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A detailed discussion of quantum-size effects and the dimensionality in simple (s-p bonded) met-
als is presented by using aluminum as a prototype. The density of states, work function, surface en-

ergy, surface relaxation, and subband energies are calculated for films of varying thicknesses. Oscil-
latory variations of various physical properties correlate well with the surface charge density which
itself varies with the film thickness. All calculations are performed using the self-consistent pseudo-
potential method and the planarly averaged one-dimensional potential generated from it. Total-
energy calculations and forces on various atomic planes lead to important conclusions about surface
relaxation.

I. INTRODUCTION

During the last decade, extensive research has been car-
ried out on various physical and chemical phenomena of
metal surfaces. On the theoretical side, several methods
to calculate the electronic structure and energetics of sys-
tems with two-dimensional (2D) periodicity have been
developed, and used to investigate surface geometry, in-
trinsic and adatom-induced surface states of metals.
Specifically, such ground-state properties as surface ener-
gies, work functions, and electronic charge densities can
now be calculated from first principles and are usually in
reasonable agreement with experimental data. ' These
studies have helped in understanding the data obtained by
advanced and ingenious experimental techniques. And
yet, only a few of these reports mainly focussing on the
properties of semi-infinite metals pointed out that the size
(thickness) of the metal becomes important when the film
is very thin: For example, in a thin Pb film the electron
standing-wave states could be observed by electron tunnel-
ing; oscillations of the chemical potential due to the
thickness were found to influence the width of the super-
conducting gap of the metal fil, s and calculations for a
copper monolayer predicted striking changes from bulk
behavior. Recently, it has also been shown that localiza-
tion effects can be significantly enhanced when the size of
an Au film varies.

Advances made in growth techniques now enable con-
trol of the thickness of metal films deposited on various
substrates in the monolayer range, and measurement of
their exotic structures and remarkable properties. It has
recently been proposed that the mechanism pinning the
Fermi level (and hence the height of the Schottky barrier)
changes with the thickness of the metal film deposited on
a covalent semiconductor. Also, novel superconductive
properties of the Ag monolayer adsorbed on the Ge sur-
face have been reported. All these findings exemplify the
unusual behavior of thin metal films which are rather dif-
ferent from bulk or semi-infinite metals. In the latter, the

one-electron states may be described by three-dimensional
(3D) propagating Bloch states and evanescent waves local-
ized in the surface region. ' However, for thin films this
description of one-electron states may not be adequate.
As a matter of fact, electrons confined in thin films have
a quantization of states quite different from the bulk, and
also from the semi-infinite metal. The more appropriate
description is provided by standing waves, and the
energy-level spectrum splits into subbands. ' The unusu-
al behavior of metal films, as evidenced by a few examples
mentioned above, is connected with a different quantiza-
tion of states upon lowering their dimensionality, and is
known as the quantum size effect (QSE).

Early studies' ' were mainly concerned with fluctua-
tions of chemical potentials and treated the metal film
within the Sommerfeld model, i.e., noninteracting elec-
trons confined to a one-dimensional (1D) square-cut po-
tential. Apart from these oversimplified models,
Schulte' investigated metal films within the jellium ap-
proximation. Using the density functional theory, ' he
calculated the electronic properties of metal with varying
thickness, and pointed out oscillations in the work func-
tion as a function of the slab thickness. The discrete lat-
tice effects were considered in a detailed self-consistent-
field (SCF) linear-combination-of-atomic-orbitals
(LCAO's) calculation' confirming that the work function
and the surface energy of Al and Mg films exhibit oscilla-
tory behavior. Recently, Ciraci and Batra' have pointed
out interesting quasi-two-dimensional features, and other
effects of lower dimensionality.

In this work, we present an extensive discussion of the
properties of metal films with emphasis on QSE's. Our
results are based mainly on SCF pseudopotential calcula-
tions of thin Al(111) slabs, and may be generalized to sim-

ple sp-bonded metal films. In addition, we generate a pla-
narly averaged 1D quantum-well potential V(z) from the
SCF slab potential. This potential contains discrete-
lattice effects to some extent, but is simple enough to re-
veal fundamental aspects of systems of lower dimen-
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sionality. We then assume free-electron behavior in the
two remaining dimensions ( xy), and solve the 1D
Schrodinger equation numerically along the z axis to ob-
tain the electronic structure of a quasi-two-dimensional
system. By comparing results from the SCF slab and the
quantum well, we can deduce important features regard-
ing the quasi-two-dimensional character and dimensional-
ity of the metal films. The variations of several physical
properties as a function of thickness such as bandwidth,
work function, surface energy, subband energies, charge
density, and surface relaxations, are analyzed. It is shown
that the size effects are not only limited to the work func-
tion and surface energy, but also manifest themselves in
many other properties. The density of states at the
Fermi-level changes in quantized steps as a function of
the film thickness leading to oscillatory behavior of the
electronic properties. The form of the state distribution
provides a criterion for the dimensionality of the system.
By calculating forces acting on the atoms in the ideal con-
figuration, it is found that thin films of sp bonded metals
are subject to both lateral and oscillatory multilayer verti-
cal relaxations. The sign of the forces acting on the sub-
surface layer changes as the thickness is varied. More im-
portantly, the force exerted on the topmost layer is direct-
ed inwards, but decreases as the film becomes thicker.
The interlayer spacing between the surface and subsurface
layer decreases in three- and five-layer slabs, but starts to
increase in seven-layer-thick films. This indicates an os-
cillatory relaxation even for the interlayer spacings.

This novel result is expected to reconcile contrasting re-
sults, both experimental and theoretical, on the relaxation
of the Al(111) surface. Previous slab calculations'~
have mainly been concerned with the surface states and
chemisorption aspects. The present study is directed to-
wards a new and rapidly developing area of physics;
namely, systems of lower dimensionality, and is organized
as follows. In the next section, the modhl and parameters
underlying the SCF-pseudopotential and 1D calculations
are briefly described. Expressions for the forces acting on
the atoms are derived from the expectation values of the
force operator defined within the density functional for-
malism. In Sec. III, calculated energy band structures,
state densities, work function, and surface energies of
Al(111) films of various thicknesses are presented using
the theory developed for the quasi-two-dimensional sys-
tems. In Sec. IV, the analysis of charge density is given

by using charge-density contour plots, and lateral and

multilayer relaxations are discussed and compared with
previous experimental and theoretical studies in Sec. V.
Finally, in Sec. VI results are analyzed in view of the
quantum-size effect and the dimensionality of the electron
system. Concluding remarks are also presented in this
section.

II. METHOD OF CALCULATIONS

A. SCF calculations

We performed self-consistent pseudopotential ' cal-
culations within the framework of the local-density func-
tional theory, ' applied in momentum space formal-
ism. ' %e used nonlocal, norm-conserving ionic pseu-
dopotentials given by Bachelet et al. , and Ceperly-Alder
exchange and correlation potentials as parametrized by
Perdew and Zunger. Using a repeated slab geometry,
calculations were carried out for one-, three-, five-, and
seven-layer Al(111) films with an interslab distance of
—18 a.u. (equivalent to -5 interlayer spacings). These
films have Ci„point group symmetry with an inversion
center at the central plane of the slab. The z axis is taken
along the surface normal, so the (111) planes are parallel
to the (xy) plane.

A crucial parameter in these calculations is the number
of plane waves used to represent each Bloch state. This
was chosen by fixing the minimum ( G;„)and maximum

(G,„)kinetic energy. Plane waves with kinetic energy

i
k+6

i
less than G;„aretreated exactly, and those

having energy between Gm;„and Gm,„areincluded via
Lowdins perturbation scheme. Another important pa-
rameter, especially for a metal, is the number of k points
in the surface Brillouin zone (BZ), where the charge densi-

ty is sampled during self-consistency. The convergence
with respect to these parameters becomes essential when
the total energies of systems with similar structures are
compared. To determine parameters suitable for our
study, we carried out the total-energy calculations of the
bulk Al with different Gm;„, Gm», and sampling grid.
In view of the results summarized in Table I, we chose
Gm;„=7Ry, and Gm,„=9Ry. VA'thin these limits, the
slab Bloch states are expanded in about 540 plane waves.
During the self-consistency iterations, the charge density
was sampled at 49 k points in the surface BZ, and the
Fermi level determined by the thermally broadened
Fermi-Dirac distributions with kz T= 10 Ry.

6;„=7.0 Ry, 6,„=9.0 Ryk points
in the BZ

TABLE I. Total energy ET (Ry) and bandwidth E~ (eV) of bulk aluminum as a function of the
number of k points in the Brillouin zone, and 6;„,6,„.The lattice constant was fixed at a=4.05 A.
The numbers in parentheses in the first column are the number of 1(' points in the irreducible wedge.

G;„=5.0 Ry, 6,„=6.0 Ry,

64 (8)
216 (16)
512 (29)

1000 (47)
1728 (72)

—4.1334
—4.1551
—4.1513
—4.1504
—4.1521

10.3
11.5
11.1
11.0
11.0

—4.1721
—4.1983
—4.1936
—4.1926
—4.1947

10.4
11.5
11.3
11.3
11.1
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B. Forces

A thorough discussion and derivation of the atomic
forces have been given by Yin and Cohen. The total
force acting on an atom s in the unit cell can be divided
into two contributions: (i) The force F, due to the other
atomic cores, and (ii) the force F, due to the electrons.
The atomic-core contribution is as given in Ref. 29. An
alternate simple derivation for the electron contribution to
the force starts with the expectation value of the valence
ionic pseudopotential

& V)=g(+., ( )
~
gV ( —1—,)

n, k l

+ g VNL« —1—~s) I
'p. ,k(r) & (1)

1

where l is the direct lattice vector, and ~, the position vec-
t

tor of the atom s in the unit cell. The valence ionic-core
pseudopotential is decomposed into local ( Vf ) and nonlo-
cal contributions ( VNi ). The summation is over all the
occupied states in the first BZ. The Bloch wave function
corresponding to the band (n) and the wave vector (k) is
given by

0'„k(r)= ga„(k,G)exp[i(k+G) r],1

NQ

where 6 is the reciprocal lattice vector, XQ the total
crystal volume, X the nuinber of unit cells, and Q the
volume of the unit cell. Then, F, is the negative gradient
of Eq. (1) with respect to the position vector r, By .sub-
stituting Eq. (2) in Eq. (1), and taking gradient with
respect to r„for the force on atom s we obtain

F,'= —gg g a„'(k,G')a„(k,G) ~ e '~k+0' [—V Vf(r —1—~ )]e''k+o"d r
1

~a, k 1 G, G'

+ fe
—~~k+& ~ &[ V V~ (r 1 & )]ei(k+G) rd3 (3)

where we identify the first (second) term with the local
(nonlocal) contribution to the valence-electron force.
Equation (3) can be brought into the desired final form by
(i) rewriting the integrand using the distributive property
of the gradient operator, (ii) defining r =r 1 r„(i—ii)—
using V~ = —V„and (iy) also performing the 1 summa-

tion:

F,' =i0g Gp'(G)e ' Vf (G)
G

—i g g a:(k,G')a„(k,G)(G —G')
n, t G,G'

'(Qt
Xe 'VNL(k+G', k+G),

where the Fourier transforms are defined as

Vf(G)= —f Vi, (r)e 'o'd'r,
0

VNi (k+ G', k+G) =—e ""+ "VNL(r)0
i (k+G).rd 3p

p(G —G') = g a„'(k,G'}a„(k,G) .

In the expression for the valence-electron contribution to
the force in Eq. (4), we also used the fact that VNL van-
ishes outside the atomic-core region.

C. 10 calculations

The local part of the self-consistent potential obtained
from the slab calculations is averaged on the parallel (xy)
planes closely spaced along the z axis, it being perpendicu-

lar to the surface. The resulting 1D potential, V(z), is
reminiscent of the square-cut potential, but is more realis-
tic for the following reasons: Primarily, since the SCF-
slab potential has a small corrugation outside the surface
the 1D potential is rather close to the realistic slab poten-
tial. Within the film, the discrete nature of the slab is
taken into account at least along the z direction. Of even
more importance, V(z), being the (xy) average of the slab
potential, contains the electron screening. In this respect,
it is also significantly different from the square-cut or
Sommerfeld model, ' " since electrons confined in the
Sommerfeld-model potential are assumed to be nonin-
teracting. Thus all essential ingredients of the SCF-slab
potential are included in the 10 potential generated in our
present study. The wave functions of the electrons con-
fined in the potential, V(z), are separable, and can thus be
written as

@„k(x,y, z) =pe ~~ P„(z),
where the wave vector k~~ is parallel to the surface, and r
is the position vector. The bound states of P„(z)have
n —1 nodes inside the well, but decay on the outside.
With the total wave function in Eq. (8), the 3D
Schrodinger equation reduces to the following 1D form in
atomic units:

d + V(z} tt}„(z)=e„g„(z),
dz

where e„is the energy of the subband. By adding the en-
ergy associated with the free-electron part in the (xy)
plane, we obtain the one-electron energy E„k——k~~+e„.

II

Since V(z} is expressed on a grid consisting of n points on
the z axis, the 10 Schrodinger equation is converted to a
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system of n-linear equations, and solved numerically by
diagonalizing the matrix constructed therefrom. ' The
charge density of the quasi-two-dimensional system ' '

under consideration is given by

p(z) =Di g (Ep- e„—)
I
$„(z)

l

' . (10) -4

Here, EF denotes the Fermi energy of the N-electron sys-
tem confined in the well, and D2 ——m/M is the state
density of the 2D noninteracting electron gas which is in-
dependent of energy and simply 1/2m in atomic units.
From Eq. (10), a relation between Ep and the 2D charge
density p, [i.e., number of confined elix:trons per unit area
of (xy) plane] is deduced:

p, =Di g(EF e„). —

-6
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/
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The density of states of a quasi-two-dimensional system,
studied here by using the potential V(z), is given by

Di (E)= g 8(E —e„)D2 (12)

and because of the step function 8(E) is ladder-type in
form. Accordingly, whenever a subband e„falls below
the Fermi level, D2~(EF) increases by a step of Di As.
the next section shows, this property of the quasi-two-
dimensional system has important implications for the
electronic properties.

III. ELECTRONIC PROPERTIES ANQ ENERGETICS

The energy band structure of one, three, and five layers
of Al films are calculated self-consistently along the 1 M
direction of the surface BZ, and iBustrated in Fig. 1.
Since the lattice parameters of the monolayer undergo a
significant contraction (-7%), results for the inonolayer
are obtained from the optimized geometry. As for
multiple-layer films, lattice contraction and vertical sur-

FIG. 1. Energy-band structures of one, three, and five layers
of aluminum calculated using the self-consistent pseudopotential
method are shown by thick lines. Thinner lines correspond to
subbands obtained from the quasi-two-dimensional system
quantum-well structure. (To avoid confusion, thinner lines of
five-layer aluminum are not shown. ) Energy is measured with
respect to vacuum level. The inset shows symmetry directions
of the surface Brillouin zone (after Ref. 16).

face relaxation are not sufficiently significant to essential-
ly affect our conclusion regarding the electronic proper-
ties, therefore, ideal geometries of the multilayer films are
used. We shall return to the oscillatory surface relaxa-
tions in Sec. V. The potential V(z) of the one- and three-
layer Al films was described in Sec. II. The 1D potential
and the electronic energy structure calculated therefrom
are shown in Figs. 2 and 3. The subbands E„k——e„+k~~,n,

I~
n

corresponding to each eigenvalue e„obtained froin the
solution of the 1D Schrodinger equation, are displayed

0
3

-8

Ort+ LBye r

D(E)
z(a. u. )

FIG. 2. 10 potential (quantum well) generated by the planar average of the self-consistent slab pseudopotential calculated for an
unsupported Al monolayer. Energy levels and wave functions shown by 1 and 2 are the occupied subbands. Conduction band and en-
ergies at k=O of the slabs are indicated by dashed-dotted and dashed lines, respectively. The ladder-type state densities of the quasi-
two-dimensional system, and the density of states of slabs calculated using 144 k points are shown in the right-hand panel. Energies
are measured with respect to the vacuum zero. The atomic plane located at z=O is indicated by an arro~ (after Ref. 16).
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FIG. 3. The 10 potential (quantum well} generated by a planar average of the self-consistent slab pseudopotential calculated for a
three-layer Al slab, and the electronic structure obtained from this potential. For further explanation of this figure, see the caption
for Fig. 2 (after Ref, 16}.

along with the self-consistent slab bands in Fig. 1. Also
shown are Fermi-level EF and work function 4, in each
case. As seen clearly, the slab bands and the subbands of
the quasi-two-dimensional system follow one another
closely, except that the former splits at the zone face be-
cause of the (xy} corrugation of the potential. Comparing
the two sets of bands demonstrates that the thin Al film
does indeed have a quasi-two-dimensional character with
m„'=m~*=m. Since the nonlocal part in the planarly
averaged potential is absent, the subbands, E„,I, and the
Fermi level of the quasi-two-dimensional systems
described in Figs. 2 and 3 are shifted upwards relative to
those calculated for the 3D slab. However, this simple
model can suitably locate the Fermi level with respect to
~empty and occupied subbands. Moreover, for reasons pre-
viously pointed out, the. 10 potential obtained by a planar
average of the SCF pseudopotential is capable of provid-
ing a more realistic description of the s-p bonded metal
film than a simple square-cut potential or the jellium
model. Simple models, such as the square-cut potential or
infinite potential well, give the subband spacings
(E„+i E„}as being p—roportional to (2n+1)/Lt, where
noninteracting electrons are confined in length L along
the z direction. On the other hand, a planarly averaged
potential as used in this study yields a quantization quite
different from the (2n +1)/L quantization, and close to
that obtained from the slab calculations in Fig. I. This
can be seen from the irregular spacing of energy levels at
the I point.

In accordance with Eq (12},the .density of states calcu-
lated for the quasi-two-dimensional system displays a
ladder-type structure in Figs. 2 and 3, @&here the state den-
sities of the one- and three-layer Al films calculated by
the SCF-pseudopotential method are superimposed. Ex-
cept for some additional structure owing to corrugation of
the potential perpendicular to the z axis, the densities of
states of slabs are also ladder shaped indicating the
dimensionality of the metal films. As the number of
layers increases, the step density per energy unit aug-

ments, and eventually the system becomes three dimen-

sional. It should be noted that in the limit of large L, the
state density corresponding to an infinite potential well

changes from the ladder type to the parabolic form of a
free electron gas (-E'~ }. In a real metal film, the values
of the subband energies at I, i.e., e„,are closely related to
the form of the planarly averaged potential. Consequent-

ly, as the metal film becomes thicker the density of states
Di(E) deviates from the (E'~ } relation characteristic of
the 3D noninteracting free-electron system. In Fig. 4, the
layer densities of states and the total densities of states
calculated for the three-layer Al slab are illustrated. Also

LDOS, Sur face-Layer
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FIG. 4. Layer and total densities of states calculated for a
three-layer slab by using the self-consistent pseudopotential
method. Subband energies at k=O (E», E2, etc.) are indicated
by dashed lines. Q is the charge per unit cell of a layer in units
of electron. Zero of energy is set at the vacuum level.
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shown are the subband energies at the I point. The jump
of the density of states at the band energies is easily dis-

cernible. Because of a rather crude sampling grid in the
surface BZ, the jumps are not as sharp as in the quasi-
two-dimensional system. The electronic charge of the
outermost layer is larger than the middle layer, implying
that charge is transferred to the surface. Since the calcu-
lation is performed by partitioning space (for which no
rigorous criterion is known}, the charge-transfer values are

only to be viewed qualitatively.
The confinement length of the electrons being finite in

a thin metal film, crossing of the Fermi level by an empty
subband owing to the increase of L gives rise to a jump in

the density of states near the Fermi level. This sudden in-

crease in the state density is certainly negligible for a
thick film, but causes significant changes in the electronic
properties as the metal film becomes thinner. For exam-

ple, as revealed in the present study, work function 4, and
the surface energy exhibit fluctuations with varying thick-
ness of the metal film. Certainly these fluctuations are
damped with increasing thickness, and eventually saturate
for thick films. In the jellium model, an additional sub-
band drops below the Fermi level whenever L increases by
half the Fermi wavelength. Since the positively charged
atomic cores are smeared out, and thus the discrete lattice
nature is omitted in the jellium model, the confinement
length I. can be increased continuously. As a result, the
oscillatory character of the work function is easily obtain-
able. The work function, surface energy, and
conduction-band width of the Al films with varying
thicknesses are calculated by the SCF-pseudopotential
method and listed in Table II. The work function of the
monolayer is large and close to that of the semifinite slab
(-4.3 eV). On going to the three-layer slab, it decreases
to 3.2 eV and thus passes through a minimum. In the
five-layer slab, 4 again increases to 3.4 eV and reaches a
value of 3.7 eV in the seven-layer slab.

In this study, the total energy per atom is calculated for
both the thin film and the bulk metal. By definition, the
surface energy per surface atom, E„is one half (because
of two surfaces) the difference between the slab and bulk
total energy for the same number of atoms as in a slab,
i e , E, =.(E. r., slab Er, bulk)/2. A—s seen in Table II, the
surface energy of a metal film is another property which
exhibits oscillatory behavior as the film thickness varies.
It is low in a monolayer, but increases and passes through
a maximum in the three-layer film, and decreases again
for five- and seven-layer Al films. The trend of the sur-
face energy is opposite to that of the work function,
which passes through a minimum for the three-layer Al
rim.

The conduction-band width also undergoes a change
when the metal film becomes very thin. For a monolayer,
i.t is only 9.1 eV, but increases with the increasing number
of layers, and saturates at about five layers. A straight-
forward expectation along the trends seen in the work
function and surface energy would be an oscillatory varia-

tion of the conduction-band width as the thickness varies.
However, the number of nearest neighbors is the most
relevant parameter in determining the width, so the varia-

tions induced by the size effect are overshadowed. Oscil-
lations of the work function and surface energy have a
close connection to the changes of the surface charge den-

sity; it is discussed in the following sections.

IV. CHARGE-DENSITY ANALYSIS

Distribution of the surface charge and thus the dipole
moment originating therefrom are expected to influence
the properties of thin metal films. Here, we give a de-
tailed analysis of the charge density obtained from SCF-
pseudopotential calculations. In Fig. 5, we present the
contours of the total charge density on an (xy) plane pass-
ing through the surface atoms of the Al films for three
different films (one, three, and five layers}. Among all the
slabs considered, the monolayer has the highest charge
density which occurs at the center of the line joining the
nearest-neighbor atoms. In a shell around an atom in a
monolayer, the charge density does not show any signifi-
cant variations (-0.001 a.u. ) and thus the constant densi-
ty contours are almost circular. For a three-layer film,
there are two maxima on the line connecting two nearest
neighbors, and a shallow minimum at the center of the
equilateral triangles (formed by three nearest-neighbor
atoms). The difference between the maximum and
minimum charge densities is larger than for the mono-
layer case. In the five-layer Al film, the charge density in
the interatomic region becomes structureless except for a
shallow minimum at the center of the equilateral triangles
having vertices at the atoms. The fcc close-packed stack-
ing, underlies the variations in the structure of the charge
density. The two halves of the surface unit cell show only
a slight difference. In Fig. 6, the contour plots of the
charge density in an (xz) plane perpendicular to the sur-
face are shown. The charge density above the surface of
the monolayer Al is higher and displays less corrugation
than that of the three-layer Al. Figure 7 shows the (xy)-
planarly averaged charge density, p(z), of the one-, three-,
and five-layer Al films plotted along the z axis pointing
towards the vacuum. It is clearly seen that the monolayer
has the highest charge density in a region extending from

TABLE II. Work function 4 (eV), surface energy E, {eV per surface atom), and bandwidth E~ (eV)
calculated for one, three, five, and seven layers of aluminum thin film. The values in parentheses corre-
spond to the ideal monolayer.

One layer

4.3 (4. 12)
0.42 (0.47)
9.1 (7.8}

Three layer

3.2
0.50

10.5

Five layer

3.4
0.49

10.9

Seven layer

3.7
0.44

10.9
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the atomic plane to the vacuum. Comparison of three-
and five-layer films reveals that the average charge densi-

ty of the three-layer at the outermost atomic plane is
higher than that of the five-layer Al film, except, in a re-
gion extending from 2 a.u. above the surface towards vac-
uum. Near the surface region for z&0, P(z) displays
small Friedel oscillations which is appropriate for Al.
Fluctuations of the surface charge density as a function of
film thickness have important implications for the elec-
tronic properties as discussed in Sec. VI.

V. SURFACE RELAXATIONS

In the last dix:ade, experimental data from LEED ex-
periments have shown that the clean metal surfaces are
subject to reconstruction or relaxation. Such changes in
the geometry of the surfaces can have significant effects
on the properties of metals. Atoms near the surface of a
metal are under the influence of forces different from
those of the bulk, and which are known to lead to mul-

tilayer relaxations.
Low-energy electron diffraction data from aluminum

low-index surfaces have been interpreted to indicate an in-
ward relaxation, i.e., a contraction of 10—15% in the
spacing of the (110) surface layer from the first sublayer
compared with the bulk. On the (111)and (100) sur-
faces, no such contraction was found within an accuracy
of 5%. Using a uniform charge-density model, Finnis
and Heine have presented a simple explanation for con-
traction of the surface-layer spacing within the single-
layer relaxation approach. Moreover, their simple theory
revealed that contraction of the close-packed (111)surface
is smaller than for open surfaces. Later, Landman
et al. predicted an alternating change in sign of the
multilayer relaxation in the first few surface layers, con-
firmed by the extensive LEED analysis on the Al(110)
surface. Experiments by high-energy ion scattering have
also shown oscillatory relaxation on the Al(110) surface.
Experimental data on relaxation of the Al(111) surface
seem to be at variance: For example, the first interlayer
spacing expands by 2% according to LEED measure-
ments, which appears to be in contradiction to predic-
tions by Finnis and Heine, whereas the extended x-ray-
absorption fine structure data indicates an 8% contrac-
tion. In spite of these controversial results, common be-
lief is that the surface relaxation recedes as the atomic
density of the planes increases, and thus becomes insigni-
ficant for the Al(111) surface. ' lt is now well known that
the charge density near the outermost plane is closely re-
lated to the force acting on this plane. As revealed from
previous discussions, the surface charge density varies in
turn as a function of film thickness causing fluctuations
in the electronic properties. Consequently, surface relaxa-
tion is expected to exhibit similar behavior, i.e., a size ef-
fect.

We now focus our attention on the direction rather than
on the magnitude of the oscillatory multilayer surface re-
laxations of the thin Al films. Accordingly, we have cal-
culated forces exerted on the (111)atomic planes, and de-
duced the direction of relaxation. Forces were calculated
on the three-, five-, and seven-layer Al(111) slabs in their

TABLE III. Calculated forces on atomic planes in the ideal
geometry. Positive and negative values indicate forces directed
outwards and inwards, respectively.

Plane Three layer

—17.S
0.0

Force (m Ry/a. u. )

Five layer

—18.2
0.9
0.0

Seven layer

—4.2
—9.0

7.6
0.0

ideal atomic configurations, and results are listed in Table
III. The force exerted on the surface plane of the three-

layer Al film is directed inwards towards the center of the
slab, and thus indicates inward relaxation or contraction
of the interlayer spacing. In the five-layer Al film, two
interlayer spacings are subject to change. The direction of
the forces calculated yields a contraction of the first-
interlayer spacing, i.e., inward relaxation of the surface
plane, and a small expansion of the second-interlayer
spacing (i.e., spacing between the second and third layers
below the surface plane). As revealed earlier, the forces
calculated correlate quite well with equilibrium relaxa-
tions, and can thus be used as a measure for changes in in-

terlayer spacings. On the basis of this argument, one may
conclude that contraction of the firs-interlayer spacing is
enhanced in the five-layer film. It is interesting to note
that the firs-interlayer spacing of the seven-layer Al film
expands. In percentage, the change in the first-interlayer
spacing is smaller than those of the three- and five-layer
films, and is obviously in the opposite direction. The
second-interlayer spacing undergoes a contraction, and the
third-interlayer spacing again expands. The underlying
physics in the oscillatory relaxation has been extensively
discussed in previous studies, and in agreement with those
arguments the directions of the forces calculated result in
oscillatory multilayer relaxation. In the present study, the
new result is the change in sign of the firs-interlayer
spacing as a function of film thickness. In view of the
distribution of the electronic energy states, it has been ar-
gued that Al films from monolayer up to five-layer thick-
ness reflect the properties of a 2D electron system, and 3D
characters start to appear from a seven-layer film. There-
fore, expansion of the first-interlayer spacing obtained in
the seven layer, which is in qualitative agreement with
LEED measurements on the Al(111) surface, strengthens
our arguments about the dimensionality of the metal film.
Recent calculations by Ho and Bohnen have yielded
small fluctuations in the relaxation of the Al(110) slabs as
the thickness is increased from 9 to 15 layers. They attri-
buted these small fluctuations to interactions between the
two surfaces of the slab rather than to a size effect. They
pointed out that the slab must be at least 13 layers thick
to yield reasonably converged results. It is known that the
(110) surface plane of aluminum relaxes toward the
second surface layer, and therefore the size effect beyond
nine layers appears as a small fluctuation above the value
of the contraction. Since the first-interlayer spacing of
the (111)surface of thick aluminum undergoes a small ex-
pansion, the size effect seems to change the qualitative
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FIG. 8. The total-energy difference between the Al(111)
monolayer and bulk aluminum as a function of lattice parame-
ter a. The inset shows the surface unit cell and primitive
translation vectors R& and Ri of length a/V 2. The equilibri-
um lattice parameters of bulk Al, ao, is also indicated.

3,?

TABLE IV. Total energy ET,ET minus the total energy per
atom of bulk aluminum, A,ET, the width of the valence band E~
calculated for the Al(111) monolayer with different lattice pa-
rameters.

character of the surface relaxation so that it turns to con-
tractions at very thin films.

Lateral relaxation, i.e., uniform change of the 2D lattice
parameters is not conceivable for thick films, but as point-
ed out earlier by Batra becomes important for an unsup-
ported metal monolayer. To investigate the lateral relaxa-
tion of the Al(111}monolayer, we carried out total-energy
calculations to determine the equilibrium lattice parame-
ter. Figure 8 shows the change of the total energy per
atom of the Al monolayer as a function of the lattice pa-
rameter. It is noted that the Al monolayer has an equi-
librium lattice constant 7% smaller than the ideal bulk
value. The underlying physics of this contraction can be
seen in the number of nearest-neighbor atoms. In the
bulk, each Al atom is surrounded by 12 Al atoms,
whereas the number of nearest neighbors in the monolayer
reduces to six, which is expected to influence the charge
distribution and various properties connected with it. In
Table IV, variations of the total energy and bandwidth as
a function of lattice parameter are listed. The bandwidth
(measured from the first subband up to EF) increases by
17%. It is interesting that change of the bandwidth as a

function of lattice parameter follows the d rule pro-
posed by Harrison and Ciraci. 3 Many properties of thin
metal films are known to be correlated by the average
charge density. In the monolayer, lattice contraction im-
poses a change —18% in 2D charge density p„and a 4%
increase in the work function.

VI. DISCUSSIONS: QUANTUM SIZE EFFECT

The results presented in the preceding sections clearly
demonstrate that several properties of thin Al films (such
as work function, surface energy, bandwidth, surface re-
laxation, and charge density in the surface region) are
strongly dependent on film thickness. For example,
values of work function, surface energy, and vertical re-
laxation of the surface vary with thickness. These fluc-
tuations will saturate to values of the semi-infinite slab by
damped oscillations. Figure 9 shows variations of the
work function, surface energy, etc. The oscillatory
behavior of the electronic properties, especially that of the
work function is closely related to the surface electronic-
charge distribution varying as a function of film thick-
ness. ' Once the number of metal layers increases, which
results in an empty subband (contributing to the surface
charge much more than the lower-lying states in Figs. 2
and 3) dipping below the Fermi level, the surface charge
starts to increase. The surface-charge density passes
through a local maximum at the Fermi-level position near
the midpoint between the occupied and next empty sub-

E ]0
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E, 0.45-

0.40—

-57.0-

E -565—

-56.0—
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3.85
3.70
3.60

E~ (Ry)
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—4.1323
—4.1324
—4.1312

0.0713
0.0625
0.0623
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8.4
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FIG. 9. %'ork function 4 {eV)„conduction bandwidth, E~
(eV); surface energy, E, (eV per surface atom) and average total
energy Z {eV per atom) Of one-, three-, five-, and seven-layer
Al(111) films. The values of even-numbered layers are not
shown. Calculated values are joined by straight hnes. Small ar-
rows show values corresponding to bulk Al.
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bands. Further increase of the film thickness causes the
next empty subband to become close to the Fermi level,
and the surface charge to recede because of the dominat-
ing effect of the enlarged length of confinement. Conse-
quently, the surface dipole moment, and thus the work
function, is near a local minimum wherever the Fermi lev-
el becomes closer to a subband. This assertion can be easi-
ly verified by comparing Figs. 7 and 10. The Fermi level
of the monolayer is located at the middle of subbands
n =2 and 3, and has highest charge density above the sur-
face. Consequently, it has the largest work function. On
going to the three-layer Al film, subband n=3 falls far
below the Fermi level, and subband n=4 is very close to
it. According to the above arguments, this position of the
Fermi level corresponds to a local minimum of the
surface-charge density. It is generally expected that the
larger the charge depletion from the slab (or conversely
the larger the charge spilling above the surface), the
higher the surface dipole moment. The work function as-
sociated with the surface is proportional to the value of
the dipole moment. Thus, as expected, the work function
of the three-layer Al film is decreased. However, the posi-
tion of the Fermi level of the five-layer Al is quite dif-
ferent from the three-layer Al, but similar to that of the
monolayer, where EF lies between subbands 7 and 8. Ac-
cordingly, the charge density above the surface exceeds
that of the three-layer film (see Fig. 7) and the work func-
tion is increased. In Fig. 10, an interesting, situation arises
regarding the position of the Fermi level of the seven-
layer Al film: The work function is larger than that of
the five-layer film in spite of the Fermi level being close
to subband n=10. This implies that the work function
passes through a local maximum at a six-layer Al film.
Comparing variation of the work function and surface en-
ergy in Fig. 9, one observes that the surface energy exhib-
its a reverse trend. It is low in the monolayer, but passes

t—10

—6

5

1L 3L BL 7L

FIG. 10. %'ork function and subband energies (at I ) of one,
three, five, and seven layers of Al(111) thin films calculated by
the self-consistent pseudopotential method. Even-numbered
layers are not shown. To highlight the changes, values of work
function and subband energies are joined by thick and thin
straight lines, respectively (after Ref. 16}.

through a maximum for a three-layer film. Further in-

crease of the thickness up to seven-layer causes the sur-

face energy to decrease. It is noted that the work-function
values quoted do not include small corrections owing to
nonzero charge density [—10 electrons/(a. u.) ] in the
middle of the vacuum region.

A comment on the effect of the surface relaxation on
the work-function values is in order. As pointed out in

Sec. III, except for lateral relaxation of the monolayer, the
work function of multilayer films was calculated from the
slabs with ideal lattice parameters. %hile the calculated
forces on the atoms indicate multilayer vertical relaxa-
tions, the values of these relaxations are known to be
small for the Al(111) surface. Ho and Bohnen found a
small change in work function of -0.2 eV between re-
laxed and ideal AI(110) slabs. Since surface relaxation of
the Al(111) slab is smaller than that of the Al(110) slab,
the effect of surface relaxation on work-function values is

expected to be negligible. Feibelman' carried out the
total-energy minimization by allowing only the topmost
layer to relax. His results show an expansion of the
outermost-interlayer spacing, -6/o for two-layer and

=4%%uo for six-layer films. In spite of outward relaxation
of the surface layer, Feibelman' also found small varia-
tion on the work function upon surface relaxation. As for
surface energy, the energy associated with multilayer re-

laxation was found to be —10 meV for Al(110) slabs,
which is only a small fraction of surface energy. As a re-

sult, the effect of surface relaxation on surface energies
calculated for ideal Al(111) films is expected to be rather
small.

The type of surface relaxation suggested in our work
seems to be at variance with those found by Feibelman. 's

The forces exerted on the surface atoms suggest contrac-
tion of the interlayer spacing between surface and subsur-
face layers, and also oscillatory multilayer relaxation for
three- and five-layer Al films. In the seven-layer Al film,
the surface-layer plane exhibits very small inward relaxa-
tion. The magnitude of the forces indicates that inward
relaxation of the surface sublayer is larger and thus leads
to expansion of the first-interlayer spacing. Using a
single-layer relaxation approach, Feibelman predicted the
expansion of the first surface-interlayer spacing for thin
Al(111) films consisting of two to six layers, in which the
amount of expansion decreases as film thickness increases.
The origin of the difference may lie in the fact that
Feibelman allowed only the surface layer to relax leaving
subsurface layers to preserve their ideal locations. As the
present results show, surface relaxations in the three- and
five-layer Al(111) films are rather different from those of
seven-layer Al films. The first-interlayer spacing of the
seven-layer Al films expands as (in fact) observed in
semi-infinite slabs. This finding is consistent with our
previous arguments stating that 3D properties start to ap-
pear in seven-layer film. Variation of surface energy as a
function of thickness displays an inverse trend as com-
pared to that of the work function, inasmuch as the sur-
face energy retains the maximum values for a three-layer
film, when the work function has minimum value. The
theory of simple metals within local density-functional
theory' and jellium approximation showed that the sur-
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face energy is closely related to distribution of the elec-

tronic charge density above the surface.
On the basis of the formalism presented in Sec. II, the

position of the Fermi level has a close relationship to the
2D charge density p, and also the potential of the quasi-
two-dimensional system. Therefore, the exotic physical
properties of very thin metal overlayers deposited on
semiconductors can be related to the form of this interface
potential, and thus to subband structure. When the form
of this potential is changed by the substrate weakly in-

teracting with the metal overlayer, D2 (E~) may undergo
a sudden change with significantly altered electronic prop-
erties. Evidently, such an effect cannot be deduced from

simple quantization models.
Apart from subband structure, transfer of charge be-

tween metal overlayer and substrate causes surface-charge
density p, to undergo a change, which in turn affects the

position of the Fermi level. Recently, Batra and Ciraci
have studied the Al overlayer on Ge substrate, and point-
ed out interesting size effects regarding thickness of the
over layer.

Finally, we should like to comment on two closely re-

lated concepts, interchangeably used, but which some-

times have quite different meanings. The above discus-

sion clarifies that the 2D character is attributed to the
thin Al films because of the character of the wave func-
tion. As such, the wave function has a free-electron solu-

tion in the (xy) plane, whereas it is confined in the poten-

tial well along the z axis. Several properties of thin films

quite different from those of the bulk originate from the

way one-electron states are quantized, and are related to
the dimensionality of the system. However, the properties
of three- and five-layer Al vary, in spite of the fact that
both films have 2D character. These changes are associ-
ated with the different sizes of the thin films.

In conclusion, the relative position of the Fermi level
with respect to the highest-occupied and empty subbands
undergoes a change depending on the size of the film,
which in turn influences surface-charge distribution and
the resultant electronic properties. The relative position
of the Fermi level between two subbands is also an impor-
tant parameter in assessing properties of metal overlayers
on semiconductor substrates. The density of states of a
quasi-two-dimensional system is ladder shaped which can
be taken as a fingerprint of dimensionality much like
plasmon dispersion.
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