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Formation of domains in the random-field Ising model
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Monte Carlo simulations of the random-field Ising model for dimensions d=2 and d=3 show the
occurrence of fractal domains that are pinned by the random-field configuration. For d=3, the
domain size distribution satisfies scaling properties below the critical temperature, while for d=2
the largest domain becomes frozen as the temperature approaches zero.

I. INTRODUCTION

Recently, there have been several theoretical papers on
the evolution of domains in the random-field Ising model
(RFIM), ' to explain the metastability observed in neu-
tron scattering experiments of dilute antiferromagnets in
an external magnetic field. In a continuum approxima-
tion for the domain surface, Villain' has shown that
domains grow logarithmically in time, and similar results
were obtained in a lattice model by Grinstein and Fernan-
dez. Mean-field theory has been applied to study the sta-
bility of domains ' and arguments have been advanced
for the pinning of domain walls in a continuum interface
model in a random field. In addition, Monte Carlo simu-
lations have been carried out ' ' to obtain numerically
the time evolution of these domains, and to compare the
results with current theory. However, the validity of basic
assumptions in these theoretical models have not been
tested directly in the numerical calculations. For exam-
ple, since the original proposal of Imry and Ma, " it is
generally assumed that the total random-field energy fluc-
tuation of the domains are determined by the root-mean-
square deviation of the random-field distribution. How-
ever, this neglects the fact that the domain walls evolve
freely and can seek deeper random-field wells in a
quenched field configuration. Furthermore, the continu-
um approximations assume that the domain walls can be
treated as differentiable surfaces, but our finding that in
some cases these walls are fractal indicates that this as-
sumption may not always be valid.

In order to elucidate the mechanism for domain forma-
tion and pinning in the random-field Ising model, we have
observed graphically the evolution of these domains and
evaluated several of their properties by Monte Carlo simu-
lations. In three dimensions, where the equilibrium criti-
cal behavior has been recently determined numerically for
a value of the random field H = 1 (in units of J, the cou-
pling constant), ' we have studied the domains for this
value of H and for H =1.5 in a range of temperatures
below the observed critical temperature, and in two di-
mensions we considered temperatures well below the criti-
cal temperature for the pure Ising model. Although many
domain properties are found to be similar in two and three
dimensions, the essential difference is that for d =2 the
largest domain became frozen as the temperature was de-

creased, while for cl =3 we obtained an equilibrium distri-
bution for the domain size which satisfies a scaling form
as a function of temperature. The behavior for d =2 is
consistent with this being the lower critical dimensionality
for the RFIM as has been shown now rigorously, ' and
for d =3 the scaling results are in agreement with the
equilibrium properties observed previously above T, . '

II. MONTE CARLO SIMULATIONS

A. d =2

The Monte Carlo simulations of the RFIM were carried
out on a square lattice of linear size I. = 100 with a ran-
dom field +H at every site. Starting from a completely
ordered spin configuration (down spins), the system was
warmed up to a fixed temperature T, using the Metropolis
algorithm, until a steady state was reached. In Fig. 1, we
show the growth of domains (up spins) in a quenched
random-field (RF) configuration with H =1, at a tem-
perature T = l. Only the boundaries of the domains are
shown, against the background of the RF configuration,
where dots (blanks) represent the up (down) orientation of
the random field. The growth of the domains indicates
the following general pattern.

(i) A nucleation of the domains occurs preferentially
where there is a locally large RF fluctuation in the up
direction (seed).

(ii) Growth of the domains occurs by steps, such that
the domain wall searches for a new configuration which
maximizes in absolute value the field fluctuation just in-
side and outside the boundary.

(iii) After a sufficient time (Monte Carlo steps), the
large domains reach a maximal size and are pinned to a
fixed location determined by the RF configuration, while
the thermal fluctuations are confined to the vicinity of the
domain wall.

The magnetic energy is closely correlated with the surface
energy; we folio~ed the time evolution of these quantities
for a growing cluster, and found that the two energies bal-
ance each other during the evolution such that the total
energy remains constant, as indicated in Fig. 2. The
domains shown in Fig. 1 appear to be more or less com-
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FIG. 2. Time evolution of the energy of a large domain.
Magnetic and surface energies are strongly anticorrelated, leav-

ing the total energy undisturbed.
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tions considerably, so that there are no "internal" surfaces
(holes) in the domains.

The total RF fluctuations in a domain have generally
been considered to be typically a rms deviation, and there-
fore to be proportional to the square root of the number
of spins n in the domain. We assume here a more general
power law,

h(n)=n»,

where g is an undetermined exponent. We verify Eq. (2)
from our data shown in Fig. 4 which gives

FIG. 1. Domain evolution from ordered start. The boundary
of the domains of up spins is outlined against the RF configura-
tion; a dot represents an up orientation of the random field,
while the down orientation is left blank. Notice the concentra-
tion of dots along the walls inside the domain and the blank

zones outside the walls. The largest cluster stabilizes at
t = 15000 iterations.
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pact at these temperatures. %e assume a power law be-
tween the surface s and the number n of spins in a
domain,

where the surface is measured as the total number of bro-
ken bonds for a given domain. Figure 3 shows the validi-
ty of the relation, and the value of the surface exponent a
is found to be

o =0.59+0.04

which is close to the lower limit 1 —1/d = —,
' for a com-

pletely compact domain. Similar measurements' in the
pure case (H =0) for T &2 lead to a larger value sr=0 7;.
the difference is explained by the fact that the tempera-
ture here is sufficiently low to reduce the thermal fluctua-
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FIG. 3. Logarithmic plot of surface versus size. The power-

law relation s =n holds, giving o =0.6.
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FIG. 4. Logarithmic plot of field fluctuation versus size.
The power-law relation ii =nr ho1ds and gives (=0.66.
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FIG. 6. Ratio h'"/h""', where h""' is the total field fluctua-
tion in a domain. The ratio is always &50% even for very large
sizes, which indicates that most of the magnetic energy is con-
tained in the boundary layer.
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a significantly higher value than the expected one of
The domain adjusts itself with the RF configura-

tion to minimize its total energy; a careful observation of
the domains (as in Fig. 1) reveals that the boundary is ac-
tually located between layers (=1 lattice spacing deep) of
large and opposite RF fluctuations. We measure the local
fluctuations in these layers "inside" and "outside" the
domain, 1'I;„and h,„,; Fig. 5 shows that these fluctuations
are proportional to the perimeter of the domain, instead

of its square root as assumed in current theories. ' We
emphasizes that Figs. 3 through 6 show the data for clus-
ters evolving towards stable sizes (as seen in Fig. 1).

We find also that the mechanism for stability and pin-
ning of the domains is quite different from the forrnula-
tion of Bruinsma and Aeppli. In particular, components
of the domain wall are pinned at fixed locations deter-
mined by the RF configuration, independent of the initial
spin state of the lattice (ordered or disordered), which
maximizes the magnitude of the RF magnetic energy of
the boundary layer of the domain. This energy is an im-
portant contribution to the total RF magnetic energy, as
seen in Fig. 6, which shows the ratio of the RF energy in
the inside layer over the total RF energy of a domain for
all sizes. Finally, Fig. 7 shows that these domains appear
to be stable configurations at T =0: As we cool the lat-

0

oo 0
0

oo o

oo o

0 o 0

I I I I I

O

bout/L

I I I

20

O

0
O

u -20
i@3

- I I I I I I I I I [ I I I I I I I I I ~

100

Perimeter (L)

200 300
«3

o —40—
I I I I I I I I I I I I I I I I I I

05 I I 5
Tern perof Ur e

FIG. 5. Field fluctuations in layers inside and outside the
domain boundary, h'" and h'"'. The y coordinate is the ratio
h /L, with L the perimeter length, and the x ordinate is the per-
imeter length L. Neglecting the scatter, the constant and sym-
metric values of the ratios show that h'" "'=L.

FIG. 7. Total energy of an isolated large domain, produced
from an ordered start in the presence of a random field H, and
later cooled ( T =1~0.8~0.6) with the same field. The total
energy becomes negative at T=0.9.
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tice in the presence of a random field, the total energy of
the large domains becomes negative for sufficiently low
temperatures, consistent with the proof that the ground
state of the d =2 RFIM is disordered.

0.6

0.5

The 1=3 simulations of the RFIM were performed on
a cubic lattice of size I. =32. As in the d =2 case,
domain of up-spins were seen to nucleate, grow, and
remain fixed on the lattice for a given RF configuration.
This behavior must be contrasted with runs performed for
the pure Ising model' where similar domains occur, but
were not localized. The pinning of domains is therefore
an essential characteristic of both the 1=2 and 3 RFIM.
The spontaneous magnetization as a function of the tem-
perature is shown in Fig. 8 for H =1, 1.5, and includes
for comparison the pure Ising model (H =0). It is evi-

dent that in the presence of a RF the critical temperature
decreases and that the magnetization curve is steeper and
shows a discontinuity at the phase transition, in accor-
dance with the results of Ref. 12. The strong-field case
(H =1.5) does not have a smooth behavior even below the
transition, which may be due to lack of equilibrium. For
H =1, the system was observed to equilibriate faster, and
we obtained the effective magnetic exponent P=0. 15
+0.02 from a power-law fit to the data below the discon-
tinuity. This result is consistent, within error bars, with
the P of the pure d =2 Ising model, and with the corre-
sponding d =2 effective exponents obtained in a previous
simulation' as well as in experiments.

In contrast with the d =2 RFIM, the distribution of
domain sizes satisfies a scaling form as a function of the
reduced temperature r =(T, —T/T, ), for T below an ap-
parent percolation threshold at a temperature T~ lower
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FIG. 9. Concentration of up spin obtained from finite-size
domains ( cf;„)and from the largest percolating domain ( c„).
The discontinuity in c„atthe transition reflects the discontinui-

ty for the magnetization.

than the critical temperature T, . For T ~ T~ this scaling
breaks down and only a single large domain becomes im-
portant near T'. This can be seen in Fig. 9 where we
separated the concentration of up spins into two parts, one
due to the sum of all domains of "finite" size c '", and the
other to the isolated contribution of the percolating ("in-
finite") domain, c". In particular, Fig. 9 shows that the
discontinuity of the magnetization seen in Fig. 8 corre-
sponds to the discontinuity of the size of the percolation
domain, c", as a function of the temperature.

The scaling analysis of the size distribution for T & T
is similar to that of the pure Ising model, ' ' which takes
the asymptotic form

lx(10 ) -—— ---~
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FICi. 8. Magnetization of d =3 system showing a discon-
tinuity in the presence of a RF and the shift of the transition
temperature towards lower temperatures. By comparison, the
smooth behavior of the pure system (H =0) is shown on the
same plot. The data at H =1.5 may not be completely equili-
briated for values close to the transition.

FIG. 10. Integrated sca1ing function f,(x), obtained from the
movement of the size distribution. This function depends

only on the scaled variable I =tn~, and therefore is universal in

temperature. The data for temperatures below the percolation
threshold is consistent with the scaling assumption.
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X(n, t)=n 'X(tny),

where r and y are two characteristic exponents of the dis-
tribution, related to the usual thermodynamic arguments,
and X(x) is an analytic function of its argument. We
evaluate a partial summation to
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where we have defined the integrated scaling function f'
by

fT(x} f d ( i yeytft (—Xi

and X =tn~.
A plot of this scaling function for several temperatures

is a test of the scaling assumption of the size distribution,
Eq. (3). The result is shown in Fig. 10 for H =1, at tem-
peratures below T but still within the scaling region, as
determined by the magnetization, and for T'=3.98,
v=2.06, and y =0.26. However, since the scaling regime
is not close to the critical temperature, similar results are
obtained if we assume that the size distribution scales
with respect to the percolation threshold.

The domains for d =3 have an apparent fractal sur-
face, in contrast with the d =2 case, for which the cluster
shapes were seen to be more compact. The logarithmic
plot of the surface-to-size relation, Eq. (1), is shown in
Fig. 11 for the two values of the RF and for a choice of
three temperatures. We have shifted the data vertically by
one unit for each temperature and a linear fit to the data
gives

o =0.84+0.04

which is close to the result in the pure Ising model'

2 3 4 5 6 7 8
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FIG. 12. Field fluctuation versus size plot. The log-log plot
shows the validity of the power-law relation, and we have again
shifted the data vertically by one unit for each temperature.
The slope obtained gives $-0.96.

where the exponent tr=0. 88. The data for the RF fluc-
tuations inside the domains shown in Fig. 12, indicates
that the power-law dependence, Eq. (2), is again valid for
all temperatures; we find for the exponents g the value

(=0.96+0.04 .

However, it should be remarked that a small curvature ex-
ists for both of these plots, which leads to an effective
variation of the exponents as the size of the domain
grows: o tends to increase while g decreases slightly for
very large domains.

We expect again that most of the RF fluctuation of the
domain is contained in the surface, and we can check this
by plotting the ratio of the RF magnetic energy fluctua-
tions Ii'"/h""', as we did for the d =2 case. Figure 13
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FIG. 11. Surface-size relation for d =3. The log-log plot
shows the validity of the power law for several temperatures and
fields. The vertical coordinate is shifted by one for each tern-

perature to indicate the constancy of the slope with different
temperatures. The lowest temperature is on top of the scale,
and the correct scale is for the medium one. The slope obtained
gives o.=0.85.
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FIG. 13. Ratio h;„/hA„,for d =3. The ratio is always very
close to one, which indicates that almost all of the magnetic en-

ergy is contained in the boundary layer.
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shows that even for very large sizes this ratio is very close
to one. Therefore the picture of the domains near t' is
appreciably different from the one assumed in current
theoretical models '" instead of a compact object for
which the RF magnetic energy is a bulk effect, we find
that the domain is a fractal object with almost all of the
RF energy contained in the boundary region.

III. CONCLUSIONS

We have found that the mechanism for domain forma-
tion in the RFIM has some properties which are quite dif-
ferent from those usually assumed in current theoretical
models. In particular, the RF magnetic energy of a
domain exceeds considerably the value calculated from a
typical rms RF fluctuation. In three dimensions the sur-
face of the domains is fractal and accounts for most of
the RF magnetic energy fluctuation, while in two dimen-

sions the domains are more compact, and are stable as the
temperature approaches zero. It should be pointed out
that, as in most Monte Carlo calculations, we have used
values of the RF of the same order as the spin-spin cou-
pling, while the effective experimental RF is much small-
er. However, in view of the agreement between the Monte
Carlo evaluation of the critical exponents' and the exper-
imental values we are encouraged to believe that the
domain properties discussed in this paper are also relevant
to smaller values of the RF.
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