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Lattice and continuum percolation transport exponents: Experiments in tvm-dimensions
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The conductivity and the elasticity exponents were measured in a system which can model lat-
tice or continuum percolation in two dimensions. The conductivity exponent is the same in both
cases, but the elastic exponent is larger in the continuum percolation. All the results are in very
good agreement with the analysis of Halperin, Fegg, and Sen.

In this Rapid Communication, I present experimental
results pertaining to the transport properties (electrical
conductivity and elasticity) for the cases of lattice and
continuum percolation in two dimensions (2D). Recently,
Halperin, Feng, and Sen' calculated that there are signifi-
cant differences between the lattice- and continuum-
percolation exponents. They considered the transport
properties near the percolation threshold of a random-void
model, where spherical holes are randomly distributed in
the medium. In 2D (which is the case of this Rapid Com-
munication) they found that the conductivity exponent t is
the same as in lattice percolation. But the elasticity ex-
ponent T is much larger in continuum percolation. It is
known that in a lattice TI=3.5, and Halperin ef al. '

found that in a continuum T, —Tt 2. In this paper re-
sults of experiments are presented which show excellent
agreement with the analysis of Halperin et al. '

The system, already used3 to determine the exponent T,
consists of a metallic sheet in which holes are punched,
and the strain under the application of a known stress is
measured. This system has two important advantages: (a)
One can measure simultaneously the elastic constants and
the electrical conductivity, and (b) one can model either
lattice or a continuum percolation by varying only the
method of punching the holes. In the first case (lattice)
the holes are punched randomly on the sites of a square

lattice, with the hole diameter slightly larger than the lat-
tice constant. In the second case (continuum) the holes
are punched randomly on the sample. In this manner, it is
possible to have a continuous distribution of the channel
width' b with a finite limit for its probability distribution
P(8) for h 0+, as necessary to observe a change in the
exponent T.

The experiments were performed in the following
manner.

(a) The samples are 20X 21-cm'sheets of copper (thick-
ness 0.2 mm) and the diameter of the holes is 1.1 cm. On
the same sample the conductivity and the elastic constants
were measured as a function of p. In lattice percolation, p
is the hole number, and in continuum percolation it is the
removed surface. In this latter case, p is determined by
weighing the metal pieces removed by the punching.

(b) The mechanical measurements were made in the
two different configurations shown in Fig. 1. Configura-
tion a is the tensile stress geometry used previously; con-
figuration b measures the shear response. A schematic
view of the experimental setup of this configuration is
given in Fig. 2. The problem in configuration b is to keep
the sample planar under a shear stress. For this purpose,
two identical sheets were used, as shown in Figs. 1 and 2.
The two samples are fixed to the basis plate by their oppo-
site ends, while their other ends are clamped on a mobile

(b) ~~0

FIG. 1. Configurations of the sample in the elasticity mea-
surements. In b two identical samples are used, with the holes at
the same positions. AX is displacement of the plate and F is the
applied force.

FIG. 2. Schematic view of the device for measuring the elastic
constant in the configuration of Fig. 1(b). A, 8 are samples. P
is the basis plate. C is the mobile beam. M is the micrometer.
E, F, 6, H, I, and J are the locations of ball bearings.
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beam. The displacement of the beam under application of
a known weight is measured by a micrometer. These two
configurations involve different combinations of the elastic
constants. It will be sho~n that the two configurations
give the same exponent T (as also occurs for the lattice
geometry ) showing that the two elastic constants (Ctt
and C44 or k and p) vanish at the elastic threshold with

the same exponent.
(c) The threshold p, was determined by fitting the con-

ductivity data by the expression o-(tt, —P)', since it is

possible to perform measurements of cr much nearer to p,
than can be done for the elastic constants. It is found that

p, (lattice) =0.60 and lit, ( continuum )=0.64.
(d) It is important to go as near lit, as possible. In the

present case, there are two limitations. First, the finite
size of the sample limits tp to values for which the correla-
tion length is smaller than the sheet size. This takes place
for

~ p
—p, ~

+0.05. Further, the stress that one has to ap-
ply in order to be always in the linear regime (see Ref. 3
for details) decreases with ~lit

—p, ~. It may happen that
the residual friction is of the same order of magnitude as
the applied stress and the measurement is no longer possi-
ble. Care has been taken in order to diminish the friction
by the use of good-quality ball bearings.

For the conductivity o, the same exponent t 1.1+0.2
is found in both kinds of percolation, as predicted by
Halperin er al. '

The results of the elastic measurements are shown in

Fig. 3 where the lattice and continuum elastic constants in

the configurations a and b are plotted. Since the units of

-2
I

Lattice percolation

Continuum percolation

C, b are arbitrary, the curves were displaced to separate
them. The behavior of the two kinds of percolation is

clearly seen. For the lattice, the exponent TI is found
equal to 3.5 (as in Refs. 3 and 5). It is clear that the ex-
ponent T, of the continuum percolation is larger than TI.
From these curves Cb and C„we can estimate
T, 5+0.5. The importance of the results is that T, is
found to be larger than TI, with a difference T, —TI be-
tween 1 and 2. The ratio of the absolute values of the elas-
tic constants in the two kinds of percolation is of order of
2; C, e being larger for the lattice case, at the same value

Since Halperin er al. ' related the elastic properties to
the distribution P(8) of the channel width, and its
behavior for b 0+ the distribution Pt(B) of the distance
between two holes was determined. For small values of b,
the two distributions are identical. A hole A is chosen
(Fig. 4) and the distances from its side to all its "neigh-
bors" are measured. A hole is considered to be a neighbor
of the hole A if it is possible to draw a straight line (from
center to center) between the two holes without crossing
another hole. In Fig. 4, the lines joining the hole A to all
its neighbors are shown. It is clear also that two overlap-

ping holes are not taken into account, since there is no
metal part between them. This definition is different from
that of Halperin et al. ,

' but my distribution is much
simpler to determine experimentally.

Photographs of the sample were taken at different
stages of the measurements. From these photographs, the
distributions were determined. In Fig. 5 the distributions
Pt(b) of lattice percolation for lit 0.4 (P, —P 0.2) and
for p 0.55 (p, —

p 0.05) are shown. In spite of the rela-
tively important change in (p, —p), there are only minor
changes in Pt(b). One observes gape in Pt(B), reflecting
the discrete nature of the hole positioning. The smallest
channel width is 3.2 mm (between 2 and 4 mm) and for
b 0+, Pt(B) P(b) 0. In Figs. 6(a) and 6(b), the
distributions of continuum percolation are drawn for

0.425 (p, —
tt 0.225) and for 0.59 (p, —

p 0.05).
For tp 0+, the distribution goes to a finite value and it is
different for the two values of ( p

—p, ~. At large values of
b, P t (b) does not have the same behavior for the two kinds
of percolation. Pt (8) of the lattice percolation is different
from zero for relatively large b. This results from the defi-
nition of a neighbor and from a canal effect typical of a
lattice.

To conclude, the 2D conductivity and elasticity ex-

FIG. 3. Elastic constants vs (ti, —p). a corresponds to Fig.
1(a) and b corresponds ta Fig. 1(b).

FIG. 4. One hole (A ) and all its "neighboring" holes. From
8 to a neighbor, it is possible to draw a line which does not cross
any other hole.
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FIG. 5. Distribution P~(b) in the lattice percolation for (a)
0.2 and (b) p, —p 0.05.

ponents in lattice and continuum percolation were deter-
mined. The conductivity exponent is the same, but the
elastic exponent T, for continuum percolation is larger
(-5) than the lattice-percolation exponent (-3.5). At
the same time, the distributions Pt (b) of the distances be-
tween holes were determined, showing the difference be-
tween the two kinds of percolations. All these results are
in very good agreement with the results of Halperin et al. '
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FIG. 6. Distribution P~(b) in the continuum percolation for
(a) p, —

4 0.225 and (b) p, —
p 0.05.
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4In the first geometry [Fig. 1(a)] the measured elastic constant

is neither E (valid for a very long sample) nor C~~ (valid for a
very short sample), but a combination of them (C, '

aC~~ '+IJE ', with a and P depending on the sample size).

By the same kind of argument, one can easily see that in the
second geometry [Fig. 1(b)l a combination of E and p is mea-
sured. This point is discussed in D. J. Bergman and L. Bengui-
gui (unpubUshed).

L. Benguigui, in Physics of Finely Diuided Matter, proceedings
of the Venter School Les Houche, France, 1985, edited by
N. Boccara and M. Daoud, Springer Proceedings in Physics,
Vol. 5 (Springer-Verlag, Berlin, 1985), p. 188. In the two
configurations, the same value of T is found, showering that the
two elastic constants (C~ t and C44 or k and tt) go to zero when

p, with the same exponent.


