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The relaxation behavior of spin glasses has been analyzed in the framework of the critical
fractal-cluster model. It is found that the relaxation rate of the magnetization can be expressed
as dm/8Int 1 ~P2vexpl — (t/1¢)P%*"], where B,6,z,v are standard static and dynamic critical ex-
ponents and t; is the relaxation time of a characteristic cluster which diverges at the spin-glass
freezing temperature T,. The expression is valid through T, and is found to describe excellently
the fundamental features of the relaxation in real spin glasses.

A characteristic feature of spin glasses is the very wide
time range for the relaxation process.! Relaxation occurs
continuously from atomic time scales to a characteristic
time, which in the vicinity of the spin-glass freezing tem-
perature goes beyond laboratory time scales. In the
linear-response regime the relaxation of the order parame-
ter q(z) may be probed by ac susceptibility, zero-field-
cooled, and thermoremanent magnetization measure-
ments. Unfortunately, not only are experiments on spin
glasses hampered by the restriction to just a small time
segment of the total relaxation with one experimental
probe, but also they are generally far too ill defined re-
garding the influence of the aging process®® and magni-
tude of the external magnetic field.* Relaxation in spin
glasses is likely to be more universal than implied by the
profound dissimilarities reported in the literature. A gen-
eral understanding of the static and dynamic properties of
spin glasses is given by the critical fractal-cluster model,
introduced by Malozemoff and co-workers.® Within this
unusually descriptive model, Continentino and Malozem-
off® (CM) derived the relaxation behavior of the magneti-
zation in spin glasses in the limit of zero field. It was par-
ticularly emphasized that the relaxation above the spin-
glass freezing temperature should follow a stretched-
exponential form. In this Rapid Communication we argue
that the stretched exponential form for the relaxation only
refers to a minute fraction of the total relaxation and that
the main conclusion by CM does not give full credit to the
critical fractal-cluster model. Instead, within the same
model, we propose a relaxation function which accounts
for the total relaxation including the profound nature of
the equilibrium approach. Our relaxation function is valid
through the spin-glass freezing temperature and is found
to describe excellently the general features of the relaxa-
tion in real spin-glass systems.

In the critical fractal-cluster model the relevant physical
quantities are governed by a characteristic cluster size s¢
which is related to the correlation length £ through s,gocéo ,
where D is the fractal dimensionality of the cluster. The
cluster-size distribution n, (number of clusters with s
spins) is given by

ng=s "2 V8f (s/s¢) , 1)

where & is a standard static critical exponent and f(s/s¢)
is a distribution function, which close to 7, may be ex-
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pressed as f(s/s¢) xexp(—s/s¢). Assuming an exponen-
tial decay for the moment of each cluster, CM derive the
time decay of the remanent magnetization M (z) in the
limit of zero field:

M(t)-Cfnssexp(—t/r)ds . )

C is a constant and 7 is the relaxation time of a cluster, re-
lated to its size through 7 =1¢s*, where 7 is a constant and
x a critical exponent. Following CM, x is related to the
dynamic exponent z through z =Dx and can also be ex-
pressed in standard critical exponents as x =zv/B8. The
normalizing criterion is

M©) =C [ nsds . 3)

We reformulate the equations above in terms of relaxa-
tion times 7. The general equation for M (¢) can then be
written as

M@ =C [, (1/x)(e/zo)Vox
xexp(— (t/7e)"*)exp(—t/t)dInt .  (4)

In the normalization we put f(z/7;) =1 for <7, and
S (z/7¢) =0 for t> 7, Integration from the minimum re-
laxation time 7o (which we interpret to be the single spin-
flip time, 10 ™!? sec) and the maximum relaxation time ;
gives

M©=C [ /x)(e/w) " dlne )
which becomes

M (0) =C8(1 — (14/79) "V%) . (6)
Equation (4) can be written in the abbreviated form

M@= g@exp(—t/ndlnr , )

which is analogous to the expression found’ from the
phenomenological picture®® prescribing a wide distribu-
tion of relaxation times. The fractal-cluster model gives
an analytic expression for the distribution of relaxation
times g (), which varies slowly with Int (since the ex-
ponent 1/6x ~0.1) and exhibits a well-defined maximum
relaxation time r;. From the basic assumption of a wide
distribution of relaxation times, it has previously been
shown that the relaxation rate [(1/H)3M/d1nt] in zero-
field-cooled (ZFC) and thermoremanent magnetization
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(TRM) measurements,” and the imaginary part X"(w) of
the dynamic susceptibility® directly reflect the density of
relaxation times g(r) at the experimental observation
time. In ZFC and TRM measurements the observation
time equals 7 and in dynamic susceptibility measurements
1/w. By taking the partial derivative of M (z) with respect
to Inz in Eq. (7) one obtains

M )0l =~ [ gD /Dexp(—1/Ddlnr . (®)
]

[1/M (0)10M /31nt = — (B/zv) (1 = (z¢/70) “#¥) ~1(t/70) ~P=Yexp(— (t/1) TP¥2"), 1, =1o(T/Ty—1) 72" .

The equation yields a slow power-law decay followed by a
sudden disappearence of the relaxation rate at t—~1;
characterized by a stretched-exponential decay. Since 7,
diverges at T, only a power-law decay is found below T.
As shown below, these are the fundamental characteristics
of the zero-field equilibrium relaxation in real spin glasses.
At temperatures below T,, CM find the power-law
behavior given by Eq. (10), but derive the following ex-
pression for the relaxation at long times above T:

M) xexp(—(t/2)' "), n=zv/(Bs+zv) . (11)

In Figs. 1(a) and 1(b) we have visualized the general ap-
pearence of the relaxation rate as given by Egs. (10) and
(11), respectively. The values of the critical exponents are
zv=8.2, f=0.38, B6=3.8, and 1p=2X 10713 5 as ob-
tained from static'® and dynamic!! scaling on the amor-
phous metallic spin glass (FegsNiggs)7sP1¢BsAls. At
temperatures above T the two curves refer to 7/Tg =1.05
and 1.01. In Fig. 1(a) no extra parameter has been intro-
duced to change the magnitude or shape of the relaxation
rate curves. The magnitude of the curves in Fig. 1(b) is
arbitrarily scaled. Figure 2 shows the relaxation rate (S)
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FIG. 1. (a) Relaxation rate obtained from Eq. (10) for
T =1.05T,;, T =1.01T,, and T <7,. Parameters are §=0.38,
p5=3.8, zv=8.2, and 1o=2%10"'*s. The arrows indicate the
location of 1 as claculated from tz=1o(T/Tg—1)7%". 2% of
M (0) is indicated. (b) Corresponding relaxation rate curves
above T, obtained from Eq. (11). The magnitude of the curve is
arbitrarily scaled. :
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Since the integrand is highly peaked around ¢ =t we bring
out g(7) from the integral with the value g (z). After in-
tegration we obtain the approximate result

OM(t)/dlnt=—g(t) . 9)
Using the analytic expression for g(z), the normaliza-

tion criterion [Eq. (6)], and the relation x =z v/B8, the ex-
pression for the relaxation rate, valid through T, becomes

(10)

T
of the amorphous metallic spin glass (Feg5Nigsgs)7s-
P1sBesAl; at three temperatures around 7,, as obtained
from ZFC and ac susceptibility measurements.!?> The data
points in the observation time range from 3x107¢ to
3x 107! s are found from ac susceptibility measurements,
and the quantity — (2/z)X"(®) is plotted. From experi-
ments on real spin glasses it has been shown® that this
quantity equals — 08X’ (w)/d1lnw. This relation applies to
systems where there exists a wide distribution of relaxation
times, which consequently include fractal-cluster spin
glasses.!? The solid curves in the time range from 3 to 10*

(Feg.15Nig.85) 75 P16Be Al 3 (a) 1
T/T‘ =0.96 l 27 Xeq
=
?n/ 3
==
167 10°  16° 16" 10" 10° t(sec)
(b)
T/T.=1.01 2% Xeq
S| e
7] ) ~—
"
107 16 16° 16" 10" 10° t(sec)
= (c
T/T=1.05 )
R | 2% Xeq
> |
= L
107 10° 106° 10" 10 10 t(sec)

FIG. 2. Relaxation rate (S) curves for (Feo5Niggs)7s-
P1sBsAl; obtained from ac susceptibility [S=—(2/7)X"(w)
=—9X'(0)/8Inw, 3x1079<1/w<3%x10~"! s] and zero-field-
cooled magnetization [S =(1/H)3dM/dInt, 3 <t <10* s] mea-
surements. 2% of the equilibrium susceptibility is indicated.
T,=22.6 K. (a) T=0.96T,. The various zero-field-cooled
curves refer to different wait times (z,, =10% 10%, and 10*s) be-
fore the field (H =0.1 G) is applied. The solid line represents
the best fit (z ~%%%) to the ac susceptibility data. (b) 7 =1.017.
(¢) T =1.05T,.
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s are obtained from measurements of the relaxation rate
(1/H)dM/d1nt in ZFC experiments. At temperatures
below T, the aging process markedly influences the experi-
mental ZFC curves. The various ZFC curves at
T =096T, [Fig. 2(a)] refer to different wait times
(z,, =102, 103, and 10*s) before applying the external field
(H =0.1 G). The characteristic feature of these curves is
a maximum of the relaxation rate at an observation time
equal to the wait time. From the evolution of the relaxa-
tion rate curves with wait time it is not hard to imagine
that they, at equilibrium (i.e., t,, =<0), level down on the
t 799 curve [solid line in Fig. 2(a)], which represents the
best fit to the ac susceptibility data. At T=1.01T, it is
possible to wait out the effect of aging, and the measured
ZFC curve in Fig. 2(b) reflects the equilibrium relaxation.
As T increases [Fig. 2(c)] the edge of the relaxation rate
curve drastically moves towards shorter times.

A direct comparison between the calculated curves of
Fig. 1 and the experimental curves of Fig. 2 clearly
demonstrates that a pure stretched exponential form does
not signify the relaxation behavior and emphasizes the im-
portance of a wide time scale perspective. Equation (11)
ony applies in the asymptotic limit of long times (i.e.,
t > 1) and represents only the minute fraction of the total
relaxation left well beyond 7. The very final approach to-
wards equilibrium is by no means unimportant, but facing
the facts that the equilibrium approach is exceptionally
sensitive to the magnitude of the external field and sample
constitution, it is exceedingly difficult to experimentally
determine the relevant functional form for the asymptotic
behavior in the limit of zero field. Instead, including the
general results from neutron scattering,'* Eq. (10) gives a
good qualitative description of both the magnitude’®!213
and functional form of the total relaxation, including the
profound nature of the equilibrium approach. Apparently
strongly influenced by the frequent reports of pure
stretched exponential relaxation in spin glasses, both above
and below T, and less confident with the predictions of
the fractal-cluster model, CM virtually squeeze out the
stretched exponential term from the model. The propo-
sal'6 that the time decay of the TRM can be described by
a pure stretched exponential below T is due to a funda-
mental misinterpretation of the influence of the aging pro-
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FIG. 3. Ratio b/a of the exponents in Eq. (12). Data from
computer simulations by Ogielski (Ref. 19).
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cess on the experimental curves. A stretched exponential
only appears to characterize the dynamics of the aging
process. This has been amply demonstrated by Nordblad,
Svedlindh, Lundgren, and Sandlund? and Alba, Ocio, and
Hammann.? At equilibrium and in the limit of zero field
there are no experimental indications whatsoever of a
stretched-exponential relaxation below T,. Close to T,
measurements of TRM generally refer to the time decay
of the saturated remanent magnetization,'!”!® which by na-
ture4is different from the zero-field equilibrium relaxa-
tion.

In the regime of linear response ac susceptibility, ZFC,
and TRM experiments mirror the time variation of the or-
der parameter g(¢). From computer simulation on a
short-range 3D-Ising spin glass by Ogielski, ' it was found
that the time variation of the g parameter at thermal
equilibrium follows the empirical law

q () =At %exp(—(t/1,)?) . (12)
This relation has a great similarity to Eq. (10), but in or-
der to account for the fundamental experimental observa-
tion on real spin glasses of a monotonic decrease®!>!5 of
the relaxation rate with time, there are constraints on the
ratio between the exponents b and a. It is readily shown
that a monotonic decrease requires b/a < 4. This inherent
ambiguity of the form of the relaxation function does not
exist in Eq. (10). Figure 3 shows the ratio b/a between
the exponents of Eq. (12) using data from Ogielski.'® As
is seen from the figure, the ratio between the exponents be-
comes larger than 4 at some temperature above T, and a
simple extrapolation gives b/a =5.5 close to T,. In Fig. 4
the relaxation rate d¢q/dInz obtained from Eq. (12) is plot-
ted with @ =0.06 (from the simulations), b/a =5.5, and
assuming ¢, =10 s for comparisons with the results of
Figs. 1 and 2. Figure 4 shows a pronounced maximum of
the relaxation rate (at r~1¢,), a behavior which is not
found in experiments on real spin glasses. It should be no-
ticed that a maximum in the relaxation rate was barely
seen by Ogielski, and the parameter fittings were made
from data at shorter times. On the other hand, the data
from the computer simulations can also be fitted to the
functional form of Eq. (10). Oddly enough, in spite of a

dq/ dint
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FIG. 4. Relaxation rate d¢/d1n¢ obtained from Eq. (12) with
a =0.06, b =0.33, and 7, =10%s. The curve has been normalized
tog(t)=1ats=10"13s A relative change of 2% is indicated.
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short maximal time in the computer simulations by Ogiel-
ski, it appears that these simulations give the best sum-
marizing description of the equilibrium relaxation of spin
glasses. This is primarily due to a good definition of the
experimental conditions as well as the possibility of cover-
ing an unusaully wide time scale with only one experimen-
tal probe. Simulations of the ¢ parameter at nonequilibri-
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um are called for in order to simulate the aging
phenomenon, which is the main cause for the current con-
fusion as to the behavior of the spin-glass relaxation.
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