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Tracer correlation factor in a square-lattice gas with extended hard-core interactions
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A lattice-gas model with extended hard-core interactions is used to study tracer diffusion in a

square planar lattice. For the vacancy availability factor a simple approximation, which decouples

higher order correlations in terms of the pair-correlation functions, is suggested. The results for the
third- and fourth-order correlation functions and the vacancy availability factor are compared with

the recent Monte Carlo data of Frobose and Jackie. The tracer correlation factor is in qualitative

agreement with that of Murch.

I. INTRODUCTION

Lattice-gas models have been extensively used to study
diffusion in solids through the vacancy mechanism in
which an atom or ion move through successive jumps
from a lattice site to a vacant site. It was long recognized
by Bardeen and Herring' and LeClare that the successive
jurnp directions are not random but are correlated with
one another. The reason is that when an atom has just
made a jump there is a vacancy left behind. Therefore the
probability for a forward jump is always smaller than the
probability for a backward jump. These correlation ef-
fects are described by a correlation factor, known as the
tracer correlation factor. Bardeen and Herring have given
accurate results for the three cubic Bravais lattices that
contain a single vacancy. With the discovery of many
nonstoichiometric compounds there is now a need to
know the tracer correlation factor in the whole concentra-
tion range, that is from a single vacancy to an almost
empty lattice.

In the past, several theoretical methods have been
used to study, tracer diffusion in a lattice gas that excludes
multiple occupation of a site. The results for the tracer
correlation factor agree within one percent of the Monte
Carlo " data. Lattice gas models with nearest-
neighbor' ' and the long-range Coulomb' ' interac-
tions have also been studied. Such models are relevant in
the study of fast ionic diffusion in some superionic con-
ductors. A few years ago, Murch' obtained Monte Carlo
results for the Haven ratio Hit(=f, /f„where f, is the
tracer correlation factor and f, is the charge correlation
factor ) in a square lattice gas with extended hard-core
interactions, which excludes simultaneous occupation of
nearest-neighbor sites. The results are very interesting,
especially for the concentration c & 0.3 where f, decreases
rapidly to a value close to zero around c =0.375. At this
concentration a second order disorder/order phase transi-
tion is also observed. f„however, show no such catas-
trophic behavior at the transition.

So far much attention is devoted to the thermodynam-
ic ' properties and the phase transitions ' in a lattice
gas with finite and infinite nearest neighbo-r repulsions.
To the best of our knowledge no theoretical attempt has

been made to study correlation factors in a square-lattice
gas with extended hard-core interactions. In this paper,
we are mainly concerned with a tracer atom diffusing
against a dynamic background of particles with hard-core
interactions that excludes both the multiple occupation of
the site and the simultaneous occupation of its nearest-
neighbor sites. In Sec. II, we describe the lattice-gas
model and the master rate equation which governs the
dynamics. For the transition rate we have proposed a
form which is compatible with the detailed balance condi-
tion and, is nonzero only when the nearest neighbors of the
diffusing particle and the vacancy to which jump is taken
are simultaneously vacant. The result for the average
transition rate is compared with the very recent Monte
Carlo data of Frobose and Jackie. In Sec. III, the tracer
correlation factor is obtained from the incoherent struc-
ture factor by using the projection operator technique of
Mori. Numerical results and their discussion is finally
given in Sec. IV.

II. LATTICE-GAS MODEL

We consider a regular square lattice of equivalent site I,
which is partly occupied by N identical particles. Let pl
and ni denote the stochastic occupancy variables for a
marked ("tracer") atom and for any atom of the system,
respectively. Then, pt equals unity if, at time t, site 1 is
occupied by the tracer and is zero otherwise. Similarly, nr

equals unity when the site I is occupied and is zero when
it is vacant. pt and nt satisfy the properties

2
~tP&=PI ~

The last relation holds because we consider only a single
tracer atom. The mean occupation (nt ) gives the average
concentration c = 1 —u of diffusing atoms ( u is the vacan-

cy concentration, with 0 ~ u & 1).
Now we allow the system to evolve in time through a

many-particle jump diffusion process, where jumps are as-
sumed between nearest-neighbor sites only. The change in
the probability P(n, t) to find the configuration n = [nt I

at time t is governed by the rate equation
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Lf(n)= —, g Wit+s(n)[f(n) f(n—)] .
1,5

(2.3}

The problem now is to find the transition rates. They
embody basic statistics of the problem and in equilibrium
satisfy the condition of detailed balance. For a lattice gas
with hard-core interaction, detailed balance requires that

dP(n, t) = —, g [WI+s i(n)P(n, t) —Wi I+s(n)P(n, t)] .
1,5

(2.2)

Here n denotes the configuration which results from n by
interchanging the occupation at I and its nearest neighbor
1+5, i.e., ni+s n——t and nl n——&+s .Wti+s denotes the
corresponding transition rate.

Let f(n, t) denote the average of some function f ( n) at
time t for a given initial configuration n at time t=0.
Starting from the master rate equation the time evolution
of f(n) is formally' ' given by the operator I., defined
by

is called the vacancy availability factor. For a square lat-
tice, (2.8) can be expressed as (using the notation of Fig. 1}

V= 1 —c [2gz(1,2) +gz(1, 3}]
+3c g3(1,2, 3)—c g4(1,2, 3,2') . (2.9)

1„)= ( n, n, . . . n, ) lc' . (2.10)

Equation (2.9) is the same as used by Frobose and Jackie
in their Monte Carlo calculations. These authors have
shown that the Kirkwood superposition approximation
is very inaccurate for the correlation functions of third
and fourth orders, but gives better results for V. The
decoupling approximation, is, however, needed as we shall
come across several higher-order correlations, which are
not known a priori. In this paper, we use a simple ap-
proximation and write (2.8) as

V = g [1—cga(5+5')] . (2.11)

g3 and g& are, respectively, the third- and fourth-order
correlation functions, which are defined for general n by

Wi i+a(n) = Wi (+s(n), (2.4) S,(~—5)

WI i+s(n) =a[n, (1 n, +,)+n—,~,( I n, )], —0 (2.5)

which allows a jump only if n&&ni+s. a is the hopping
frequency. With extended hard-core interactions, we take
the form

Wi i+s(n)= Wt i~s(n)0

ff (1 nI+s ) —g (1 ni+s+s—) .
5I(~5) 52(~ —5)

(2.6)
Here 5i is the nearest-neighbor vector of the site 1+5.
The product terms in (2.6) ensure that the transition rate
is zero when any of the nearest-neighbor site of I or I +5
is occupied. The form of (2.6) also satisfies the detailed
balance condition (2.4).

To proceed further we note that the extended bard-core
interactions of the particle at 1 guarantees that the pair
correlation function g2 (5)= (nini+s) /c is zero. There-
fore, while taking the averages we can drop the terms that
contain occupancies of nearest-neighbor sites. The aver-
age transition rate, ( W) = ( Wi i+s), can thus be written
from (2.6) and (2.5) as

( W) =a[(ni g (1 nr+s+s, )—)
52(~ —5)

+(n)+s g (1—n, s ))]
SI(~5)

or, Wt t+s(n)= Wt+s i(n). In the simplest case, where
double occupancy of a site is excluded, one assumes the
orm

We may remark here that (2.11) is in agreement with
O'Keefe's cluster approximation result 5 on the square
lattice. Now comparing (2.11) with (2.9) we find that the
results are exact up to the pair correlations. The higher-
order correlations correspond to a superposition approxi-
mation (SA):

g„(/„l~, . . . , I„)=gi(l„lp)gi(l „lp). . .g2(li, I„), (2.12)

which is different from Kirkwood in the sense that here
pair correlations are taken with respect to the site l i only.

III. TRACER CORRELATION FACTOR

The motion of the tracer atom is described by the in-
coherent structure factor

=2ac V, (2.7)

V= (ni g (1 ni+s+s }—) fc
52(~—5)

(2.8)
FIG. 1. Indicated notation is used throughout the paper. The

sites marked with & and are assumed to be equivalent to sites
4 and 5, respectively.
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S;„,(q, r)=&p(q, r) Ip(q)),
defined in terms of the tracer density

(3.1) which tracer diffusion constant D, can be obtained from
(3.3) and (3.8) as

p(q)= gplexp( —iql) . (3.2)

5;„,(q,z) = [z +Q(q)+M (q,z)]

where

Q(q)= —&p(q) ILp(q)),

(3.3)

(3.4)

and M(q, z) is the corresponding memory function.
To calculate Lp(q) we substitute f=pl in (2.3), which

yields

Lp(q)= g(e 's —1)pl%i l+se
l, 5

(3.5)

Now substituting (3.5) in (3.4) and observing the condi-
tions (2.1), we get

Q(q) = g (1 cosq5) —= Vcu(q),
&w)

2c 5
(3.6)

where

The Laplace transform 5;„,(q,z) of (3.1) can be written in

the standard form"

and

n2i(q)= —&Ai(q) I Ai(q)& (3.11)

D, = lim lim Q(q)f(q, i—co)/q =DOVf, . (3.9)
co~0 q ~O

Here, Do ——aa is the diffusion constant for infinite dilu-
tion and a is the lattice constant.

In order to calculate the tracer correlation factor we
need to evaluate the memory function M(q, z). One way
is to use a simple factorization approximation. ' ' Since
the extended-hard-core interaction model involves multi-

ple correlations such a procedure will not be convenient.
The other method is to use a continued fraction for
M(q, z). In the simple-hard-core model (site blocking
only) it was observed that the first stage of the contin-
ued fraction (obtained by neglecting the second-order
memory function) accounts for about 80%%uo of the correla-
tion effects. Therefore, we use this procedure and write
the first-stage continued fraction as

hi(q)
M(q, z)= (3.10)

z+Qi q

where

co( q) =a g (1—cos5) (3.7)
Qi(q)= —&Ai(q) ILA (i)q)&A ( i)qI A, (q)) ' . (3.12)

is the unblocked tracer diffusion frequency and V gives
the blocking factor. In the absence of correlations the
value of V is equal to (1—c) . In a mean field approxi-
mation, where the memory function is neglected, a parti-
cle makes independent hops with an average jump rate
& W)/2c. The tracer atom, however, performs a correlat-
ed random walk because of the presence of other atoms.
This fact is accounted for by a wave-vector- and
frequency-dependent correlation factor:

A, (q) is the t =0 value of the random force, defined as

A i (q) =QLp (q)

with

Q=l —
I p(q)&&p(q) I

(3.13)

(3.14)

Substituting (3.13) in (3.11) and making use of (3.4), we
write

f (q,z}=1+M(q,z)/Q(q) . (3.8)
&i(q)= —&Lp(q) I

Lp(q))+Q'(q) . (3.15)

Its long-wavelength and zero-frequency limit represents
the conventional tracer correlation factor f„ in terms of

I

Now using (3.5) the first term on the right-hand side can
be written as

I

&Lp(q) ILp(q))= g(1—e' } (1—e ' )&piIVA+s&+ g (1 e')&p(—IVii+sIVll+s &

5, l 5({~5)
(3.16)

& Lp (q) I Lp (q) ) =2a(1 —V)Q(q)+Q (q) .

Thus, from (3.17) and (3.15), we have

(3.17)

(5, i(q) = —2a(1 —V)Q(q), (3.18)

which is the same as obtained for site blocking with

Equation (3.16) can be solved easily by substituting the
transition rates from (2.6) and making use of the proper-
ties given in (2.1). Care, however, must be taken in count-
ing the distinct terms. FinaBy, dropping the terms with
nearest-neighbor occupancies and making the approxima-
tion discussed in (2.11},we get

V= 1 —c. We may mention here that in deriving (3.17)
we have used

CX

II, ti (( —II, ,( li (( —II, , ))
5~{~—5) 52{~—Sl )

(3.19a)

(3.19b)

Obviously, (3.19a) involve correlations upto the seventh
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order which are expressed in a simple form, (3.19b),
through the approximation of (2.11).

We now need to evaluate Qi(q), which can be rewritten

[ «p (q)
I
L'p (q}&

b, i(q)

+«q) &p (q} IL 'p(q) &] —Q(q) (3.20)

In order to obtain the equation of motion for Lp(q), i.e.,
L p(q), we substitute f(n)=piW~i+q in (2.3). With the
transition rate (2.6), we see that f(n ) differs from f (n)
on1y when the transition occurs on the bonds connecting
the site I, I +5i, or I +5+5z. The second case, however,
does not contribute because the transition from 1+5& re-
quires the site I to be empty, which is already occupied by
the tracer atom. Thus, we write

L (p 8', )= g w„ , [p, , (1— ) —p (1—, , )] II (1—
, ) II (1— , )

5) 5)(@5)) 5,(~—5)

+ g Q ~!+5+5 I+5+5 s (nl+s+s2 I+s+s2+s }pl II (1—,s ) II (1 —
i s s )

52,(~—5) 53(~—52) 5) 52(~ —5,52)

(3.21)

Substituting the values of the transition rates in (3.21) and using (3.5) we get, after some simplifications,

L p(q)=a g(e 'e —1)[A+B]e
l, 5

where

2+—e 'e II (1—
, s, ) — II (1 nl s

—s, ) II (1 ni s—s, )

5~(~ 5) 5&(~5) 5)(~—5)

(3.22)

5)(~+5)

—iqS&
e

5,(~—5, —5, )

(1—&/+$+s, +$ )—
5~(~—5,5) )

(3.23}

&I+s+s, II (1 «+s+s, +s +s )

s,(~—5) 5,(~—5, —5, ) 53(~—52)

II (1—,, ) rI
5,'(~ —5, —5,,5, ) 5', (~—5,5, )

(3.24)

With Lp (q} from (3.5) and L p (q) from (3.22) one can get Q&(q) from (3.20). It can be seen again that the calculations
involve several site correlations, which according to approximation (2.11) can be expressed in the simpler form. In the
long-wavelength limit (in which we are interested) the contributions from the second and third term of (3.20) vanishes.
The first term then yields

lim Q)(q)=a 2 F'(4)+-2F(2)F(3)
[1—F(2)F(3)]

q -+0 (1—P

I 3g2(1,3)Fi(2)F3(5)+4g2(1,2)F(2}F(3)F(5)
1 —V

+ 3g, (1,4)F'(4)[1—F'(2)]+4g2(1,4)F(4)[1—F(2)F(3)]I (3.25)

where we have used the notation (see»g. 1)

F(n)=1 cg2(l, n), n =2,3, . . . , 5 .— (3.26)

Finally, substituting (3.25) and (3.18) in (3.10) and making
use of (3.8) and (3.9), we get the tracer correlation factor

2a(1 —V)

Qi(q =0) (3.27)

The numerical results for the dependence of tracer corre-
lation factor on concentration wi11 be discussed in the next
section.
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IV. SUMMARY AND RESULTS

We have studied self-motion in a square lattice gas with
extended-hard-core interactions which prevents the simul-
taneous occupation of the nearest-neighbor sites. The
basic statistics of the problem is incorporated through the
transition rate which describes the probability of a jump
between the nearest-neighbor sites. Our expression for the
average jump rate is in agreement with that of Frobose
and Jackie, who have also obtained Monte Carlo results
for the pair, triplet, and quadruplate correlation functions
in a cluster around the test particle.

For the vacancy availability factor we have used a sim-
ple superposition approximation which decouples the
higher-order correlation functions in terms of the pair
correlation function g2. We have tested the accuracy of
the approximation by comparing our results for the corre-
lation functions g3(1,2,3) and g&(1,2,3,2') of third and
fourth order and for the vacancy availability factor V,
with the results of the Monte Carlo calculation. In Figs. 2
and 3 we have plotted, respectively, the values of g& and

g4 obtained from (2.12) with the Monte Carlo data for g2,
and the corresponding Monte Carlo results. To make
some comparison we have also shown the values obtained
in Kirkwood superposition approximation (KSA), which
can be expressed as

8,0

60

Al

AJ
, 4.0

C%

pl I

0.1 0.2 0.3
I

04

FIG. 3. Fourth-order correlation function g~{1,2,3,2') in sim-
ple SA (- -O- -) and in KSA {- - X- -) compared with the result
of Monte Carlo calculation ( — ). The lines are guides to the
eye.

(1,2, 3)= [g2(1,2)] g2(1,3),

=gz(1, 2)g i"'(1,2,3),

g4 (1 2 3 2 ) [g2(1 2)) [g2(1 3)l

30-

(4.1a)

(4.1b)

(4.2a)

(4.2b)

where g3"' and g4"' are obtained from (2.12). As already
pointed out by Frobose and Jackie, KSA gives very inac-
curate results, specially for g4 where it increases very fast
at concentrations c & 0. 12. On the other hand, our values
are slightly lower but are in much better agreement with
the Monte Carlo data in ihe entire concentration range
(c &0.37). This fact is further reflected in the vacancy
availability factor V, which is shown in Fig. 4. Since for
V the errors in the approximation for g3 and g4 get some-
what compensated, the results in KSA are reasonable for
concentration up to c =0.3, but then deteriorates rapidly,
leading to very small and finally negative values of V.
Our values of V remain positive in the entire concentra-
tion range (up to c =0.37) and are in good agreement
with the Monte Carlo data; they are lower by about 30%
for c &0.3. We may also remark here that the Gaussian

2.0
N

gh

'l,0

0.5

0 01 02 04
0 .J

01 0,2 0,3 04

FIG. 2. Triplet correlation function g3(1,2,3) in simple SA (-
-O- -) and in KSA (- - X- -) compared with the result of Monte
Carlo calculation ( ). The lines are guides to the eye.

FIG. 4. Vacancy availability factor in simple SA (- -C}- -) and
in KSA (- -g- -) compared with the Monte Carlo calculation
( ). The lines are guides to the eye.



TRACER CORRELATION FACTOR IN A SQUARE-LATTICE. . .

pancies of these sites uncorrelated, which is equivalent to
replacing g2(1,3) in (4.1a) by unity. With a similar
reasoning, one can write

0.8

06'
[g3(1,2,3)]'

g4(1,2, 3,2') =
g2 1,3

[gi(1»)]'
g, (1,3)

(4.4a)

(4.4b)

02

0
I

0.1 0,2 0,3 0g

FIG. 5. Tracer correlation factor as a function of concentra-
tion. Monte Carlo calculation ( ) compared with present
calculation (- -O- -). The lines are guides to the eye.

factorization and Bethe-Peireis cluster approximation
used by Frobose and Jackie give good results for g&, g4,
and for V. The present approximation, however, has the
advantage that it simplifies the calculations considerably,
as seen in the previous sections.

An important question arises why KSA, which de-
scribes short-range correlations so well in the liquids, fails
in the present case. Our analysis indicates that if instead
of (2.12) one uses the approximation

(4.3)

the results are in complete agreement (up to the first place
in decimal figure) with the MC data. A plausible reason
may be that gi(1,2,3) gives the probability to find parti-
cles at sites 2 and 3 when a particle is situated at site 1.
Thus, the vacancy between sites 1 and 3 makes the occu-

Again with this approximation results are in very good
agreement with the MC data. A similar analysis, howev-
er, may be difficult when one is dealing with several site
correlations in a bigger cluster. Therefore, in this paper
we have continued with the approximation of (2.12).

Finally, in Fig. 5 we have shown the dependence of the
tracer correlation factor, f, (c), on concentration c. The
results of (3.27) when compared with the Monte Carlo
data of Murch' show higher values up to c =0.3 and
then decreases to values close to zero around c =0.35.
The quantitative disagreement is not surprising because
we have neglected the second-order memory function and
have used a superposition approximation for higher-order
correlation functions, which introduces inaccuracies espe-
cially at higher concentrations. The inclusion of a
higher-order memory function will reduce our results in
line with the MC data. However, since the calculations
becomes tedious we do not attempt it here.
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