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Estimate of a universal critical-amplitude ratio from its s expansion up to s2
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The exponent a of the specific heat C vanishes at some value no of the number n of components
of the order parameter. no is estimated (1.942+'0.026) from the available long series at d 3 in

powers of the 4~ coupling. Knowing that the ratio A+/A 1 (A —are the critical amplitudes of
C above and below T, ) for n no, the estimate at d 3 of this ratio for n 2 obtained from e ex-

pansion up to s2 is improved. The cases n 1 and 3 are also considered.

Field theoretical techniques applied to critical phenome-
na' have provided precise estimates of many universal
characteristics of critical behavior. Calculations may be
done within two different frameworks based on Feynman
graph expansion. First is the well-known Wilson-Fisher a
expansion2 (s 4 —d, d is the space dimension) referred to
in the following as I. Second is the usual perturbative ex-
pansion in powers of the e4 coupling performed directly at
integer values of d3 (e.g. , d 3), referred to as II. These
two kinds of expansions lead to divergent series whose
known large-order behavior suggests resummation
methods. '7

It has recently been shown that, provided that the series
are long enough (five or six orders), the two frameworks
lead to compatible estimates of critical exponents for vari-
ous values of the number n of components of the order pa-
rameter. As for critical amplitudes, long enough series
have been recently made available in scheme II for various
n in the disordered phase~ (T)T, ) and only for n 1 in
the ordered phase'0 (T ( T, ). In scheme I, the series are
known in general for any n, but they are very short, at
most up to a." ' Consequently, very little is accurately
known for n ) 1, on most universal critical amplitude
combinations.

In an analysis of experimental data of a system near a
second-order phase transition, not only critical exponents
are important, leading and subleading critical amplitudes
are too. Up to now the best system for a systematic study
of universahty of critical singularities is the superfluid
transition of He (Ref. 14), which corresponds to the case
n 2. Usual experimental determination of a (the critical
exponent of the specific heat C) in this system is still
slightly in disagreement' 's with the theoretical estimate, 7

while the leading (subleading) amplitude ratio A+/A
(D+/D ) of C is, theoretically, essentially unknown ow-

ing to the shortness of the available series.
It is generally admitted that the two first terms of the e

expansion are sufficient to get an estimate of the quantity
of interest. One considers either the simple sum of the
series ([2,0] Pade) or the [1,1] Padh as giving the best
values. For example, Table I displays the various Fade ap-
proximants of the series, up to e2, for the exponent y at
n 1, 2, and 3 (Ref. 1) compared to the standard values
obtained by Le Guillou and Zinn-Justin from scheme II.
One observes a rather good agreement considering the

TABLE I. Comparison between estimates for the exponent y,
for various values of n, obtained from Pade approximants (2nd
column) of O(e2) expansions given in the Appendix, and resum-
mation of long series of scheme II (3rd column) considered as
the standard estimates of RG theory. The three numbers given
for each n in the 2nd column correspond, respectively, to the
Pade (2,0), (1,1), (0,2). See text for a discussion of this table.

O(e')

1.244
1.311
1.276

1.30
1.40
1.35

1.35
1.48
1.42

From Ref. 7

1.241 +' 0.002

1.316+' 0.0025

1.386+ 0.004

shortness of the series. Unfortunately this is not, in gen-
eral, the case for amplitude ratios, and this fact is very
often ignored when one refers to "renormalization-group
(RG) predictions. " The main difference between ex-
ponents and amplitudes which could explain this situation
is the following: a expansion of critical exponents is essen-
tially determined by the poles at a 0 of the Feynman in-
tegrals for the symmetric theory (T)T,), while for the
critical amplitude ratios the complete integrals of the two
phases contribute. One may thus expect a simpler struc-
ture for the a expansion of exponents than for that of am-
phtude ratios. '7

To illustrate this point let us consider the ratio A+/A
Its expansion up to s2 is recalled in the Appendix, and the
corresponding Fade approximants are presented in Table
II. Only the value at n 1 is known'0 with accuracy from
scheme II. Hence, for n 2 and 3 one is limited to the
numbers presented in this Table. How far can one trust
them?

First one sees that, for n 1, the values are not in a very
good agreement with the recent estimate'0 at d 3. More
important is the instability of the result with respect to the
approximant considered. Such an instability is not ob-
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TABLE II. Comparison between estimates for the universal
amplitude ratio A+/A, for various values of n, obtained from
Padh approximants (2nd column) of 0(e ) expansion given in

the Appendix, and resummation of long series of scheme II (3rd
column). Same presentation as for Table I. See text for a dis-
cussion of this table.

of 3+/A at small a depends essentially on the deter-
mination of a. Since a depends continuously on n, one
may expect that the value of A+/A at n 2 will be
essentially determined by the knowledge of np at which
a(np) 0. From e expansion up to s2 (see Appendix) one
gets

From Ref. 10 np 4 —4e+0(e ) . (3)
0.394
0.438
0.150

0.817
0.880
0.331

0.541 +' 0.014

no 1.942+ 0.026 (4)

The information on np, so obtained, is not sufficient to
get precise information on A+/A at n 2 and d 3
(e 1). Fortunately, longer series are available for a. Us-
ing the series of scheme II, 's wltich are the longest, I ob-
tain the following estimate:

1.258
1.326
0.541

served for critical exponents (see Table I).
The ratio A+/A is particularly interesting since it

must be exactly equal to unity when a 0 (the critical
singularity of C becomes logarithmic). Now, from the re-
sult of scheme II, the physical case of n 2 should corre-
spond to a slightly negative value of a. Hence n 2 is
very close to np at which value a vanishes. One may thus
expect A+/A to be very close to 1 for n 2. Moreover,
assuming continuity at a 0 and from indications given by
the e expansion, one should have A+/A & 1 (for n «2).
Table II clearly shows that 0(e~) expansion does not
reach this value.

The object of this paper is to propose estimates at
A+/A for n 2 which very likely are close to the values
that one would obtain in frameworks I or II with long
enough series. The primary ingredients will be the avail-
able series up to e and the large order behavior. The fun-
damental point is that n 2 is very close to np [see Eq. (4)
below].

The reason for the bad estimates of Table II is the short-
ness of the expansion. By summing term by term the
series for A+/A at n 2 and e 1 (see Appendix), one
obtains, respectively, at zeroth, first, and second order, 0.5,
1.035, and 0.817.

At large order k, the coefficients ak of the e expansion
of A+/A behave ass

ak=k!( —a) k 'c askk bo

with

and bp varies linearly with n as n/2 (c is a constant which
strongly depends on the quantity considered). One may
suppose that the change of sign observed, in A+/A (see
Appendix), between the first and second order is a direct
consequence of Eq. (1) and that the unknown third order
will have a positive sign, and so on. Hence the sum of the
series. will oscillate about unity without convergence [Eq.
(1) shows that the series diverges]. Now, how far above
unity is the value of A+/A for n 2'? Indeed, as already
noted in experimental analysis, ts the deviation from unity

for d 3.
The error analysis of the procedure used ' to get this

result is not as complete as in the work of Le Guillou and
Zinn-austin, ~ although the method is essentially the same.
For example, the corresponding estimate of a at n 2 is
—0.0066+ 0.0030 to be compared to the standard value, 7

—0.007 ~ 0.006.
The knowledge of np will now be used to estimate

A+/A as follows.
(1) Replace the e expansion of A+/A by a chosen

function f(e,n, b ) having the same three first terms and
the same high-order behavior [with the parameter a given

by Eq. (2) and bp b considered as a free parameter) in e.
(2) The free parameter b is chosen such that

f(l,np, b) 1. This gives a value b(np), with np given by
Eq. (4).

(3) Using the dependency on n of bp, calculate, for
n 2, f(l,n, b (n p) + (n np)/2) —to get the value of
w'/~-.

I have made the following choice for f(e,n, b ):

w+
0.524+' 0.010 (n 1) . (7)

The procedure used here which consists in estimating

f(en b(s,r)) ——"
Q

" —1(s),
(1+aex )"

(5)
in which I (s ) is the Euler function of s.

It is easy to verify that the high-order behavior of Eq.
(5) has a form similar to Eq. (1) with bp b(s,r) r
+s -2. The two parameters Q and r are chosen, at fixed
s (a free parameter), such that the two first terms of the
expansion in powers of e of Eq. (5) are equal to those of
(A+/A n/4) —Hence, .Q and r are functions of n and s.

Applying steps 2 and 3 described above, with np given
by Eq. (4), I get the following estimate for n 2:

w+ -1.0294+ 0.0134 (n -2) . (6)
A

To get the error bar, the two cases of the direct and in-
verse series for A+/A have been considered together
with the error on no of Eq. (4).

In order to appreciate the validity of this estimate, one
can also perform step 3 for n I, for which a result using a
long series is available' (see Table II). It becomes
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A /A, starting from its exact value at a 0, is not as
good when j a ( grows (i.e., when n goes away from np).
Nevertheless, the value of Eq. (7) for n 1 is in better
agreement with the result of Ref. 10 than the usual "best
estimate" found from Pade approximants (see Table II).
One may thus expect Eq. (6) for n 2 to be very close to
the correct answer.

It is worth noticing that an analysis of experimental
data on He at various pressures yields, ' for a —0.007,
A+/A 1.029, which is in excellent agreement with Eq.
(6).

The same procedure may also be applied for n 3. I ob-
tain

1.521+ 0.022 (n 3) . (8)
A

The quantity (1 —A+/A )/a is expected to be relative-
ly insensitive to the value of a. I have found it to be,
respectively, for n 1, 2, and 3, equal to 4.307+ 0.030,
4.455+ 0.040, and 4.563+ 0.089 to be compared to the
value 0.46 found in Ref. 18.

This brief and rather simple study of the universal ratio
l

A+/A has been made possible because it is equal to uni-

ty at a 0. The knowledge of long series for a has allowed
estimating no (at which a 0) with accuracy. This has
provided a strong constraint on the only parameter n (for
n =no) of the a expansion of A+/A, since this ratio
takes on a known value at n no. It is clear that estimates
by Pade approximants from 0(e ) series for amplitude ra-
tios do not always give correct values. One must be more
cautious when referring to such estimates as being the RG
prediction on the quantity considered.

APPENDIX

The s expansions up to s of exponents y and a are '

(n+2) + (n +2)(n 2+ 22n +52)
2(n+8) 4(n+8)3

(4 —n) (n+2)(n'+30n+56), +0
2(n +8) 4(n +8)

The s expansion of the ratio A+/A up to a is '

r

g+ n, z 3n2+26n+100 (4 —n)(n —1)
2

3(5n+22)
3

9(4 n)A, —
4 2(n +8)2 2(n +8)2 (n +8)2 2(n +8)2

in which g(2) 1.645, g(3) 1.2021, and A, 1.1719.
To get the true s expansion of p+/p one must expand the factor 2' by using the expression of a given just above.
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