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Quantitative prediction of permeability in porous rock
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%e show that percolation concepts lead to the definition of a characteristic length for the per-
meability in random porous media. Application of the model to sandstone and carbonate rocks
yields quantitative agreement between theory and experiment ~ith no adjustable parameters.

The transport properties of fluids in porous media are of
broad interest in science and technology. They belong to
the general class of transport in random media including
electronic transport in amorphous conductors. Transport
in porous media is central to technological problems in
porous electrochemical electrodes, filters, and gels and to
establishing the producibility of petroleum reservoirs.
There have been numerous attempts over the last sixty
years to establish a relationship between the permeability
of a random porous material and other characteristic ma-
terial properties. ' Early work' expressed the permeability,
which has units of length squared, as a function of hy-
draulic radius (the pore volume divided by the pore sur-
face area) and such macroscopic properties as the total
porosity. The hydraulic radius has been used as the
characteristic length up to the present time. 23 Recent
work attempts to justify the Carmen-Kozeny equation on
the basis of network or effective-medium models. 3 These
attempts fail to give satisfactory results for two reasons.
First, they attempt to relate the transport properties to the
macroscopic geometric properties. Second, they do not
recognize the fundamental physical significance and sensi-
tivity of the length scale in the permeability prediction.

We propose and present experimental evidence support-
ing the following relationship for the permeability of rocks
saturated with a single liquid phase:

k -cl2(cr/ere) .

The permeability k is defined by the Darcy relation:
v (k/rl)Vp, where v is the velocity of fluid flow through
the rock, rl is the fluid viscosity, and Vp is the pressure
gradient imposed across the rock sample. Here l, is some
characteristic length of the pore space, o is the conductivi-
ty of the rock saturated with a brine solution of conductivi-
ty rrn, and c is a constant on the order of +, , The conduc-
tivity term reflects the connectedness of the pore space,
whereas the length term sets the scale for the permeability.
We show that Eq. (1) follows from the percolation argu-
ments of Ambegaokar, Halperin, and Langer (AHL),
which lead to a definition of the characteristic length 1,.
The length l, is a unique transport length scale and dom-
inates the magnitude of the permeability. New contribu-
tions of this work include recognizing the importance of
this length to the physics of permeability and directly
measuring I, from mercury injection experiments. Our
results verify the quantitative accuracy of the AHL
approximation —in agreement with recent computer

g(l) -yg, (l)[p(l) —p, l' . (2')

The porosity p appears here to ensure a proper normaliza-
tion of the fluid or the electric charge density. As we de-

simulations —and support the conjecture that mercury in-
jection has a percolation geometry. s

It is well established9 that pore spaces of many reservoir
rocks are characterized by a broad distribution of pore
sizes. A broad distribution of pore sizes suggests that
transport through the pore space must be understood in
terms of a broad distribution of local conductances. For
each point r in the pore space, we assign a value X(r),
where X(r) represents the diameter of the largest sphere
that contains the point r and is fully contained in the pore
space. We next group the points into continuous patches
of pore space with common value X. We assume a patch
where assigned value A, is also roughly of linear dimension
X [we can relax this constraint without invalidating our ar-
gument, but it is important that no long-range correlations
in the function X(r) persist].

AHL suggest that transport in a random system with a
broad distribution of conductances is dominated by those
conductances with magnitudes greater than some charac-
teristic value g, . The characteristic conductance g,
represents the largest conductance, such that the set of
conductances Ig ~ g & g, ] still forms an infinite, connected
cluster. Hence, transport in such a system reduces to a per-
colation problem with threshold value g, . Kirkpatrick'
and Shante" have carried these ideas further. They assign
all local conductances with values g ~g, the value g„and
set all conductances with values g & g, to zero; they arrive
at a trial solution for the sample conductance of the form

g -kg, [p(g, ) —p, ]',
which can be maximized with respect to the variable g, .
Here, p(g, ) denotes the probability that a given conduc-
tance is greater than or equal to g„and k is an appropriate
constant. In three dimensions, the percolation exponent
t -19"

%e interpret transport within rock pore spaces in terms
of these percolation ideas. Since the local hydraulic con-
ductance is a function of the length l, the threshold con-
ductance g, defines a characteristic length I„which is the
length that appears in Eq. (1). Moreover, the length that
marks the percolation threshold in the hydraulic conduc-
tance problem also defines the threshold in the electrical
conductance case. We can, therefore, study Eq. (2) as a
function of the length parameter I:
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crease I past the threshold value I„ the function g, (l)
(which we take equal to cl for the fluid flow problem and
equal to c'I for the analogous electrical problem) also de-
creases, but the power-law expression [p(l ) —p, l' will in-
crease as more and more of the pore space is included in
the largest cluster that spans the sample. For appropriate
choices of the function p(l), the conductance g(l) as-
sumes a maximum value for some l,„~l,. Since Eq. (2')
should always yield at least a lower bound to the true rock
conductance, we take l~,„to be the "best" choice to use in
the trial solution [Eq. (2')]. We observe that, in general,
I~,„ for the hydraulic conductance will be different from
I~,„ for the electrical conductance problem, since the con-
duction pathways have different weights for the two cases.

We can derive some general results concerning the rela-
tionship between permeability and conductivity without
specifying the function p (I ). These relationships hold as
long as p(l) allows for a maximum in the conductance
and the maximum occurs for I~,„&I, . If these conditions
are satisfied, we find to first order in Al, and ltlr,
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FIG. 1. Typical mercury injection curve taken on a quartz ce-
mented sandstone from eastern Utah. The characteristic length
is labeled l, . The pore diameters are calculated from the pore
pressures using the Washburn equation.

For very broad pore size distributions [such that
I,tp"(I, )/p'(I, ) «1] Eqs. (3) reduce to

Using the above results for broad distributions of conduc-
tances, we establish a relationship between the electrical
conductivity

a-an't [p(I',„)—p, ]'

and the permeability

k -pqO"..„)'[pO".„)-p, ]' .

To first order in ill, or in Alr„

tension and contact angle yield errors that are small com-
pared to the expected uncertainty in measuring the per-
meability. ) The Washburn equation assumes a local
cylindrical geometry.

Figure 1 shows a typical mercury injection curve where
the volume of mercury intruded (normalized by the total
pore volume) is plotted versus the applied pressure.
Several authors have interpreted the rapid rise in the
curve to occur when the intruded mercury initially forms a
connected cluster that spans the sample. The intitial por-
tion of the intrusion curve with positive curvature is associ-
ated with surface defects and a broad variation in sample
thickness found in the rock chips used in the experiment.
We take the inflection point's of the rapidly rising portion
of the curve to mark the threshold pressure p, for the for-
mation of the "infinite" cluster. From the Washburn

To interpret the constants a and p, we assume that locally
the rock conductivity is simply pro, the conductivity of the
brine solution, and that the local pore geometry is cylindri-
cal. These assumptions imply that a cro and p
Combining the above relationships, ~e obtain
k +~ I, cr/pro, which is of the same form as Eq. (1).

To determine the characteristic length I, of actual rock
samples, me performed mercury injection' experiments on
a set of 50 rocks that range in permeability from 50 micro-
darcies to 5 darcies. Mercury, which is assumed to be an
ideal nonwetting fluid, is forced into the evacuated pore
space under quasistatic conditions. For each externally
applied pressure, the diameter of the mercury-pore space
inter- face is determined by the Washburn equation p,—4ycos&/d, where p, is the capillary pressure, which is
the difference in pressures on the two sides of the men-
iscus, y is the surface tension ( 485 dyn/cm), 8 is the
contact angle (130'), and d is the local diameter of the
pore space. (The experimental uncertainties in the surface
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FIG. 2. Calculated permeability k~, vs measured permeabili-
ty k for various sandstones and carbonates. The dashed lines
indicate a factor of 2 deviation. Note that the unit of permeabil-
ity is the millidarcy (md) 10 "cm .
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equation, we conclude that the pore widths l included in

the infinite cluster satisfy the relation i~ —4ycose/p, ;
moreover, it is not possible to form an infinite cluster such
that the included pore widths are strictly greater than
—4cos8/p, . This expression then defines the characteris-
tic length 1,.

Figure 2 presents the gas permeabilities extrapolated to
infinite pressure' of sandstone samples and a few porous
carbonate rocks versus the permeabilities calculated from
Eq. (2). The gas permeabilities extrapolated to infinite
hydrostatic pressure are customarily assumed to represent
the geometrically determined absolute permeabilities. The
conductivities were measured at 20 kHz (these measure-
ments agree well with dc values) on rock samples saturat-
ed with 10000 and 100000 ppm NaC1 brine. The per-
meabilities, conductivities, and I, s were all measured on
the same piece of rock sample. The experimental errors
are dominated by the measurements of /, and k. The cu-
mulative errors are estimated to be plus or minus a factor
of 2. The absolute values of the permeabilities of the least
permeable samples are systematically high because of the
difficulty in perfectly sealing rock samples within the mea-
surement rig. The line drawn in Fig. 2 is the prediction of
Eq. (1). Agreement between the measured and predicted

permeabilities is within experimental error.
The length scale I, determined from the inflection point

on a capillary pressure curve, is accurate to + 15% of its
value. The inflection point is a unique, well-defined exper-
imental point and corresponds to the formation of electri-
cal continuity across the sample. In contrast, the choice of
a length in the neighborhood of I, would alter the value of
the constant 226 and would not be directly relevant to the
critical path for percolation.

In conclusion, we cite several phenomenological expres-
sions in the geophysics literature relating permeability and
parameters derived from mercury intrusion data. A rela-
tionship established by Swanson' comes close quantita-
tively to our Eq. (1). Swanson's derivation, however, is

very different from ours. The excellent predictability he
obtains reflects his choice of a characteristic length close
to I, or I,„. There are also numerous expressions for k
that use the porosity raised to some large power. 's'9

Large exponents are required to give the observed range of
k values in the absence of an I, measurement. In our ex-
periment l, varies by three orders of magnitude while o/cro

varies by a factor of 20. Expressions involving large ex-
ponents on porosity are reasonable only when p tracks l, .
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