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This paper deals with the quantum-mechanical states of dipolar crystals with two equivalent mag-
netic ions per unit cell, with or without the presence of an external homogeneous magnetic field.
The method used is an extension of the Niemeijer-Meijer method which is based on the classical
Luttinger-Tisza approach. The approximation used is that the expectation values of the spin opera-
tors, and the spin correlations, are periodic with respect to lattice translations along one crystallo-
graphic direction and double lattice translations along the other crystallographic directions. Thus,
the problem is reduced to finding the minima of an effective Hamiltonian in the space of wave func-
tions describing a cluster of eight magnetic ions. The eight-spin-wave functions are constructed by
using the theory of irreducible representations of the translation and inversion group. The method
developed here is applied for the calculation of the ground state of dypsprosium trichloride hexahy-
drate, the results of which appear in the following companion paper.

I. INTRODUCTION

Crystals with exclusively dipole-dipole interactions are
of special theoretical interest, because no phenomenologi-
cal terms or parameters appear in their Hamiltonian, con-
trary to the crystals where the exchange interaction is
present. Thus one can directly compare theoretical and
experimental conclusions about many-spin systems. The
main difficulty of the study of dipolar crystals, in addi-
tion to the very large number of magnetic moments, is the
long range of dipole-dipole interactions and the low sym-
metry of their Hamiltonian with respect to the Heisenberg
one. For this reason special approximation methods have
to be used for the calculation of the ground state of dipo-
lar crystals.

The first quantum-mechanical approach to the problem
was made by Niemeijer and Meijer,"> and was based on
the classical Luttinger-Tisza>* approximation. Thanos
and Theophilou®® made some improvements on the
method of solution of the Niemeijer-Meijer equations and
applied the method to the dipolar crystal cerium magnesi-
um nitrate (CMN). The results fitted the experimental
data well.

The quantum-mechanical calculations so far are re-
stricted to crystals in which the magnetic ions are situated
on a simple Bravais lattice. Nevertheless, except for
CMN, most of the dipolar crystals on which measure-
ments have been performed have two equivalent magnetic
ions per unit cell. Equivalent magnetic ions are those
having the same total angular momentum and the same
g-tensor components in the crystal field.

Niemeijer and Blote,” and Felsteiner and Misra,® made
a simple generalization of the classical Luttinger-Tisza
method, in order to calculate the ground state of dipolar
crystals with two equivalent magnetic ions per unit cell.
Friedman and Felsteiner’ showed that this method is
equivalent to the Fourier-transform expansion in order to
find the ground state of these crystals. Litvin'® developed
a group-theoretical method which takes into account the
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space-group symmetry of the crystal, whereas the earlier
methods relied only on the translational symmetry of the
crystal. In addition, he showed that the Luttinger-Tisza
conjecture is equivalent to a sufficient, but not necessary
condition, for the energy minimum. Misra!! showed that
the method of Refs. 7 and 8 cannot be directly extended
for the case of more than two magnetic ions per unit cell
in the case of dipole-dipole interactions, whereas for the
case of the exchange interactions the method is applicable
provided the 2™ ions per unit cell occupy special positions.
A similar generalization of the quantum-mechanical
Niemeijer-Meijer method is numerically impossible, be-
cause it requires the calculation of thousands of indepen-
dent matrix elements and the diagonalization of matrices
with dimension higher than 8000, after the simplifications
resulting from the translational symmetry have been taken
into account.

In the present paper we extend the Niemeijer-Meijer
method for calculating the ground state of dipolar crystals
with two equivalent magnetic ions per unit cell, with or
without the presence of an external homogeneous magnet-
ic field. In contrast to the original Niemeijer-Meijer
method, we made the hypothesis that the expectation
values of the spin operators, and the spin correlations, are
periodic with respect to lattice translations along one crys-
talographic direction and double lattice translations along
the other two crystalographic directions. Thus, we use a
smaller basic cell than Niemeijer and Meijer did, consist-
ing of four adjacent unit cells. We assume then that a
cluster of eight magnetic ions is repeated throughout the
crystal.

A quantum-mechanical method for dealing with non-
isotropic spin interactions, which is applicable to crystals
with many magnetic ions per unit cell, was developed ear-
lier by Felsteiner and Friedman.!? The case of isotropic
crystals has been considered by Villain.!> The Felsteiner-
Friedman method is based on the molecular-field approxi-
mation. This approach offers the possibility of deriving
transition temperatures and other thermodynamic proper-
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ties. In addition, the equations derived are much easier to
solve than ours. However, in the molecular-field approxi-
mation no spin correlations are taken into account,
whereas part of this effect is taken into account in our ap-
proach. An extension of the present approach for the cal-
culation of thermodynamic properties will follow.

To our knowledge this is the first time that a
quantum-mechanical method is developed which takes
into account spin correlations for the case of two magnet-
ic ions per unit cell. This is an advantage over the classi-
cal method, although some aspects of the classical theory
concerning the direction of simple periodicity are incor-
porated in our treatment. As earlier work has shown,
when the external magnetic field is zero, no serious devia-
tions between the classical'* and the quantum-
mechanical'® method appear. However, this is not the
case when an external magnetic field is present.'>

In Sec. IT we present our basic assumptions and derive
the effective cluster Hamiltonian. In Sec. III we classify
the eigenstates according to the irreducible representations
of the symmetry group of the effective Hamiltonian and
build a basis in the eight-spin space which transforms ac-
cordingly. In Sec. IV we comment on our method. Nu-
merigal applications will be presented in a sequent pa-
per.

II. DERIVATION OF THE EFFECTIVE
HAMILTONIAN

The Hamiltonian of a system of spins interacting with
dipole-dipole and exchange interactions, in a homogene-
ous external magnetic field, is

| 1 (i 'Ry )(p;-Ry;)
=13 ey 3 B R
’ i IRy / IR |*
i#j
—5 S V(R;)S;S; — 2,;, , (1)
I‘#{j

where RU :Ri —Rj

(W|SHR+1t) |¥)=(¥|S*R)|¥), teT’

(V| SHRAUOSERAL) | W) =(¥[SUR) | ¥)(¥|SAR) | V),
ISR | W),

(V[SUR+OSER +t)|¥)=(¥|SHR

where a,8=x,y,z, and R,R’ are magnetic ion sites:
R=n1a1+n2a2+n3a3+md, (6)

where n,n;,n; are integers and m takes the values O or 1.
By I" we denote the group of lattice translations and by
I'" the subgroup of I" which consists of the translations

t:2n1a1+2n2a2+n3a3 (7)

with ny, n,, and n; integers.
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By R; we denote the magnetic ion sites, by S; or S(R;)
we denote the spin (total angular momentum) operator for
the magnetic ion at R;, and by u; we denote its magnetic
moment operator:

pi=mp 3 g.pSPR;), a=xyz 2)
B=xyz

where mp is the Bohr magneton and g the gyromagnetic
tensor.

The first term of the Hamiltonian 2 is the dipolar in-
teraction, the second term is the exchange interaction, and
the third is the action of the homogeneous external mag-
netic field h.

When two equivalent magnetic ions are present per unit
cell in a crystal, the sites of the ions are determined by
two identical Bravais lattices, the one resulting from the
other after a translation d. It must be noted that 2d is not
a lattice translation. Such crystals have higher symmetry
than lattice translations, as inversion with center at d/2
leads to sites of equivalent magnetic ions (see Fig. 1).
This symmetry does not commute with the lattice transla-
tions. This additional symmetry was also used by
Niemeijer and Blote’ and by Felsteiner and Misra® to
develop their classical treatment.

In the original Niemeijer-Meijer (NM) method' the ex-
pectation values of the spin operators and spin correla-
tions are taken as having periodicity twice that of the
crystal translations. Because of this hypothesis the wave
functions of a cluster of eight magnetic ions is needed.
The space of these wave functions is of dimension
28=256 for the case of s=7. A direct application of this
method for the case of two magnetic ions per unit cell re-
quires the wave functions of a cluster of 16 ions. This
leads to a linear space of dimension 2'®=65 536.

In order to have a smaller space we make the hy-
pothesis that along one of the directions of the lattice
translations the expectation values of the spins and the
spin correlations have the periodicity of the lattice, while
we keep the assumption of double periodicity for the other
directions. Thus our assumptions take the following
mathematical form:

(3)
t=t' t,t' e’ (4)
R#Rt,t'ET’ (5

Because of our assumptions only the wave functions for
a cluster of eight spins are needed (see Fig. 1). Thus the
problem is numerically tractable, although at the expense
of a more limiting assumption than that of the NM
method.

In choosing the direction of single periodicity, the clas-
sical solution for the ground state provides a lot of in-
sight. A proper choice gives the possibility of an immedi-
ate comparison of the quantum-mechanical to the classi-
cal method which, from the experience we have from the
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crystals treated so far, gives good results when the exter-
nal magnetic field is equal to zero.

In some cases the assumption given by Eq. (4) may be
eased (see Ref. 16).

In the following we will refer to the Niemeijer-Meijer
method for the case of dipolar crystals with one magnetic
ion per unit cell (see Refs. 2 and 5) as M1, and to our
modification of method M1 for the case of dipolar crys-
tals with two equivalent magnetic ions per unit cell as M2.

After the hypotheses (3), (4), and (5), the initial crystal
Hamiltonian % reduces to an effective Hamiltonian of
the following form:?

J

8y | R+t[2—3(RF41#)(RY+1")
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H=3 ¥ 3 I A R-R)SYR)SAR)

a,f=x,y,zZRECR'EC
R'#R
+7 3 A%%0) 3 (¥[SUR)|¥)SAR)

a,B=x,y,z ReC

- > f* 3 S%R), (8)

a=x,y,z REC

where by R& C we denote the eight magnetic ion sites in
the basic cell (see Fig. 1); A%#(R) are lattice sums of the
form:

APR)=m; 3 8u8 O 3 —84 3, V(R+t), a,B=x,y,z (9a)
B V=X,p,2Z ter”’ ‘ R+t l ter’
ts«—R
and IIl. SYMMETRY PROPERTIES
Fimmy, S guh’, a=xpz. (9b) OF THE EIGENSTATES

v=X,),Z

Thus one gets a Hamiltonian for the cluster of eight
magnetic ions which has the same form as the one ob-
tained by the NM method in case M1. However the basic
cell in the present case, M2, is different, and so is the
symmetry. As in case M1,” we consider the following
linearization of H:

H=H'+Hj, (10)

H=: ¥ 3 3 4% R-R)S*R)SAR)
a,B=x,y,zRECR'EC

- 3 f* 3 S%R), (1)

a=x,y,z REC
Hs=1 3 4%%0) 3 [(¥|SYR)|¥)SAR)
a,B=x,y,z ReC

—S%R)SER)] . (12)

In this way one can find the eigenvalues and eigenstates
of the linear operator H' and treat Hg, the nonlinear part
of H, by using perturbation theory. This method is appl-
icable when the perturbation term Hg is small compared
to the ground-state energy.
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FIG. 1. The sites of 16 magnetic ions that correspond to
eight adjacent unit cells, or to two basic cells.

In order to find the eigenstates of H' one needs to diag-
onalize a 256 X256 matrix. However, if the symmetry of
H' is taken into account the matrices to be diagonalized
are of smaller dimension, and in addition the derivation of
the physical conclusions is more straightforward.

One can easily realize that H' has the same symmetry
as the exact Hamiltonian discussed at the beginning of
Sec. 11, i.e., by lattice translations and inversions. Howev-
er, the transformations corresponding to lattice transla-
tions and inversions here have a different meaning be-
cause of hypotheses (3), (4), and (5). The exact definition
of the group of transformations, G, under which H' is in-
variant is

~ /\—1
PS*R)P =S%PR), a=x,y,z, REC (13)

where P is a transformation acting on the position vari-
ables R, and P is the transformation acting on the spin

operators and the spin states. Because of hypotheses (3),
(4), and (5),

P2=E, PeG (14)
Thus when lattice translations are considered one has to
take the translations belonging to the subgroup I'" equal
to the identity. The definition of I'" is given by Eq. (7).
The explicit form of the group G, through which the sym-
metry group G, of H' is defined, is

ER=R,

T, R=R+a,,

T,,R=R+a,

Ta,+aZR=R+al +a;,

IR=—-R+d,

IT, R=—R+a;+d,

IT, R=—R+a,+d,

IT,,1+,,2R=—R+a1+az+d‘

(15)
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where E is the identity, T, is the translation by a;, T, is
the translation by aj, T, .4, is the translation by a;+a,,
I is the inversion with center d/2, IT, is the inversion
with center 3(a;+d), IT,, is the inversion with center
%(az—{—d), and I Ty ta, is the inversion with center
+(a;+a,+d). From the above definition one can easily
conclude that the generators of G are f"al, f"az, and f, and

T:=E, T*=E, IT,]'=T,, a=aja,a;+a,. (16)

G is an Abelian group, which is isomorphic to the
C,8C,®C, cyclic group. Thus the irreducible represen-
tations of this group are the same as those of the symme-
try group of the basic cell Hamiltonian resulting from
MI1. The + and — indices for the irreducible representa-
tions of the inversion subgroup will be used. For the
translation subgroups the indexing of the irreducible rep-
resentations by k used previously® will be preserved:
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Since the elements of G commute with H ', the eigen-
states of H' belong to the irreducible representations k*
and k= of G. Thus the eigenstates of H' have the follow-
ing transformation properties:

f‘, | \I/ki)=e“‘"’ |Wyt), a=aj,a5,a +a, (18a)

~>

W, e)=2|W¥ 1) . (18b)

k

The complete set of states belonging to the various irredu-
cible representations is built by starting from a “vacuum”
state |0) defined as the state which is eigenstate of S%R)
at all cluster sitess REC with eigenvalues —~+. The
“one-particle” k¥ states, i.e., states with total S?= —3,
are built by operating on the vacuum state with the opera-
tors b '+ [see Egs. (22b)]

1
=—=b%]0). 19
2,8, |¢,2) 75 Dit | ) (19)
ko=0, kj=r—"—,
a;-a; Xag . N .
(17) The “two-, three-, and four-particle” k= states, i.e., those
kK= w_ﬁﬁ_ﬂ_ Ky=k,+k, . corresponding to total S?= —2, —1,0, are defined through
a;-a,Xa;’ one, two, and three position parameters, e.g.,
]
| ¢, +(R) Y=+ z’e"k'R[S*(R)S+(R+R’)iS+(R+d)S+(R+R’+d)] |0), REC (20)
R
[
where by Y ; we denote summing over R=0, a,, a,, and L‘:g =1+ e MR 4BR)+ A®BR +d)], a,B=x,7,z .
a; +32. R

The five-, six-, seven-, and eight-particle k¥ states are
produced by operating with the spin-flip operator S,

S=TIISHR)+S~(R)], 1)
REeC

on their complementary three-, two-, and one-particle, and
vacuum states, respectively.

Then, by the construction procedure, one can easily
prove that there is an isomorphism, i.e.,, a one-to-one
correspondence preserving group multiplication, between
the elements of the present basis and the one constructed
in method M1. The correspondence is given in Table L.

In order to simplify the calculation of the matrix ele-
ments of H', we rewrite H' in terms of the operators
b‘:i, a=x,y,z, where

bir='e™R[SHR)LS R+d)], a=x,y,z (22a)
R

+

b;i :b:i "_‘lb"v‘i N (22b)

which one can prove transform according to the k* ir-
reducible representations. Thus

H= 3 3SLHbebl +LPbe bl )
a,B=x,y,z k
- 2 faba+ »

a=x,y,z

(23a)

(23b)

The one-to-one correspondence between states of M1 and
M2, and operators of M1 and M2, leads to a one-to-one
correspondence between matrix elements of the b‘;ibfi

operators. Thus the same computer subroutines can be
used. The perturbation term Hg has a simple form in the
case of s =7

TABLE I. The relation between the translation group used in
dealing with one magnetic ion per unit cell (M1, see Ref. 5) and
the translation-inversion group of the present method (M2)
which deals with two magnetic ions per unit cell. The relation
between the corresponding irreducible representations is also
given.

ReC Irreducible representations

Ml M2 M1 M2

0 0 0 kg
R, a, k, ki
R, a k, ki
R} a;+a, k; kit
R; d k; ko
R; a+d k) ki
R; a,+d k| k;
Rz a;+a,+d kz k;“
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Hs=1 3 4°%0) 3 (¥|S%R)|¥)SAR)
af=x,y,z REC
- 3 A°%0). (24)
a=x,y,z
Thus all antiferromagnetic eigenstates of H' are exact
eigenstates of the cluster Hamiltonian H, with eigenvalues
corrected by the constant term: — ¥, _ . A%%0). The
correction term of the energy, which by means of the
eigenstates of H' gives the eigenvalues of H by first-order
perturbation theory, is

Es(| W) =1 3 A®OKY,+ by [¥e)

a,B=x,y,z

X<\yki|bf{)¢- ’\Pki>

— > A4°%0). (25)
a=x,y,z
It can be shown that (when s=+7) the sum

Dap=xyz | A°(0) |, which only depends on the choice of
the direction of single periodicity, is always an upper
bound for the absolute value of the energy correction.

IV. DISCUSSION

The method we propose here makes the treatment of
the ground state of dipolar crystals with two equivalent
magnetic ions per unit cell analytically and numerically
tractable. The main disadvantage is that some irreducible

representations are omitted.

This deficiency, however, does not have the disadvan-
tages resulting from such an omission in the classical case.
In the quantum-mechanical treatment spin correlations,
such as (S7S7), may be different from ++ even in the
case that k=0, whereas in the classical treatment k=0
implies ferromagnetism. In addition, in the method we
developed the eigenstates of the k=0 representation are
always included, and since dE(k)/dk =0 at k=0, it fol-
lows that E (k =0) is an energy extremum. Although we
have not seen a proof that the minimum always occurs at
this point, experience from the energy-band theory of
crystals and the spin systems we dealt with, indicates that
E(0)=E,;,. Thus, as far as the ground state is con-
cerned our method is justifiable although our statement
about the energy minimum relies on experience.

It should be noted that the present method, in addition
to omitting several representations, restricts the search for
the ground state to a space of lower dimensionality. For
the identity (kg ) representation the dimension of the cor-
responding subspace for the general treatment is 4336,
whereas for the present method it is 46, and for the other
15 irreducible representations the above dimensions are
4080 and 30, respectively.

As a final test of the validity of our method, we com-
pare the theoretical results with the experimental ones.
This is done in the following paper where we deal with
the llD(’yC13-6H ,0, for which experimental data was avail-
able.
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