 2D systems, r~/~, does not significantly de-
pend on z;.
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