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The vibronic theory of a structural phase transition in IV-VI compounds is reformulated in terms
of the mean-field approximation, taking account of the spin-orbit coupling between conduction and
valence bands and anharmonic couplings between TA and TO modes. The effect of the electron-
hole pair polarization is incorporated into the self-energies of the TA phonon as well as the TO pho-
non, so as to give the carrier concentration dependence of shear modulus C44. This yields the proper
dependence of the ratio g of temperature derivatives of the squared TO-phonon frequencies in the
cubic and rhombohedral phases on the carrier concentration, and also that of the jump of C44 in the
acoustic anomaly at the transition point. It is shown that the ratio g becomes divergent at the tri-
critical point, and the TA mode softens at the superheating point (in case of first-order transition) or
at the tricritical point. The spin-orbit coupling leads to peculiar structures of Fermi surfaces and to
an increase in the electron chemical potential with growth of sublattice displacement. It is also
shown in the fourth-order anharmonicity of the TO mode that the lattice anharmonicity is

suppressed by the vibronic anharmonicity due to the spin-orbit coupling.

I. INTRODUCTION

During the last quarter of the century, many experi-
mental and theoretical studies were performed to elucidate
the basic properties of the IV-VI compound narrow-
band-gap semiconductors. ' The semiconducting com-
pounds GeTe, SnTe, PbTe, and their ternary alloys exhibit
a ferroelectric transition as they pass from cubic to rhom-
bohedral structures, although their ferroelectric moment
is screened out by free carriers. Since the crystal struc-
tures in both phases are simple and the electronic band
structure is well studied, a microscopic model of the phase
transition has been developed, and its predictions have
been compared with experiments in some detail. '

In the low-temperature phase of IV-VI compounds,
there is a relative displacement (u) of the sublattice along
the crystalographic [111]directions. In addition, there is
a rhombohedral distortion of elementary cube as illustrat-
ed in Fig. 1. The rhombohedral angle a is reduced from
90' due to the shear strains (e„y), (e~, ), and (e ).
Thus, we have two kinds of order parameters, (u) and

(etj ), in this phase. From the microscopic point of view,
these two order parameters result from phonon condensa-
tion effects: The order parameters ( u ) and ( e;t ) corre-
spond to the nonvanishing thermal averages of phonon
coordinates of transverse optic (TO) and acoustic (TA)
modes in the long-wavelength limit, respectively.

In IV-VI compounds, the TA and TO modes are linked
with each other via electrostrictive coupling, which is
quadratic (linear) in TO (TA) mode coordinates. This
mode coupling gives rise to the following peculiar phe-
nornena. The first is an acoustic anomaly where the TA
sound velocity drops prominently as T, is approached
from above even in the second-order phase transition. ' '
The second is the occurrence of a tricritical point, ob-
served in Ge& „Sn„Te: Here a crossover of the first- and
second-order transition takes place. ' The Green-function

approach to the coupled phonon system between acoustic
and optic modes have been made by Pytte' and Kataya-
ma and Mills' in the mean-field theory. Pytte obtained
the acoustic anomaly and tricritical-point behavior of or-
der parameters, taking account of a linear motnentum
dependence in the electrostrictive coupling. On the other
hand, Katayama and Mills obtained neither the acoustic
anomaly nor the tricritical-point behavior because they as-
sumed a constant electrostrictive coupling. This means
that the linear momentum dependence of the electrostric-
tive coupling plays an essential role for the phase transi-
tion in the coupled phonon system between TA and TO
modes.

The vibronic model was first established by Kristoffel

FIG. 1. Crystal structures of IV-VI compounds. The solid
and dashed lines denote the structures in high-temperature cubic
and low-temperature rhombohedral phases, respectively. The
arrow denotes the relative sublattice displacement (u). The
rhombohedral angle is denoted by a.
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and Konsin' and Bersuker and Vekhter' to explain the
occurrence of ferroelectricity in crystals, and Kawamura
et al. ' were the first to apply it to the IV-VI semicon-
ducting compounds. It is noted that the driving mecha-
nism for ferroelectricity is still controversial, ' ' wheth-
er the vibronic mechanism is responsible for it or not.
The different microscopic models have also been dis-
cussed, one of which is the polarizability model" based
on the local nonlinear electron-ion interaction of the chal-
cogenide ions. Here we adopt the vibronic mechanism as
the cause of the ferroelectric instability. This leads to
understanding the structural phase transition in IV-VI
compounds from the semiconductor approach.

In the ferroelectric phase transition, the TO phonon
softens at the I point where the TO mode has a definite
odd parity. This mode combines the conduction and
valence states of different parities and gives rise to the un-

stable cubic phase. In the terminology of the many-body
theory, this is caused by the particle-hole pair excitation
due to the electron —TO-phonon interaction. In IV-VI
compounds, the electronic states with definite parity are
located at the L points with a direct gap of a few tenths
of an eV. The conduction and valence bands near these
L points are well described in terms of the k p perturba-
tional two-band model because the narro~ band gaps are
so distinctive. ' lt is important to note here that these
bands are strongly nonparabolic due to large spin-orbit
coupling. In fact, the spin-orbit coupling energy (of the
order of 1 eV or less24) is larger than the band gap, and
induces the interband mixing through the velocity matrix
elements. The electron TO- (TA-) phonon coupling con-
stant has only interband (intraband) matrix elements, and
the TO mode competes with spin-orbit coupling while the
TA mode does not. Inclusion of spin-orbit coupling then
leads to splitting of Kramers doublet due to a breakdown
of an inversion symmetry, caused by the relative sublattice
displacement (u). This induces a distortion of Fermi
surfaces in the rhombohedral phase. '

Prominent carrier concentration dependence is observed
in the transition temperature ' and the shear modulus
C44 of SnTe. This is thus far attributed to the electron-
hole polarization of TO-phonon mode which is respon-
sible for the instability of the cubic phase. ' ' ' ' ' In the
present paper, we incorporate the concentration depen-
dence of the shear modulus C44 into vibronic theory as
the effects of particle-hole pair polarization in the TA
mode. It will be seen that this affects the nature of the
phase transition as well as the strength of the electrostric-
tive coupling. Specifically„ the following quantities
characterizing the transition become dependent on the
carrier concentration: the ratio of the temperature deriva-
tives of the squared TO-phonon frequencies in the cubic
and rhombohedral phases and the jump of the shear
modulus in the acoustic anomaly at the transition point.
Some of the results of the present paper have been report-
ed elsewhere.

The plan of the paper is as follows. In Sec. II we
describe our model and assumptions in some detail. In
Sec. III, the modification of phonon states due to static
distortions in the rhombohedral phase is described, and
the self-consistent equations of these static distortions are

derived and analyzed in Sec. IV. Based on these equa-
tions, the behavior of the soft TO mode, the acoustic
anomaly, and the modification of electronic states are dis-
cussed in Secs. V, VI, and VII, respectively. In Sec. VIII,
our theory is compared with experiments of SnTe and
Pbi „Ge„Te. A physical interpretation of the results of
the paper are summarized in Sec. IX.

II. MODEL AND ASSUMPTIONS

A. Two-band electron with spin-orbit coupling

As stressed in the Introduction, the spin-orbit interac-
tion plays an important role in determining the band
structures of narrow-band-gap semiconductors. The free
motion of an electron in such a system is described by the
Hamiltonian

H„= J d rf t(r)h,
~ t(( r)

= J dr/ (r) +V&+ V Vz
8m 2c2

crXVV~ p g(r), (2.1)
4m c

where Vz(r) is the periodic crystal potential, cr is the Pauli
spin matrices representing electron spin, and P(r) is the
electron field operator.

In the cubic phase, the electron bands derived from Eq.
(2.1} have their extrema at the L points
k=k~ (J =1, . . . , 4) on the four equivalent [111]axes of
the Brillouin zone. At each of these L points, the eigen-
states of the conduction and valence bands are given by a
set of four band-edge wave functions P „, and P» with

doubly degenerate eigenvalues E, and E„(Kramers dou-
blets}. Here the subscript o denote different states a and
P in the Kramers doublets on the conduction (c) and
valence ( U) bands. Hereafter the electronic energy is mea-
sured from the center of the band gap (E,+E„)/2. We
work in the units R=kz ——1, and the crystal volume V is
assumed to be unity.

It is shown by band-structure calculations in SnTe
(Refs. 33—36) and GeTe (Ref. 37) that the minimum band
gap is not at the L point but that at L one finds a saddle
point. This effect on the structural phase transition is dis-
cussed by Dugaev et a/. within the framework of an iso-
tropic Kane model neglecting spin-orbit coupling. Their
isotropic Kane model study overestimates its effect com-
pared to the model including the spin-orbit coupling be-
cause of the overestimation of the phase volume at the ex-
tremum. The prominent effect would be seen when the
spin-orbit coupling is explicitly taken into account, such
as in the diamagnetic susceptibility ' which is not dis-
cussed here. We hereafter assume the minimum gap is lo-
cated at L point for simplicity.

Let us introduce the modified Luttinger-Kohn func-
tions, "4'
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H„= gg[(a~(k)]tZJ(k)a J(k),
j k

where a 4)&4 matrix E J(k) is introduced by

(2.4)

to represent the states k in the vicinity of the L points k~,

and make use of these functions to expand the electron
field operator g(r) in the form

g(r)= g g X2i„(r)aii, (2.3)
j I k, cr

The operator a Jii, [(a ji, ) ] annihilates (creates) an elec-
tron in the state ( Ik, c,r) near the jth I. point. Throughout
the paper, we neglect the effects of intervalley transitions.
Except for k=k2, the wave functions (2.2) are not the

eigenfunctions of the single-electron Hamiltonian h, i in

Eq. (2.1). The second quantized version of the Hamiltoni-
an in the k p perturbational two-band model is thus ex-
pressed in the form '

B. Interacting TA and TO phonons

The relative sublattice displacement u(r) and rhom-
bohedral shear strain e;~.(r} are related to the transverse
optic (TO) and transverse acoustic (TA) phonons, respec-
tively. Let us express these in terms of phonon coordi-
nates Qq and Qq:

u(r) = g e(q)Qqe'q', (2.9)

e;, (r) = g ~
e;J(0)

~

qQqe'q' .lJ ~ /J (2.10)

In Eq. (2.9), e(q) denotes the polarization vector of TO
phonon with wave vector q, W the number of the unit
cells, and M the reduced mass in the unit cell. %e have
replaced in Eq. (2.10) the TA-phonon coordinates Qq by
[e;J(q)/

~
e;J(0)

~ ]Qq for simplicity, and e;J(q) is defined
by

E '(k) =hy0+ i «'y, (2.&)

1 0
jo 0 1

~ Yn (2.6)

where 1 is 2 g 2 unit matrix and o„denote the Pauli spin
matrices. Note that the indices of these matrices indicate
the labels c, U and the labels of Kramers states a, P. De-
tails for the y matrix are referred to in Ref. 42.

The nth component of modified crystal momentum
A2(n) is defined by

ic„' =(k —k2) WJ(n),

where the vectors WJ(n) represent the matrix elements of
the velocity operator e/m =p/m +[1/(4m c )]«&Vi
in the presence of spin-orbit interaction:

W (I)=I ((() „, ~ ~
(() „, ) /

WJ(2) =Re(P,
~

m
~ P ) ) /m,

WJ(3)=1m(P „, ~

n
~

(t „, )/m .

(2.8a)

(2.8b)

(2.8c)

to express the matrix elements of h, ] with respect to the
wave functions (2.2). Here b stands for the half band gap
EG/2=(F. , 8„)/2, a—nd y„(n =0, . . . , 3) are Dirac's y
matrices

ej(q) = [q;ej(q)+qje;(q)],
zq

(2. 1 1)

{{Qq)Qq) = coth ~, 2 as q~0,1 qso 1 2T
qso 2T q so

(2.12)

where s0 is the sound velocity of TA mode at the I point.
This relation clearly shows that qQq is nonvanishing in
the limit q ~0, and the static homogeneous strain
(e;J )&0 is possible in the presence of the thermal average
(Q', )W0.

In the absence of the interactions between the different
modes and with electrons, the motions of TA and TO
phonons are described by

where e;(q) is the polarization vector of the TA phonon
with wave vector q, and p is the mass density of the crys-
tal. The above definition is meaningful when qQq has a
finite value in the limit q~0. This requires an implicit q
dependence of the type Qq ~ I/q in the long-wavelength
limit. Such a q dependence is naturally expected, if we
consider the thermal average of the operator (Qq) Qq in
the long-wavelength limit:

HrA= 2 g{Pq) Pq+ 2 g9 s0(Qq) Qq,

Hgo ———,
' g~q'~q+ —,

' g~', Q,Q, +— g ~(qi q2 q3 q4)~(qi+ +q4)Qq, Qq, Qq, Qq, .
gi

(2.13)

(2. 14)

Here co and qs0 are the frequencies of TO and TA phonons in the harmonic approximation, the second terms in Eq.
{2.14) represent the interaction among the TO phonons, and 6{ . . } symbolizes conservation of crystal momenta.

In order to guarantee the coexistence of order parameters (u) and {e,j ), we have to introduce the coupling between
TA- and TO-phonon modes. Symmetry consideration leads us to the following form for this interaction

+TA-To 2 g ~(qi~q2~q3)~(ql+q2+q3)91QqiQq2Qq3

+ g C{'ql q2 'q3 q.)~(qi+ . +q4)ei I2Q;,Q;,Q„Q„ (2.15)
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H„.ro = g (2coq)'~ [a J(k+q)] g'(q)a'(k)gq . (2.16)

Here the elements of the 4 X 4 matrix,

g'(q) =g') oP (2.17)

represent various channels of interband transition of elec-
trons, absorbing or emitting a single TO phonon. The
components of the vector gj are related to the optic defor-
mation potentials "J(n)'s ( n = 1,2 and 3) by

gJ e q).:-'(n),
(2NMcoq )

' ~

where contribution from the Umklapp processes have
been neglected. ' The expressions and properties of:"J(n)
are summarized in Appendix A.

Finally, we assume the presence of an additional energy
proportional to the local rhombohedral strain e;J(r) and
the electron density. This gives the electron —TA-phonon
interaction of the form

(2.18)

Here the first term represents the electostrictive coupling
responsible for the acoustic anomaly' ' » weil » the ap-
pearance of the tricritical point, while the second term is
introduced to give the proper temperature dependence of
TO-phonon frequency. In the above, we have assumed
that there are only a single branch of TA or TO modes.
This simplification does not alter the essence of our re-

sults, although there are several branches for these phonon
modes in the real systems.

C. Elet:tron-phonon interactions

We have to take into account the effects of electron-
phonon interaction in order to understand the observed
dependence of transition temperature on the free carrier
concentration. To derive the coupling between electron
and TO phonons, we expand the periodic crystal potential
Vz(r) in powers of the displacement u(r). Retaining the
lowest-order terms, the matrix elements are calculated,
and we obtain

ing two-band electrons and two modes of phonons,
described by the total Hamiltonian

The rhombohedral phase is characterized by the pres-
ence of static uniform distortions (u) and (e"). It islJ
known that the sublattice displacernent (u) is induced
along the [111]axis:

&=(u &=(u, )=(u), e(0)= (1,1, 1) .
l

(3.1)

On the other hand, the nonvanishing elements of shear
strain are given by

& -=(.), ~.—,,(0)
~

= 1

12
The static strain (e ) is related to the rhombohedral angle
a by a=90' —2(e).

Thus we have two order parameters in this phase to be
determined self-consistently. It is clear that these order
parameters are related to the averages of phonon coordi-
nates Qq and qgq in the limit q=0:

( g, ) v'3+m (u &
—=u,

(3.3)

Then it will be convenient to introduce the new phonon
coordinates

Qq=Qq —u&q, o e(gq)'=eg', —~&,,o, (3.4)

to denote the vibrations around displaced centers. When
the Hamiltonian (2.21) is expressed in terms of these new
coordinates, the follow modifications are needed.

(1) The changes in the elastic energies due to static dis-
tortions give a constant term

H =He~+~ei-v'A+~ei-m+Hrp +Hro+Hr~ ro (2.21)

III. STATIC DISTORTIONS
IN RHOMBOHEDRAL PHASE

H„r~= g (2qso)'~'[a'(k+q)] f'(q)cr'(k)gq . (2 19)

The elements of fJ(q) represent the intraband transitions
of electron due to absorption or emission of a TA-phonon,
and are related to the acoustic deformation potential:-'„r
by XJ= (2co )

'
ug J(0)+ef J(0), (3.6)

(3.5)
where A, 8, and C are the coupling constants with van-
ishing momenta.

(2) The self-energy correction of the form

f'(q)r i =— g:-'„' e„(0)
(2+'op) n, m

„,[f'(o)]i r~ *

(2qso)'
(2.20)

should be added to electron band energy matrix EJ(k) in

Eq. (2.4). Here f J(0) is defined in Eq. (2.20).
(3) The sound velocity so of the TA Phonon and TO-

phonon frequency in Eqs. (2.13) and (2.14) are to be re-
placed by

where the factor e„(q) is defined in Eq. (2.11). Further
details for these quantities are given in Appendix A.

Summarizing, our system consists of mutually interact-

(so) =, (co')'=
E BQ

(4) An additional term

(3.7)

1
5Hro ——u —, g A (qi, q2, q3, 0)b(qi+q2+q3)gq, gq, g„, ,

2, q3

(3.8)
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is to be added to HTo in Eq. (2.14), and

5HT~ To ——u g [8(q, —q, O)+eC(O, q, —q, O)]q(Qq) Qq

+ p u g C(ql q2~q3, )~(qi+q~+q3)qie2Qq~Qq2Qq3

+ —,'e g C(O, qi, qz, q3)~(qi+q2+&i3)qiQq, Qq, Qq, (3.9)

to HT„To in Eq. (2.15). The primes on the new coordinates are omitted hereafter.
It is important to note the appearance of the terms, linearly proportional to the uniform fluctuations of TO and TA

phonons:

'BEO t ] y2
'BE0+ g [a J(k)] (2coo) ~

g J(0)a~(k) Qo+ + g [a J(k)] fJ(0)a'(k) (qQq)q o
BQ jk BE' j k

(3.10)

Here, each coefficient of the operator Qo and (qQq)q o represents the total static force on the distorted lattice. In addi-
tion to these, the lattice suffers the forces from the thermally excited phonons in the finite temperature. Then we can
derive the self-consistency conditions for the order parameters u and e by requiring that the thermal averages of these
forces vanish. Making use of the equations of motion for Qq and qQq, one can derive the self-consistency conditions for
u and e in the form

+ g ([a'(k)] (2coo)' g'(0)a'(k))+ —,'u QA(q, —q, 0,0)(QqQq)
J,k q

+ —, u g C(q, —q, 0,0)q ((Qq)"Qq)+ g [8(q, —q, O)+eC(O, q, —q, O)]q(QqQq) =0,
q q

BE()
+ g([a'(k)] f'(0)a'(k))+u QC(0 q, —q, O)q(Q Q')+ —,

' +[8(Oq, —q)+eC(00q —q)](Q Q ) =0.
BE

(3.11)

(3.12)

IV. TRANSITION TEMPERATURE
AND ORDER PARAMETERS

In order to determine the order parameters e and u, we
have to calculate various thermal averages in Eqs. (3.11)
and (3.12). Thermal Green functions for both electrons
and phonons are useful for this aim as well as for the dis-
cussion of softening of TO phonons and acoustic anomaly
in TA mode. ' Leaving rather lengthy details of the
method in Appendix 8, we are going to write down here
only the results with comments on the associated assump-
tions and approximations.

The calculation of thermal averages in the self-
consistent conditions (3.11) and (3.12) are performed as
follows.

(1) The second terms in these equations represent the
self-energy parts of the homogeneous TO and TA modes
due to virtual polarization of two-band electron gas.
These are expressed in terms of the one-electron Green
function 6 ~(k;ice„), for example,

6 J(k;i co„)= [ico„+p E~(k ) XJ]— —

=6 Jo(k;ice„)+6Jo(k;iru„) XJG Jo(k ice„),

(4.2a)

(4.2b)

where 6 Jo(k;ice„)=[iso„+p—E J(k)] ' describes an elec-
tron in the unperturbed two bands. Substitution of ex-
panded form (4.2b) into (4.1) gives a contribution —u IITo
where IITo is defined by

[

g ([a'(k)] (2~o)'~'g'(0)a'(k) &

j,k

=Tg e " g Tr[( 2' o)'~ g J(0)6 J(k;iso„)] . (4.1)
j,k

In treating the electronic states, we regard the static self-
energy correction (3.6) as the most dominant effect, and
leave out all other effects such as the self-energy due to
virtual excitation of thermal phonons. Thus

IITo———T g e " g Tr[(2coo)' g ~(0)6 ~()(k;ice„)(2coo)'~ g J(0)6 ~o(k;iso„)]
j,k

I

2K 2K 2 2 2 1/2
——,I@I(p, —6 )' —4 1—

+o IP I+(P —~ ) +o &o IP I

and is expressed by the first diagram in Fig. 6(e). Similarly the second term in Eq. (3.12) is shown to yield the contribu-
tion —HITA, and HTA is expressed in the form
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IIT&———g Tg Tr[fJ(0)G Jo(k;icy„)fJ(0)G Jo(k;ice„)]e
j,k n

2 g2 1/2
[„(-(&)2 (- ) ]I I( g )

n (-») gi„ IVI+V
1S ' (4.4)

In deriving Eqs. (4.3) and (4.4), we have made use of the
identity

2 qDss I '~&
d

x'
h

'Qs~qD

0 ~2+1

Tr[g i(0)G ~()(k;ice„)fJ(0)G Jo(k;in)„)]=0 . (4.5)
(4.10)

(2) A simple Bose distribution with bare frequency co~ is
assumed to calculate the average (Q„Q~).' ' Inclusion
of the correction B Eo/Bu is shown to lead to a minor
renormalization of various anharmonic phonon coupling
constants. In evaluating the average ((Qz) Q~), we have
taken account of the frequency shift of TA phonons, com-
ing from the polarization of two-band electrons. This
gives the carrier concentration dependence of the shear
elastic constant C44, as wi11 be discussed in Sec. VI.

(3) The cross mode average (QqQq) represents the ef-
fect of electrostrictive coupling 8. As is shown in Appen-
dix 8, this yields a term proportional to a strongly
temperature-dependent function FTA(T) which appears in
the expression of ((Qq)tQ~ ).

(4) The anharmonic coupling constants are assumed to
have the following momentum dependence:

BE() —NITA ——0 .
Be

(4.11)

The self-consistency conditions (4.S) and (4.11) are rewrit-
ten conveniently as

Q)p(T)+86'+ u + E =0,c,
6 2

(4.12)

In the self-consistent condition (3.12), the temperature-
dependent averages (QqQq), ((Qq)tQq), and (QqQq)
are all neglected, since they lead to the small changes in
the order parameters and anharmonic couplings. Then
Eq. (3.12) is written in the form

A (q, —q, 0,0)=A/(q),

8(q, —q, 0)=8&/(q),
C(q, —q, 0,0)=CP(q),

where

P(q) = 1

1+(qrilqD)

(4.6a)

(4.6b)

(4.6c)

(4.7)

SpE+ Q + EQ
2- & -2 C —2

2 2
(4.13)

where use has been made of the expression of Eo in Eq.
(3.5) as well as the soft TO-phonon frequency cop(T) in
the cubic phase

cop(T}=coo—IITo+ —,(C —28 )FT&(T)+ coth2 = 2 1 2 3q2NA ~0

4No 2T

(4.14)

qD is the Debye momentum 2'/a, and ri is the smallness
parameter to fit the expermental data. The meaning of
this choice of momentum dependence of the anharmonic
coupling constants will be discussed in Sec. IX.

Summarizing these results, the self-consistency condi-
tion (3.11) can be written as

cop(T, ) =0 . (4.15)

In the high temperature limit where T, is larger than both
the Debye frequency coD ——spqD (sz ——so —IIT~) or the2'= 2

harmonic optical frequency aro at the I point, Eq. (4.15) is
solved explicitly for T, .

The last relation is derived in Appendix B.
Let us introduce the softening temperature T, of TO

mode by

BE() 1 2+u —IITo+ —,(C —28 )Frp, (T)
BQ

+ 4g — A coth =O.2N Mo

coo 2T
(4.s)

2T, =—(IITo —coo), (4.16a)

Here, we have introduced the function FTp, ( T)
=2+qq ((Qq) Qq) which can be explicitly calculated

D= —,gX 2(C 28 )+-
Sp 670

(4.16b)

FT~= g0(q)q
1

qSp

6g N (T)
So

(4.9)

As a matter of fact, however, T, is rather comparable to
coD and coo, and Eq. (4.15) should be solved numerically.
It is important to note that the coefficient D in Eq.
(4.16b) depends on the electron chemical potential p
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through the acoustic-phonon self-energy 11rA in the modi-
fied sound velocity sz [=(so—IIrA)' ]. This means that
T, is sensitive to the change in the carrier concentration,
caused by a doping or a deviation from stoichiometry.
Detailed analysis of carrier concentration dependence of
T, will be given in Sec. VIII after the electron chemical
potential is determined.

Now we are going to see in more detail what happens in
the vicinity of T, . To do this, it is convenient to use the
following scaled quantities:

l

I

//1
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I

I

I

l

l

I

l

f
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e 0/ b , 1
(

I

I

)

I
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2,C
7 = COpg2

Ce= ——e,8
spA

2

P=2 —1
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(4.17a)

(4.17b)

(4.17c)

FIG. 2. The schematic representation of the reduced tem-
perature r versus the reduced strain e given by Eq. (4.18). The
thick solid curves denotes the physical branches in cases of (a)
the second-order phase transition {Py0) and (b) the first-order
phase transition {P&0). b and 7b denote the superheating re-
duced strain and temperature, respectively.

Then, Eqs. (4.12) and (4.13) are combined to yield

r+e —2e +(2+p) =0,
1 —e

(4.18)

which determines the static strain e as a function of re-

duced temperature ~, p being the material constant of the
given IV-VI compound. Once e is determined from Eq.
(4.18), the displacement u is derived through Eqs. (4.13)
and (4.17) in the reduced form

82
u =3 (2+P) . (4.19)

In the limit e~0, Eq. (4.18) is read as r ——pe. This
suggests that the parameter p, denoting the coupled effect
of the electrostrictive coupling, TO-phonon anharmonici-

ty, and the renormalized sound velocity of TA mode, cru-
cially governs the nature of the phase transition. In the
case of positive (negative) p we have the second- (first-)
order transition, and the boundary case p=0 means that

T, becomes a tricritical point. The relations between ~
and e in these cases are schematically plotted in Figs. 2(a)
and 2(b). It is easy to see that the reduced strain e can
move in the interval 0&e g 1, limited by the biquadratic
TA-TO phonon coupling C. For py 0, there is a metasta-
ble distorted solution e ~0 even for the temperature
T, & T & Ts (or 0& x &wb), in addition to the cubic solu-
tion e =0. The superheating temperature v.

b is derived
from Eq. (4.18) as

rb=b (3—2b), b =1—(1+-,p)' (4.20)

where the superheating strain is denoted by b. Vixen the
tricritical condition p=0 is met, the strain e behaves as a
function of ~ in the way

e=( —w/3)'/ {4.21)

in the vicinity of the transition point.

V. QEHAUIOR OF THE SOFT TO MODE
NEAR THE TRANSITION POINT

As is assumed throughout the paper, the structural
phase transition in the IV-VI compounds is triggered by
the softening of TO phonons at the I point. In fact, we

have shown in Appendix 8 that the renormalized TO-
phonon frequency in the rhombohedral phase is expressed
in the form

QPF =COp + —COO,
BQ

(5.1)

where the first term represents the corresponding frequen-

cy in the cubic phase given in Eq. (4.14). In connection
with experiments, cop should be identified with the fre-
quency of the F,„mdoe; the observed soft mode in the
IV-VI compound with rock-salt structure. Similarly, co+

corresponds to the A
&

mode. In the case of pp 0, we can
rewrite Eq. (5.1) in the form

82 2
COF = Q ~ — 1+ 7

3 C P
(5.2)

while we get

(5.3)

in the tricritical transition p=0. As already seen in Sec.
IV, the first-order transition takes place for p&0 at the
reduced temperature ~b ~ O„associated with a discontinu-
ous growth of order parameters. In the vicinity of this
temperature, the TO-phonon frequency (5.1) behaves as

' ]I'2

coF b+2(——1 —b)
p' 2+p b

C 1 —b 3
(5.4)

cop(F)„)
Gf

8T
(5.5)

Summarizing these results, we show the variation of soft
TO-phonon frequency with temperature schematically in
Figs. 3(a)—3(c). In particular, for p&0 in the tempera-
tures [O,rq], we expmt a hysteresis in the process of de-
creasing or increasing T.

Finally let us discuss the ratio g of the slopes of the
curves in Fig. 3, measured in the vicinity of the second-
order phase transition (p&0):
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—2

5= 2B
Q)F

(6.2)

Since the squared sound velocity is proportional to the
shear elastic modulus C44, 5 is interpreted as a change
~C44 =C44 —C44 = —p&:

F P

2 B2
6C44 ——

Q)F SP
(6.3)

2 ]
o where C44 is the shear modulus in the cubic phase. It

should be noted that EC44 does not vanish even in the
limit T~T, 0(—P y 0 is assumed here), since coF is pro-
portional to u near T, . This leads to the acoustic anoma-
ly with a discontinuous change in the sound velocity and
shear modulus on crossing T, . Making use of Eqs. (5.3)
and (4.17c), we find

~i(
M

TO

2 p
C442+ (6.4)

FIG. 3. The squared TO-phonon frequency for (a) P&0
(second-order phase transition), (b) P=O (tricritical point), and
(c) P &0 (first-order phase transition). The abscissa r is a mono-
tonic increasing function in T.

Making use of Eqs. (4.17a) and (5.2), we find the expres-
sion for this ratio

in the case of second-order transition (P &0). It is clear
that bC~ vanishes in the absence of the electrostrictive
coupling (P~ oo ). It is also seen from this equation that
the sound velocity vanishes at the tricritical point P=O.
In other words, the TA mode is softened at the tricritical
point. In the first-order transition, the discontinuity

' 1/2
36C44 —— —1+

(1 b)— P
C44 ~ (6.5)

is expected where b is the reduced strain at this tempera-
ture.

Let us remark on the stability of the superheated
branch, i.e., (roq ) )0. This condition can be related to
the slope of the order parameter with respect to the tem-
perature

(=2 1+—2 (5.6) 3 B
C44 ———p (1—e)

2

Br &0,
e

(6.6)

VI. ACOUSTIC ANOMALY

As is shown in Appendix 8, inclusion of the self-energy
correction due to bilinear intermode coupling (3.9) leads to
an additional renormalization 5 of the TA-phonon veloci-
ty in the rhombohedral phase such as

s~ ——(so' ) —5, (6.1)

In the absence of electrostrictive coupling (P~&e), this
reproduces the famous result (=2 in the Landau theory.
As a matter of fact, the experiments by Jantsch on the
compounds Pb&, Ge„Te (x =0.0056—0.036) show a wide
scattering of g from 3.3 up to 21, provided the frequency
of A& mode is 3 times larger than that of the F. mode.
This clearly suggests that the electrostrictive coupling is
really playing an active role in the phase transition of
these compounds. In addition, observation of surprisingly
large g(-20) may be explained as the result of vanishing-
ly small P (meaning a strong electrostrictive coupling),
since g becomes infinite as the tricritical point is ap-
proached.

(d/dT)cop

1 —e (d/dT)coF
(6.7a)

(6.7b)

It is to be noted that there is a definite connection between
the acoustic anomaly and the deviation of the ratio g from
2: both are crucially governed by the electrostrictive cou-
pling 8.

which states that the TA mode is stable on the (e) —T
line with a negative temperature coefficient, and the shear
modulus C44 in the rhombohedral phase vanishes. The
TA mode is softened at the superheating point in the case
P&0. At this point, the derivative Be/BrccB(e)/BT be-
comes divergent. It is also seen from Eq. (6.6) that the
increasing tendency of C~ with lowering temperature 9 is
attributed to the saturation of the order parameters.
Equation (6.6) is rewritten as
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VII. MODIFIED T%'O-BAND ELECTRONS

(7.1b)

~'j'(k) =[(~+&
~&=-'&')'+(~J g &)'

We are going to discuss the effects of the structural
phase transition on the electronic states in our system. As
already mentioned, we have assumed that the dominant
effects of the transition is expressed in terms of the self-
energy correction due to static distortions u =&3%M (u )
and e =&12p(e). The motion of electron in the distorted
phase is described by a matrix Green function, given in
Eq. (4.2a). Then the electronic spectrum in the distorted

phase is derived from the condition det[G J(k,E(k)
+i 0+)] '=0. Solving the resulting quartic equation ex-
plicitly, we obtain the bands

E„(k)=(~&:-'J'+X'4 (k), (7.1a)

X„,(k) =(~)=-'~' —X'7'(k),

Here n and p denote the densities of conduction electrons
and valence holes, respectively, and X is the density of the
valence electrons in the filled valence band. The left-hand
side (lhs) of Eq. (7.5) should be interpreted as the effective
number of the valence electrons, including the extrinsic
contributions from incomplete stoichiometry or the doped
impurities.

In the absence of the extrinsic carriers at T =0 K (i.e.,
n =p =0 and)u=b, ), Eq. (7.5) gives

3
Ko

3~' W(1)&&W(2) W(3) '

where W(n) ( n = 1, 2, and 3) are the interband matrix ele-
ments of velocity operators [see Eq. (2.8)], and «o is the
half width of symmetric bands in the space of the modi-
fied crystal momentum. Making use of the expressions
for these elements, we see that

+
I
&'Xi'

I
+i/3, :-"p

—(u) -() (7.2)
(7.7)

where N =4m/(3a') and a is the lattice constant.
Since the observed T, in IV-VI compounds is always an

order of magnitude smaller than the band gap 2b„ it is
safely assumed that the electrons are completely Fermi de-
generate. In this limit, the r.h.s. of Eq. (7.5) is calculated
to yield

In these expressions g J=g~/
~

gj ~, «„ is a crystal momen-
tum modified by the electron velocity matrix elements
W(n) as defined in Eq. (2.7), and:-'g' and:-,'J~ are the
acoustic and optical deformation potentials at the jth L
point, respectively (see Appendix A). The alternative
signs + indicate the Kramers pair: The degeneracy of
this pair is lifted up here, reflecting the broken inversion

symmetry in the rhombohedral phase with relative sublat-
tice displacement. It is noted that the minimum band gap
between the new bands depends only on (e) and not on
(u). It is important to note that the original electron
bands are strongly nonparabolic even in the vicinity of the
I. points. This is due to the spin-orbit interaction. Then
we introduce an energy-dependent reciprocal effective
mass tensor at the jth L. point by

'2 /3 1/2

p =sgn(n —p) b, +«oz ~ —p (u&'
x

(7.3)
k —k'

Calculated on the Fermi surface, this yields

1 —
&
~):-'"

(b, +EF)
a~ „(EF)=aj„(0) + F

~&u) (, , b, '' E~(A+EF)'

(7.4)

where aJ~„(0) means the value at the band edge from
which the Fermi energy EF is measured.

To derive variation of transition temperature T, with
the carrier concentration, we have to determine the elec-
tron chemical potential (u, formally defined by

&+n p= g 7 Qe "
Q—Tr[G (k;Ecu„)] . (7.5)'

J Pl k

It is seen that p is independent of (e), since no volume
change is associated with the shear strain in the lowest or-
der of &e&.

It is interesting to see that p decreases with increases in
(u ), while the opposite is the case in the usual vibronic
theory ' ' ' ' based on the isotropic two-band model
without spin-orbit coupling. This suggests that the distor-
tion of Fermi surface takes place quite differently in these
two models. ' In the rhombohedral phase in our model,
originally degenerate Kramas doublet a and P are split in
a plane of a normal to the vector gJ whose components
stand for the coupling constants of different channels of
electron —TO-phonon scattering. Let us denote by ~z, the
radius of a cross section of Fermi surface (specified by a
fixed «.„). As (u ) appears, this radius changes its value
from «i to «) +5«.i, 5@i being proportional to (u ). This
results in an increase in the available phase volume by the
amount 2~5~&, leading to a decrease in p.

Finally we show the explicit forms of the modified
band-edge structures. The four equivalent valleys at the
L points ( Did) split into a singlet T valley ( C, ) and three
equivalent L valleys (C3„) with a lift of the Kramers de-
generacy except for on the T and L points. The Fermi
surfaces are distorted from ellipsoids of revolution and
carrier redistribution occurs among these nonequivalent
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vaHeys. ' For a singlet valley, Eq. (7.2) becomes

X'."(k)= [(~+(~&=-'")'

+ [ (k2+/ 2) 1/2+ ( ii ~ —(1)]2+ 2I 2j i/2

(7.9)

where the x, y, and z axes are taken in the [1 12], [110]
and [111]directions, respectively. The upper state has a
smaller volume and strong mass anisotropy. The down
state has a larger volume, and the Fermi surface is signifi-
cantly distorted to a form like an elongated apple. For
the triplet valley, on the other hand, the electron spectrum
becomes more complicated as

g(2)(k) (g+ ( ) (2))2+ '( ~ ~ (2)

a

'2

]/2

+ u&(k„+k~)+u~~k, + —, [(=~~uik„+2i/2=&u~~k, ) +(3=»uik~) ) (7.10)

where x, y, and z axes are in the directions [112], [110],
and [1 1 1],and:-,"~' and:",'~' are defined by

~(1)op= II s

~(2) (3) ~(4) & ( 2 g 2 )1//'2
op op op 3 ~-II+

(7.11a)

(7.11b)

The last relations are derived from Eq. (A6) and Table VI.
The upper state has a smaller volume and stronger mass
anisotropy, while the down state has a larger volume with
a smaller distortion from the revoluted ellipsoid. These
complicated Fermi surfaces have been used by Murase
and Takaoka to interpret a knotty oscillation in the
Schubunikov —de Haas coefficients in the IV-VI com-
pounds.

represents the result obtained by taking account of the ef-
fect of polarization only of the TA (TO) mode. Compar-
ing these results, we see that the contributions from both
modes are comparatively important. In Fig. 5, we show
the calculated (u) —T curve at the hole concentration

p =0.88X10 cm, together with the experimental data
measured by Iizumi et al. As the temperature is
lowered, the calculated curve deviates upward systemati-

150
BnTe

VIII. COMPARISON %ITH EXPERIMENTS

In this section we try to interpret the experimental re-
sults in SnTe or other IV-VI compounds, and further
predict the unobserved quantities in SnTe such as the
jump of shear modulus b, C44, the temperature derivative
of the squared TO-phonon frequency in the cubic phase
drop/1'r, the ratio of the temperature derivatives of
squared TO-phonon frequencies g, and the combination of
phonon coupling constants P.

At first, we list the experimental data for SnTe in Table
I, used to determine the fitting parameters in our theory.
As shown in the experiments of the shear modulus [(1) of
Table I] and the critical temperatures (Fig. 4), the prom-
inent dependence of carrier concentration is seen in SnTe.
Unfortunately the other experimental data listed in Table
I are obtained for different carrier concentrations. Thus
we have to carefully estimate the values of many fitting
parameters in our model so as to reproduce the various
experimental results with different carrier concentrations.
First of all, we show in Table II the parameters whose
values are considered to be rather well established. Mak-
ing use of these values of parameters, we have fitted the

experiments in Table I and the resultant fitted parameters
are summarized in Table III, although some ambiguities
are present as discussed below. The theoretical T, -p
curve is shown in Fig. 4 in which the theoretical curve has
been adjusted to the data of Iizumi er a/. with

p =0.88X 10 cm . The theory can reproduce the ex-
perimental data well. The dotted (dashed) curve

100

Tc(K)

50

3
P(cm )

4.10"

FIG. 4. Carrier concentration dependence of the transition

temperature T, in SnTe. The abscissa denotes the hole concen-
tration p. The solid curve denotes the softening temperature of
TO mode calculated by Eq. (4.14). The dotted (dashed) curve

denotes the theoretical result obtained by taking account of the
effect of polarization only of the TA (TO) mode. The experi-

mental data are from () Sugai et ai. (Ref. 68), (4, ) Murase and

Nishi (Ref. 28), {~ ) Kobayashi et ai. (Ref. 27), and (&) Iizumi

et al. {Ref. 50). Three theoretical curves are adjusted to the
data of Iizumi et a/. with p =0.88 ~ 10 cm
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TABLE I. Fxnt rirneatz1 Date in &~T~

Value
Hole concentration

p (&(10 cm )

(1) Shear modulus

in cubic phase'
C44 (T=293 K) 1.235&10" dyn cm

0.969)&10" dyn cm

1.01

4.50

(2) Average band gap dEG /dT (T & T, )

dEG" /d T ( T & T, )

EG" (T =T, )

—025 meV/K

0.15 meV/K

2.0 eV

1.3
1.3
1.3

(3) Temperature derivatives

of squared TO-phonon frequency

in rhombohedral phase'

d F
dT 2&C

(A] mode) —23.15 cm /K

(4) Jump of specific heat"

(5) Critical temperatures

(6) Static sublattice

displacement'

(u )(T)
d (u)'

dT Q

0.457 J mol 'K

Fig. 4

F1g. 5

—0.154 K

1.8

1.16—4.42

0.88

0.88

'Seddon and Gupta (Ref. 29).
K. Murase and S. Sugai, Solid State Commun. 32, 89 (1979).

'Murase and Sugai, Solid State Commun. 32, 89 (1979);cited by Jantsch (Ref. 5, Table 5.1).
I. Hatta and K. L. I. Kobayashi, Solid State Commun. 22, 775 (1977).

'Iizumi et aI. (Ref. 50).

cally. Making use of the parameters in Tables II and III,
we calculate various physical quantities as summarized in
Table IV. Comparing Tables I and IV, it is shown that
satisfactory agreements between theory and experiments
are obtained. Although there is no experimental data of
dcozldT, our theory predicts the rather small value of P
which is responsible for the larger g than the previous
mean-field value 2 as discussed in Sec. V. To confirm our
prediction, a systematic measurement of squared TO-
phonon frequency in the cubic phase (niz) at various tem-
peratures near T, is strongly desired. The application of

hyper Raman scattering" will be promising for this pur-
pose.

We note here some ambiguities in the choice of the fit-
ting parameters in Table III. At first, the acoustic defor-
mation potentials are tentatively chosen in Table III, tak-
ing account of the calculated values in SnTe
[:"(L6i ) =7.98 eV, :-(L6i ) =7.35 eV] (Ref. 52) and PbTe
[:-(L6i——8.3 eV, :-(L6i)=10.5 eV] (Ref. 53). This will
be improved when much data are measured for the shear
modulus C44 in the cubic phase at least for three different
hole concentrations. Second„ the biquadratic coupling C

TABLE II. Values of physical parameters in SnTe.

Velocity matrix elements' 2.4)& 10 cm sec

7.9g 10' crn sec

Half band gap

at L point

Density'

Lattice constant'

Reduced mass in a unit cell

b, (T)= —181.8+ [40.96+0.0475( T +20)-']'" meV

P 6.383 gcm
0 6.327~10 ' cmI 1.31&10 '-'-

g

'The velocity matrix elements are evaluated by the relation U &, i
——(2P, I /m0) /(2m o ), where

2P, /mo ——7. 1 eV and 2PI /mo ——0.68 eV have been used (Ref. 4, p. 49).
Nimtz and Schlicht (Ref. 4, Sec. 3.2.3.1).

'Nimtz and Schlicht (Ref. 4, Table 2. 3).
V. L. Volkov, Fiz. Tekh. Poluprovodn. 12, 396 (1978}[Sov. Phys. —Semicond. 12, 229 (1978)].
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TABLE III. Values of fitted parameters in SnTe. These values are determined by the experimental data listed in Table I indicated
in the right most column.

Quantity

Bare TO-phonon frequency

Cutoff parameter

Acoustic deformation potentials

Bare shear modulus

Optical deformation potential

Quartic coupling of TO phonon

Electrostrictive coupling between

TA and TO phonons

Biquadratic coupling between

TA and TO phonons

:"(L6l )

~op

A =(3%M) A

B=v 12p3XMB

C = 12p3XMC

Value

1.2 THz

0.024

10.4 eV

9.77 eV

1.40&&10" dyncm

9.3 eV

1.05&10 ' ergcm

—1.71X10 ' ergcm

4. 16)& 10 erg cm

Table I
reference

(5),(6)

(5),(6)

(3),(6)

(3),(4),'(6)

(5)

'To determine the optical deformation potential:-, ~, we have used E G"=EG"+6((u ) /a)':"',„/EG", where E G" is defined by (Ref. 3)

(E G )'= g„g,.+ [E',+(k)—E'„+(k)j'/ g„g,+.
The jump of the specific heat AC~ is used to determine deep/dT through the relation (Ref. 12)

b, C»= —(3%M/2)T, (d(u ) /dT)(drop/dT)

cannot uniquely be determined, because of a lack of the
experimental values of static rhombohedral shear strain
(e) in the bulk sample. When the data of (e) are ob-
tained as a function of the temperature, we can determine
C because the ratio C/A affects the magnitude of (e).
Although (e) is measured by Muldawer, his data is in
contradiction with the experimental second-ordered phase
transition in SnTe: If we adopt the data by Muldawer,
the electrostrictive coupling 8 becomes too strong to give
negative P, and the first-order phase transition is predict-
ed. We may attribute this discrepancy to the fact that the
powder sample is used by Muldawer; a larger macroscopic
displacement of crystal lattice is needed in bulk than in
powder to grow the rhombohedral shear.

Finally we discuss the experimental results of IV-VI
compounds other than SnTe. Let us first compare the fit-
ted parameters and calculated physical quantities in SnTe
with that in Pb~ „Ge„Te. The experimental data and
resultant parameters are listed in Table V. The phonon
coupling constants 3 and 8 are shown to be comparable
to those in SnTe (Table III). It is also seen that the es-
timated value of P in SnTe is smaller than that in
Pb~ „Ge~Te. This is reflected in a larger g and b,C~ in
SnTe. The vanishingly small P is, on the other hand, real-
ized in Ge& „Sn„Te (x =0.72) (Ref. 15) at which the tri-
critical point takes place and g would be infinitely large.
It is also known in Pb& Sn Te that the critical ternpera-
ture becomes independent of the carrier concentration as
the composition x decreases. ' This may be attributed
to an increase in the bare harmonic frequency of the TO
mode mo, and/or 3/C with a decrease in x. The former
is responsible for the effective reduction of the carrier

concentration dependence in II&o, and the latter for that
in HTA.

IX. DISCUSSION

We saw in Sec. VIII that the shear modulus C~ de-
creases monotonically as a function of the free carrier
concentration. This is physically interpreted as follows.
First of all, we note that a single-band free electron gas
cannot affect the shear modulus and sound velocity, be-
cause shear strain involves no volume change. Thus the

x)o

10.0

8.0 t-

cm

6.0 I—
A
V'

20 40 60 80
Temperature (K)

~ j

100

FIG. 5. Relative sublattice displacement (u)/a versus tem-
perature in SnTe with hole concentration p =088&10 crn
The solid curve is calculated from Eqs. {4.12) and (4.13). The
solid squares are the experimental data of Iizumi et al. {Ref.
50). The arrow indicates the calculated transition temperature
T, =97 K.
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TABLE IV. Calculated physical quantities in SnTe at the transition point.

Quantity

Critical temperature

Shear modulus in cubic phase

Jump of shear modulus

C44

Value

94.6—45.3 K

1.21—0.88&10" dyncm

0.694—0.694)( 10" dyn cm

Hole Concentration

p (&10 cm ')

1—5

1—5

Temperature derivatives of

squared TO-phonon frequencies

d ~F
d T 27TC

d
d T 277c

—21.31——55.84
—23.18

4.55—5.86
4.70

1—5

1.4

1—5

1.4

Jump of specific heat'

Temperature derivative of
squared sublattice displacement

ACp

d (u)'
dT g~

1.058 Jmol 'K

—0. 154 K

1.8

0.88

Ratio of temperature derivatives

of squared TO-phonon frequencies

4.69—9.53 1—5

Combination of phonon

coupling constants

1.49—0.53

'The jump of specific heat is evaluated by the equation given in footnote b of Table III.

multiple-valley structure of the electron bands in the IV-
VI compounds is essential to interpret this effect. In fact,
the rhombohedral shear is accompanied with a deforma-
tion potential which can split the degenerate valleys at the
four equivalent l. points into a siglet T valley and a set of
triplet I valleys, just as in bismuth and antimony. As-
sociated with the change in the valley energies is a redis-
tribution of electrons to minimize their free energy in the
strained crystal. Some amount of work done to strain the
crystal will be relaxed in the course of this redistribtttion,
resulting in a smaller effective elastic constant. The effect
will be enhanced for higher carrier concentration (or
equivalently for large Fermi energy). Furthermore, it
should be stressed that the effect is further enhanced by
the nonparabolic nature of the bands in the unstrained
crystal due to strong spin-orbit coupling.

The momentum cutoff in Eq. (4.6) is introduced to re-
move the following contradiction. We note that the cou-

pling constant A can be estimated in two ways. The first
is to make use of the experimental data of BcoF/t) T, com-
bined with Eqs. (5.5) and (4.14), assuming that g&2 and

~o—H&o~0. Another method is to combine the experi-
mental data of t)sLsF/t)T and t)(u ) /BT with Eq. (5.2).
The result of our analysis without momentum dependence
of 3 shows that the value of A, estimated by the former
method, is always larger than the second.

Throughout the paper, we have assumed that the effect
of the vibronic anharmonicity is always small compared
with that of the lattice anharmonicity. This is explicitly
confirmed in Appendix C, where it is shown that the vib-

ronic contribution to the TO-phonon self-energy, calculat-
ed in the fourth order with respect to electron —TO-
phonon interaction, is always negative in the presence of
the spin-orbit coupling. This means that the parameter P
is always negative, and softening transition of the TO
mode becomes the first order if the vibronic anharmonici-

ty is playing the dominant roles. This is clearly not the
case in the real system such as in SnTe where the second-
order transition is observed. %e have neglected the
self-energy insertions and vertex corrections to the elec-
tron Green functions due to TA and TO phonons, based
on a similar consideration.

Finally let us discuss the roles of the long-wavelength
fluctuations to determine the eigenfrequencies of the cou-
pled phonon system. If the fluctuations are completely
neglected, these eigenfrequencies can be calculated as the
curvatures at the minimum of the phenomenological Lan-
dau free energy I' along the principal axis in the e-u
plane. Here F is formally given by replacing coo and so by
cup(T, p, ) and sp(p), respectively, in Eq. (3.5). Such an
idea leads to the expressions of eigenfrequencies of the
form

BF

2 1/2BF
QBE
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TABLE V. Experimental data (1)—(5) and calculated parameters (6)—(10) at the transition point in Pb~ „Ge„Te. The right most
column in (6)—(10) indicates the experimental data used to determine the parameters (6}—(10).

(1) Shear modulus in cubic phase'

(2) Jump of shear modulus'

(3) Temperature derivative of squared

TO-phonon frequency in rhombohedral phase'

2

F
(A~ node)

dT 2'ETC

Value

1.35 ~ 10 dyn cm

0.26)& 10" dyn cm

—15.0 cm /K

Table V
reference

(4) Temperature derivative

of shear distortionb

-1.50x10-' K-'

(5) Temperature derivative of squared

sublattice displacement'

d (u)'
dT a

—4.60x10-' K-'

(6) Ratio of temperature derivatives

of squared TO-phonon frequencies

2.48 (1),(2)

(7) Combination of phonon coupling constants

(8) Jump of specific heat

(9) Quartic coupling of TO phonon

(10) Electrostrictive coupling

between TA and TO Phonons

8.38

0.239J mol 'K

4.9&&10 ' ergcm

—2.0&( 10 erg cm

(3),(5),(6)

(3),(5}

(4),(5)

'Sugai et al. (Ref. 49).
"D. K. Hohnke, H. Holloway, and S. Kaiser, J. Phys. Chem. Solid 33, 2053 (1972).
'Calculated values by Sugai et al. (Ref. 49).

If we assume B F/Bu »B F/BE, then the frequency

BF
BETBE

BF BF BF
BE' BEr)l7 B17

(9.2)

is obtained for the modified acoustic mode. This is
equivalent with Eqs. (814)—(816). It should be noted that
the condition B F/Bu »B F/BE does not hold, because
B'F/Bu' cop 0 and B F/BE -sp' near the transition
point at which the acoustic anomaly takes place.
Slonszewski and Thomas' derived the above expression
by calculating d F/dE along the line of u =u(E) speci-
fied by BF/Bu =0, on the assumption that the optical vi-
bration is far more rapid than the acoustic motion. As is
clear from the above discussion, their assumption is not
satisfied in the context of the Landau theory. However,
this assumption should be interpreted as ~p g~q s~ rather
than B F/Bu »B F/BE . The former inequality holds
dwell in the long-wavelength limit even near the transition
point. This is in harmony vvith our basic standpoint such
that all physical quantities are considered in the long-
mavelength limit.

Although the Landau free energy I' has no dynamical
significance, F =F(u, E(u )) is meaningful for finding the
equilibrium configuration. ' The order parameter u is

then determined by

=nip+ p 2 + —,CB
u BQ 4sp sp

(9.3)
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where p is defined by Eq. (4.17c). This is an alternative
form of the self-consistent condition (4.18) with small or-
der parameters. It is thus naturally understood that the
nature of the phase transition is governed by the sign of p
as discussed in Sec. IV.
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APPENDIX A: OPTICAL AND ACOUSTIC
DEFORMATION POTENTIALS

TABLE VI. The matrix elements of optic deformation poten-
tials e(0).:"J(n) at the j th L point.

In this Appendix, we briefly summarize the definitions
and properties of the matrix elements of electron velocity
and optic (acoustic) deformation potential with respect to
the band-edge wave functions.

First of all, we show the band-edge states derived by
Mitchel and %allis who diagonalize the six band-edge
states coupled by spin-orbit coupling:

n=1

—
ll

3 -il

3 -"il

=(cos8 ) ~Z))+(sin8 ) ~X t),
4 k~p 1L61P)

= —(cos8+)
~

R t )+i (sing+ )
~
g 1),

~ri' =+I~ik'p.

(Ala)

(A lb)

(A lc)

4

op 4 ~op
j=l

1/2

(A5)

W'(1) =(ui, 0,0),
W'(2) =(O, ui, O),

W'(3) =(0,0,uii ),
where Ull and Uq are introduced by

u~(
——i{Lg)P

~
n;

~
L6+iP),

(A2b)

(A2c)

(A3a)

ui —— i , {Lq~—P
~

—m„in~
~
L6ia—) . (A3b)

It is shown that vectors W(1), W(2), and W(3) are
transformed similar to [T12], [110],and [111],respec-
tively.

In a similar manner, we can calculate the elements of
the optic deformation potential in the form as shown in
Table VI. Here we have introduced:-ll and:-& by

Here E = icr~KO —and I stand for the time reversal and
inversion operators, respectively. Further details of nota-
tions are to be referred to Ref. 24. To express the single
electron Hamiltonian in the Dirac form, it is convenient
to shift the phase of state

~

L 6+~ P) by m./2 from the origi-
nal form given in the Ref. 24. The state L6, (L6i ) should
be assigned as the band-edge state of conduction (valence)
electron, except for the case of SnTe in which the above
assignments should be reversed. '

Making use of these states, the matrix elements of elec-
tron velocity are calculated with the z axis along the [111]
direction from the definition (2.8). This yields

3

:-,'i, = ' $ [e(0):-'(n)]'
n=1

(A6)

The acoustic deformation potential has only intraband
elements of the form

(A7)

-Ij 1j Ij Ij—~~y +~yg +~zg (A8)

Since the shear strain involves no volume change in the
first order, we have a symmetry relation between the ele-
ments = ~ in Eq. (AS):

12 13 14 I1 /3 . (A9)

Thus the acoustic deformation potential has only two in-
dependent elements; ""and:-"' are chosen as such ele-
ments. In Sec. VIII the ="(:-"')is referred to "(L6, )

[:"(L6~ )] to avoid the ambiguity of the assignments of the
band-edge states. The electron —TA-phonon interaction
can be rearranged in the matrix form as in Eq. (2.20) in

the text, and the quantity f1(q) is shown to have an ex-
pression

f '(q) = f '(0),
(2qs, )'"

where

(A10)

where 5V„(r) is related to the local energy change due to
shear strain by g„e„(r)5V„(r). The terms with
n =m vanish for the rhombohedral shear strain. Let us
define = ~ ( I =c, u, and j= 1, . . . , 4) by

+:-~~= —«6iB V LwB)Bz
(A4a) (Al 1)

~{j] ~pj+ ~Uj (A12)

:-,= —,a L(„B Vp
—i Vp Lh, a) .

()x Bg

Combining these elements, we can define =,p and:-,'~p by

It should be noted that the k.p perturbational treatment
has a special advantage to relate the band deformation po-
tential to the electron-phonon deformation potential.
These two coincide with each other only at the band
edges. "
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APPENDIX 8: COUPLED PHONONS
IN RHOMBOHEDRAL PHASE

0/
/

0/
/

%'e are going to calculate the phonon Green functions
in rhombohedral phase with a special stress on the acous-
tic anomaly. As shown in the text, this anomaly is in-
duced by the electrostrictive coupling of the TA mode to
TO mode in the presence of order parameter (u ).'2'i In
particular, it is noted that this coupling should be treated
in a nonperturbative fashion taking account of the long-
wavelength fiuctuations of the TA mode get the anoma-

13

Therefore, we first calculate the TA- and TO-phonon
Green functions DTA and Dr'o in the absence of the inter-
mode coupling. After that, the effects of the mode cou-
pling will be included through the Dyson equations to ob-
tain the Green function DTA and D'ro for the coupled
phonon system.

The Green function of the TA phonon DTA is calculat-
ed, taking account of the processes as shown in Figs. 6(c)
and 6(d). Only the particle-hole pair polarization is in-
cluded, and minor temperature-dependent corrections
from lattice anharmonicities are neglected, since the TA
mode is not directly responsible for the transition. Thus,
we obtain Dr'A of the form

(b)

(cI)
0/ 0/

0 .
/

/

+6&

0,
/

DT'A(q:4! ) =
DrA(q'C! ) —IITA(q;ig! )

2$s o

4+v'(sq')'
(81) IIE

2qS 0
DTA(q'C! ) =

4+v'(so)'
(82)

IITA(q gl),+TA(q 4!)2' p

(83)

IITA(q;if!) = —g Tg Tr[f!( q)G'o(k'iso—)f'(p)
j,k n

where the unperturbed Green function DTA and polariza-
tion IIT& are given by

FIG. 6. Diagrammatical representations of phonon Green
functions for (a) TA and (b) TO modes in ferroelectric phase.
Phonon Green functions for (c) TA mode [(d) self-energyj and
(e) TO mode [(f) self-energy) in the absence of mode coupling.
The solid and open circles denote electron TA and TO cou-
plings, respectively, the open square is the fourth-order anhar-
monicity of the TO mode A, the corner-shaded triangle is the
electrostrictive coupling B, and the half-shaded square is the bi-
quadratic coupling C. The solid line denotes the electron Green
function with spin-orbit coupling. The single wavy and broken
lines denote the bare TA and TO phonons, and those with su-
perscript 0 denote order parameters (e) and ( u ), respectively.

XG(i(k —q;ice„ig!)] . —

In these expressions, the subscript 0 means the quantities
in the cubic phase, and the renormalized sound velocity
So is defined by

(so') =(so) —IirA(0;i0+)

u2P

+ C. (85)
p 2

In deriving the second equality of (Bl), we have neglected
a small term of the order coo/h. The shear modulus C~
in the cubic phase is defined from (85) as

C~(p) =C44-
18m U~iuz

!'

X [2(:-'")'+(:-'")']
~ p ~

(p' —~')'"

(i))2gZI„ I)t!' I +(i —~ )
2 2 1/2

(86)

which depends on the electron chemical potential p.
The TO phonon Green function DT'o is defined by the

diagrams in Figs. 6(e) and 6(f) where the mean-field ap-
proximation' ' is adopted and contributions either from
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the first order in the quartic anharmonieity or from the
second order in the cubic anharmonicities are retained.
This yields

DTo(q;i(I ) =
DTo(q;Ci) ' —IITo(q Ci)

coq+~(co@) +q 5 as q~O

~(COP ) =—COI

If

22coq ~(sp) —5 as q~O

(813)

2COq

g~ + (~q')'
(87}

5=, [11,(0 i 0+)]',1

F

(814)

(815)

(88)

j,k n

2Mq
DTo(q;i/i)= 2 z,k+(~,')'

(q; i&1 ) = —g T g Tr[(2', )
' "g '( —q) G p(k; i~. )

III(0;i 0+}=—u8 . (816)

In the same limit, the phonon Green functions including
the effects of mode-mode coupling can be expressed as

X (2cop) 'I'g '(q)

x G p(k —q'i~ gI)—]

Again, we have neglected small terms of the order cop/b,
coming from the frequency dependence of IITo. The
modified frequency of TO mode is obtained from (87) in
the form

q 6
2 2

COq+ —
COq

2COq
DTo (q;i g( )—+

4+q+
q 5

2 2
~q+ —Nq

2ips q
2

DT~(q;Ci)
k+q-

2qsq qz5
2 2 2 2

Pl +CO&+ Qlq+ —
COq

2

as q~0, (817a)

(coq') =(coq) —2coqIITo(q;iO+ ) .

which may be rewritten as

(810) 2coq q 25
+ 2 2 2 2

PI +~q — ~q+ —~q—
as q~O . (817b)

(cop) =cop+ —,'u A+eB+ 2 e C, (811)

at the I point in the rhombohedral phase. Taking the
limit of vanishing order parameters, we can reproduce the
expression of cof as given in Eq. (4.14) in the text.

Now we are going to consider the effects of the bilinear
mode coupling proportional to the order parameter (u )
according to the manner diagramatically shown in Figs.
6(a) and 6(b). Demanding the vanishing of the denomina-
tor of DT& and DTo, we have the frequencies of the cou-
pled phonon modes as

The Green functions DTI, and DTo look like the ones for
the free phonons, except for that the frequencies are re-
placed by the renormalized expression in (813) and (814).
It should be noted that the dispersion relation of the TO
mode changes discontinuously at the transition, corre-
sponding to the acoustic anomaly in the TA mode with
abrupt appearance of the quantity 5.

APPENDIX C: VIBRONIC ANHARMONICITY
AND SPIN-ORBIT COUPLING

~q+ = —,
'
((~q )'+q'(sq )'

+
f [(~q)' —q'(sq'}']'

+4q [III(q;iO+)] I'~ ),
which reduce in the limit q~O to the expressions

(812)

This Appendix is devoted to an estimate of the magni-
tude of vibronic anharmonic effect to be compared with
the lattice anharmonieity, taking explicit account of the
spin-orbit coupling.

Let us consider the fourth-order vibronic contribution
to the self-energy of TO phonons

Ilg = —g Tge " QTr f
[(2cop)'I g J(0)G Jp(k;E co„)]l'

J lf k

(C1a)

2KO

15
I

6m (NM) U)(uj

~4

1 (+j )' (a~)= —4 'g(g'g')+6[( ')'+6' —p ]. .. , —6. . .+5 (Clb)
[b. +(xj) ] [b +(~~) ] [6 +(a~) ]

where gI is defined in Eq. (2.18) in the text, and x~ =
f
IriX gj

f
. For simplicity, let us confine ourselves in the case of the

fully occupied valence (completely empty conduction) band and put p=b, . Retaining only the lowest-order contribution
in the parameter b, /~p, the Eq. (Clb) is calculated to yield

2
8~2

Il (C2)
9
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The corresponding result for Kane's isotropic two-band
model is reproduced by putting ted ——0 and d~~

——ttj:

2KO:-,pin (0,
81m (NM)

where u~~ and ui in Eq. (C2) are replaced by the isotropie
velocity U, and:"~L by =,~ while =z is 0. It should be noted
that the spin-orbit coupling changes the sign of the vib-
ronic contribution in the isotropic bands. When we in-
clude this vibronic contribution in our theory, the lattice
anharmonic constant A is renormalized to A —6Hq.
Furthermore, if the vibronic contribution is assumed to be

dominant compared with A, the coefficient P in Eq.
(4.17c) becomes always negative, predicting the first-order
instead of the observed second-order transition. Finally,
we note that such a competition between vibronic and lat-
tice anharmonicity is absent in the isotropic two-band
model, since both give definitely positive contributions. '

Thus the anisotropy of electron bands becomes important
when the electron —TO-phonon coupling is present be-
cause it has the interband matrix elements. Moreover the
spin-orbit coupling causes a correlation between velocity
matrix elements and a coupling constant of
electron —TO-phonon interaction.
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