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Universal Poisson s ratio in a two-dimensional random network of rigid and nonrigid bonds
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Two different elastic moduli near the percolation threshold of a two-dimensional random honey-

comb network of rigid and nonrigid bonds were calculated as a function of the correlation length

f and the width L of the network whose length IV is very large (N »L, N »g). For L and f
large enough, the ratio p/C&& is found to depend only on the ratio g/L. For (/L (1, the ratio
tends to a va1ue 0.46~0.02, which corresponds to a rather tow (though positive) value of
Poisson's ratio cr, namely, cr 0.08+ 0.04.

Recently, the critical behavior of random elastic net-
works has been the subject of a number of investigations,
some of which have indicated that the ratio of different
moduli tends to a limiting value that is independent of the
values of the microscopic elastic parameters. ' This was
found both in the case of a diluted network, '3 where the
elastic moduli tend to zero as p p,+ (here p is the frac-
tion of occupied bonds while p, is the percolation thresh-
old), and in the case of a normal-rigid network, 2 where the
elastic moduli diverge as p p, (here p is the fraction of
totally rigid bonds). In both cases the microscopic elastic
properties included a bond-stretching force constant k as
well as a bond-bending force constant rn between neigh-
boring bonds, so that the percolation threshold p, is identi-
cal with the threshold for solid, elastic, or rigid behavior.
Another common characteristic of these numerical investi-
gations was that each random network was constructed in
the form of a long N&L two-dimensional strip (with
N »L) at p p„and the macroscopic elastic properties
of the strip were then determined by a transfer-matrix
method. This was done for different values of the width L,
and then the finite-size scaling idea was used to determine
the critical exponent of, e.g., the elastic modulus C~ ~ at the
rigidity threshold of a normal-rigid network according to
C~t-L~l" (see Ref. 2). Inherent in this approach is the
fact that the correlation length ( is always much greater
than L. Indeed, for an infinite random network at p p„g
would be infinite. By contrast, real random systems for
which the random network might be a reasonable model
will usually be at some p Wp, such that g is much less than
the macroscopic linear dimensions. In that case the criti-
cal behavior takes the form C~~-Pl"-(p, —p) ~ and is
independent of the size of the system.

The finite-size scaling idea describes these two regimes,
as well as the transitions between them, by the following
Ansasze:
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and A,A' are positive constants. A similar Ansaiz can be

written for another elastic coefficient, the shear modulus
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and 8,8' are again positive constants. The fact that the
same exponent S~ 1.30 appears in both cases was one of
the conclusions of Ref. 2. Another result of that paper was
that the ratio lt/C~t tends to a value of about —, for in-
creasing L, '4 independent of the microscopic force con-
stants k,m. From the Ansatze (1) and (2), we can deter-
mine two asymptotic values for the ratio lt/C~ ~,

A/8, for L »g,
A'/8', for L «g . (3)

Clearly, the simulations of Ref. 2 determined that
A'/8'~ —,'. Because the Poisson ratio tr is simply related to
the ratio p/Ct t, that result would mean that

o' l- 2p 1
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(4)

which was some~hat unexpected: Although negative
values of a are not forbidden by stability considerations,
nevertheless, in all naturally occurring homogeneous and
isotropic solids the Poisson ratio is found to be positive.

In this Rapid Communication, we report on some simu-
lations where the ratio p/C~~ in a rigid-nonrigid network
was determined for nonzero values of L/g, with the ulti-
mate aim of learning about systems at the other extreme
condition L »g, when lt/Ct t A/8. Clearly, this could be
different from the value 3 found in Ref. 2. Following Eqs.
(1) and (2), we would expect the ratio p/C~~ to depend on
L and g as follows:

& -G(~/L) -=H(yL) . (5)
Cii F(&/L)

This would hold, however, only when both (»1 and
L && l. Otherwise we might expect some residual depen-
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dence on L, as well as on the microscopic force constants
k,m.

The simulations reported here were done using the same
transfer-matrix method that was used in Ref. 2, where its
important elements were described. Here we will only
mention that the network was a two-dimensional honey-
comb network in the shape of a long (N))L) strip with
periodic boundary conditions in the short directions. The
bonds were chosen randomly and independently to be ei-
ther rigid (with probability p &p, ) or normal (with prob-
ability I —p). A rigid bond has k oo, while an angle be-
tween adjacent bonds has m ac only if both bonds are
rigid. Simulations were done at a number of different
values of L and g/L, where g was assumed to be given by

0.62-

(6)
Pe

with v —3.s The strip length N should ideally be large
enough so that a unique result is obtained for the elastic
moduli at fixed values of the other parameters. In prac-
tice, this sometimes requires extremely long strips, as
found already in Refs. 2 and 3 and in other transfer-matrix
calculations. In Fig. I we show in one case how the results
for p/C11 fluctuate when N is increased in steps of 50.
Evidently there are small and rapid fluctuations as well as
large and slow fluctuations, and this makes it difficult to
estimate the accuracy of the supposedly unique result. In
this Rapid Communication we will not attempt to gauge
the accuracy of each calculation. It will become apparent
below that the accuracy is sufficient for the conclusions
that we reach.

In Fig. 2 we show a limited collection of results for
p/C~~ vs L for various fixed values of g/L and for two dif-
ferent values of k/m, which would correspond to
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FIG. 1. Results for p/C» when k/m 1.5, L 20,
N 40000 and p, —p 0.0138 (i.e., g 8,55) plotted vs 1V in

steps of 50. Note that although the fluctuations settle down
rather quickly, there remain fluctuations on many scales even for
large %. This becomes even more serious when p p, .
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FIG. 2. Values of p/C~~ plotted vs the strip width L for
several values of g/L and for two values of k/m, the points are
the results of the numerical simulations for g/L 0.323(~ ),
0.940(+), and 8.55(x). The lines were drawn through the
points in order to guide the eye and to differentiate between the
results for k/m 1.5 (full line) and 15.82 (dashed line). Note
that at the lowest value of (/L, even for the largest L (i.e., 70) we

are at p, —@~0.063, i.e., about 109o below the percolation
threshold p, ~0.6527, so that it is questionable whether the criti-
cal region has been reached.

a -0.23 and cr 0.29, respectively, if the network had
no rigid bonds. It is evident that, at each value of g/L,
there is a tendency for the results to converge to a value in-
dependent of k/m as L increases, and that those asymptot-
ic values will depend on g/L. In particular, it seems that
the asymptotic value of p/C11 will decrease with decreas-
ing (/L. The precise asymptotic values of JM/C11 are not
derivable from Fig. 2 since there is still a considerable
dependence on k/m and on L.

In Fig. 3 we show all of the results we have obtained for
p/C~~ with the two values of k/m mentioned above, plot-
ted versus g/L for various values of L. The following
points are noteworthy.

(a) For a given value of L, as (/L 0 the ratio p/C~~
eventually tends to the value it should have for a homo-
geneous network with the appropriate value of k/m This.
usua11y requires a qua1itative departure from the asymp-
totic behavior, which is expected to be independent of k/m
when both g and L are large.

(b) As L increases, the two sets of lines (corresponding
to the two values of k/m) tend to approach each other.

(c) Consequently, it is not difficult to draw a semiquan-
titative plot of p/C~~ vs g/L for L ~, and this is also
shown in Fig. 3. This line, which must reach p/C~~= —',
for g/L ~ (this is not exhibited in Fig. 3), is seen to
reach the approximate value 0.46 as (/L~0. Conse-
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FIG. 3. Values of p/C~~ plotted vs (/L for different values of I.and for two values of k/m. The points are the numerical simulation
results for L 10(x), 20(+), 30(+), 40(O), 50(&), and 70(~ ). Two sets of lines were drawn through the points in order to guide the
eye and to differentiate between the results for k/m 1.5 (full line) and 15.82 (dashed line). Based on these lines, another line (dot-
dash) was drawn to indicate semiquantitatively the asymptotic dependence of p/C» on f/L for I. ~. Note that for sufficiently
small values of g, i.e., when p is far enough below p„ the dependence of p/C» on g changes qualitatively so as to reach the correct
value for the homogeneous network when g 0. Thus, when k/m 1.5, p/C~~ changes from a decreasing function to an increasing
function of g at f L

quently, we conclude that

o 0.08+ 0.04 . (8)

-O.46+ 0.02 . (7)
C» g»r.

This means that the asymptotic value of Poisson's ratio be-
comes

longer and wider trips should be simulated. This would
have to be done on a supercomputer, since the present re-
sults already required about 150 h of CPU time on a
CDC-Cyber 885. (Most of this time was used to evaluate
the I. 70 strips out to a length of IV 7000.) It is known
that such calculations can be speeded up enormously by
using a vector computer, so that is clearly how these cal-
culations should be continued.

While this value is not negative, it is much closer to zero
than in most natural homogeneous and isotropic solids,
which is rather remarkable.

In order to get more precise results for the ratio p/C~ t,
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