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The Ising model on the Bethe lattice of general connectivity, with competing interactions between

the first-, second-, and third-neighbor spin generations has been studied. In our approach the parti-

tion function, the local magnetization and the pair correlation function are obtained exactly by solv-

ing a set of coupled recursion relations of appropriated effective fields. The phase diagram is stud-

ied for several ranges of the competing parameters showing the appearance of several features and

modulated phases arising from the frustration effects introduced by the third-nearest-neighbor in-

teraction. The ground-state phase diagram is obtained analytically by a minimization procedure and

the infinite-connectivity limit is worked out, recovering previous results.

I. INTRODUCTION

The study of exactly solved models deserves some gen-
eral interest in statistical mechanics. ' The Ising model on
the Bethe lattice with competing interactions is one of
these models that has received widespread attention by
many authors very recently, since the appearance of
the Vannimenus model. The Bethe lattice, that is, an in-

finite connected tree whose sites have the same coordina-
tion number, has a thin structure without closed paths but
with infinite dimensionality. ' By introducing competing
interactions between —, Ising spin variables, assigned to
each site, we enable the system to present a very rich
phase diagram with many modulated phases. The Van-
nimenus model, that is, the Ising model on a Bethe lattice
of coordination number @=3, with a ferromagnetic
nearest-neighbor interaction and with an antiferromagnet-
ic next-nearest-neighbor interaction (the latter restricted to
the sites belonging to the same branch) is the counterpart

of the anisotropic next-nearest-neighbor Ising (ANNNI)
model defined on regular lattices. In the ANNNI model

the competing interactions are restricted to a single direc-
tion, while in the Vannimenus model there is no preferen-
tial direction at all, that is, the competing interactions act
between the ring generations in all directions. The phase
diagram of the Vannimenus model shows in addition to
the paramagnetic and the ferromagnetic phases a
+ + ——periodic antiphase (2) and a modulated phase,
all of which meet at a multicritical point at zero tempera-
ture. If next-nearest-neighbor interbranch interactions
are allowed, that is, interactions between sites belonging to
the same generation, frustration effects are much more
prominent than those in the Vannirnenus model since
closed loops have been introduced within the lattice.
Inawashiro, Thompson, and Honda considered this later
case finding that the modulated phase actually consists of
small region of commensurated phases interspersed in a
chaotic phase. They found also that the chaotic phase
persists over a finite range of values of the competing pa-
rameter even at zero temperature. Mariz, Tsallis, and Al-

buquerque extended this model to the general case where
the interbranch competing interaction has a different cou-
pling constant from the intrabranch interactions, showing
that the modulated phase is stable for a finite range of
values of the competing parameter. Yokoi, Oliveira, and
Salinas studied the Vannimenus model in the infinite
coordination number limit. They found within this limit
a phase diagram much richer than the Vannimenus dia-
gram displaying, in addition to the modulated phases, a
Lifshitz point. They also found strong numerical evi-
dence for the existence of a complete devil's staircase at
low temperatures and of chaotic phases associated with
strange attractors. Frustration effects due to the competi-
tion between the exchange interaction and the applied
external field has been considered by Morita, and Hori-
guchi and Morita, who studied a regular Ising model
with nearest-neighbor interactions of J and —J ( J~ 0) on
a Cayley tree of coordination number three. In their
model, for each site there are two ferromagnetic interac-
tions +J and one antiferroinagnetic interaction —J and
the phase diagram shows the existence of a spin-glass and
a spin-crystal phase besides the paramagnetic one.

In this paper we studied the Ising model on a general
Bethe lattice with arbitrary coordination number and with
competing interactions between the first-, second-, and
third-next-nearest-neighbor spins belonging to the same
branch, and in the presence of an external magnetic field.
The extension of the ANNNI model to include third-
nearest-neighbor interactions (A3NNI model) has been
proposed by Yarnada and Harnaya in an attempt to ex-
plain the phase diagram structure of several ferroelectric

systems of the type A28L4. In these materials the wide
variety of lock-in phases is attributed to the existence of
different stable modulated phases in the ground state.
The inclusion of the third-nearest-neighbor competing in-
teraction is essential for the presence of these phases at
T=O as will be shown later in the present paper. Very re-
cently' ' the A3NNI model has been studied in the
framework of low-temperature series technique' '" and
under the presence of a uniform external field within the
mean-field approximation. '

In the present paper we have generalized the approach
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used by Thompson' for the Ising model on the Bethe lat-
tice with only nearest-neighbor interactions and an exter-
nal field. We mere able to calculate exactly the partition
function, the local magnetization, and the pair correlation
function, by solving numerically a system of high-order
coupled recursion equations for partial effective fields.
We note that our approach is particularly appropriated
for calculating the pair correlation functions. If we
neglect the third-nearest-neighbor interaction for zero
field we recover the Vannimenus results, and by consider-
ing only nearest-neighbor interaction and external field
the Thompson results' are obtained as expected.

The phase diagrams of our model can be obtained by
studying the behavior of local magnetization and of the
pair correlation function versus the generation number,
and by looking at the fixed points of the coupled recursion
relations for the partial effective fields. These diagrams
have particularly distinct features depending on the range
of competing parameters. If the first- and third-nearest
neighbors are coupled ferromagnetically and the second-
nearest neighbors antiferromagnetically, the phase dia-
gram has a multicritical point at nonzero temperature
where the ferromagnetic, paramagnetic, modulated, and
the antiphase (2) met. If the first-nearest neighbors are
coupled ferromagnetically and the second and third are
coupled antiferromagnetically, the phase diagram appears
to have a quite different form. In this latter case, where
the frustration effects are more prominent, we note the
appearance of a periodic +++———antiphase (3) in
addition to the previous ones, and the existence of two
multicritical points at zero temperature. It is also ob-
served an enhancement of the modulated region due to the
increasing of the frustration effects.

We have also studied the ground-state phase diagram
showing that a finite number (four) of lower-order com-
mensurate phases are stable unlike in the ANNNI models
because of the introduction of the third-nearest-neighbor
competing interaction as expected. " Finally, we work out
the infinite coordination number limit recovering previous
results. '

This paper has been organized in the following way. In
Sec. II the model Hamiltonian is discussed and the ap-
proach to obtain the recursion for the partial effective
fields is defined. The calculations for the local properties
(local magnetization and pair correlation functions) are
also presented in this section. Section III is devoted to the
discussion of the phase diagram features. The infinite
coordination number limit is shown in See. IV and finally,
the conclusions are given in Sec. V.

constructed by connecting q sites to each site of the previ-
ous generation until me reach the Nth generation. We de-
fine our model by considering that each site of the Bethe
lattice is assigned with a —, spin variable which is coupled
by exchange interactions with its nearest neighbors (cou-
pling constant Ji ), second-nearest neighbors (coupling
constant Jz), and third-nearest-neighbors (coupling con-
stant J3). The second- and the third-nearest-neighbors in-
teractions are allowed only between sites belonging to the
same branch, that is, between sites belonging to the
second- and to the third-nearest-neighbor generations,
respectively. In Fig. 1 we show a particular case of a
Bethe lattice with %=3 and p=3 sketching the exchange
interaction in one of the branches. An external uniform
field 0 is considered to act on each site.

The Hamiltonian for this model can be written as

n=0 n=0
N —2—Ji Q o'no'n+i+H +&i ~

n=0
(2.1)

where n labels the generation shells. The first summation
involves all pairs of nearest-neighbor sites belonging to
two consecutive shells mhile the second and the third
summations are restricted to pairs of sites belonging to the
same branch as explained above. The summation over the
field is extended to all sites of the lattice.

The exact partition function ZN+, ——Tr exp( pH) can-
be written as

(2.3)

ZN+ i g ZN+ I ZN+1 +ZN+ I (2.2)
0'p

where ZN'+i is the partial partition function where the
central site has a cro ——+1 defined value. We can write

ZN'+i in terms of the partition functions of connected
branches with (% + 1) generations as shown schematically
in Fig. 2, that is

&p —BgcTp P
N+i — Xf o i) g N+i(oo oi &2)

CT I cr&

II. THE MODEL HAMILTONIAN: THE EFFECTIVE
FIELDS, THE PARTITION FUNCTION,

AND THE LOCAL PROPERTIES

A. Partition function

We construct the general Bethe lattice of coordination
number p =q+1 (q is the conneetivity number) with
%+1 generation shells by connecting to a central site
(zeroth generation) p sites in order to constitute the first
generation. The successive generations can be equally

FIG. l. Bethe lattice ~ith @=3 and %=3 with the first-
( }, and second- ( ———}, and third- ( ——~ —- } nearest-
neighbor interactions sketched in one branch.
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i& y/ Z~+)( —++ )
exp(2c„+ & ) =

Z~+ )( —+ —)

Zrr+ )( ——+ )
exp(2d„+, ) =

Zx+ i( ———)

(2.7c)

(2.7d)

&& o

L '0 = I

By substituting Eq. (2.4) in Eqs. (2.7) we can get, after a
straightforward calculation, the following coupled recur-
sion relations for the effective fields:

a„+,—8+K, (1—q)+Kz(1 q)—+q A3(d„z)

+q 83 (b„~,d„~)+qB+3(a„,b„), (2.8a)

&& o

Q
K&OoO ))a~

e 0

b+»& ——8 —K&(1+q)+Kz(1—q )+q A3(d„z)

+q 83 (b„),d„()+q83 (c„,d„),
c„+& 8+K——, (1—q) —Kz(1+q )+q A3(d„z)

+q 83 (b„~,d„~)+q83 (a„,b„),
d, + ~

=8 —K~ (1+q)—K~ (1+q )+q'A3(d„z)

+q 83 (b„ i,d» &)+q83 (c„,d„),
where

(2.8b)

(2.8c)

(2.8d)

FIG. 2. Schematic way of pruning the lattice branches for
writing the partition function Z~+& in terms of the partial parti-
tion functions Z~+~(o0, 0 ~,o2).

A (x)=tanh '(tanhK tanhx), (2.9)

(2.10)

where

Z~+ i(oo, oi, oz) =g (oo oi oz)f (oi oz)
q

X g e Zrr(cr), cTz,o3)'
0'3

(2.4)

d„,=B—K, (1+q)—K (1+q )+q A3(d„z)

+q 83 (g» —i+d» —i+2Kz d —&)

+q83 (e„+d„,d„), (2.11a)

o, being equal to 1, 2, or 3.
The recursion relations given by Eqs. (2.8) constitute a

system of four third-order maps that, due to their symme-

try, can be reduced to

The eight recursion relations given by Eq. (2.4) by as-
suming oo, o.

&, and o.
2
——+1 can be reduced to four

equivalent relations in terms of appropriated effective
fields defined as follows:

Z~+)(+++ )
exp(2a„+ ) ) =

Zx+t(+ + —)
'

ZA+i(+ —+)
exp(2b„+ ~) =

Zv+ )(+ ——)

(2.7a)

(2.7b)

f(o,cr') =expI —(q —1)[K~oo'+8(o+o')]), (2.5)

g (cr,o', o")=exp(Bo+K&oo.'+Kzoa"), (2.6)

and where 8 =PH, K =PJ (a=1,2,3), P being (k13T)
as usual. We notice that the f(cr, a') is introduced to
prevent counting once more the energy factors. We note
that by using the recursion relation given by Eq. (2.4) we

find that the partition function of the %+1 generation
lattice can be written by means of the partition functions
of branches with X generations. It can be seen later that
this process of decimating the lattice by pruning this type
of branch is particularly useful for calculating the local
properties.

B. Effective fields

e„+,——2K, +q A3(g„,+d„,+2Kz) qA3(d»—[)'
+q83 (e„+f„+d„+2Kz,g» +d»+2Kz )

—qB 3 (e„+d„,d„), (2.11b)

f„+~ qA3(e„+f, +——d„+2Kz) —qA3(g„+d„+2Kz),

g» + ]
——qA 3 (e„+d„)—qA3 (d„),

where we have defined the new variables by

en Cn —dn

f» a» c» 2Kz i

g„=b„—d„—2K2 .

(2.11c)

(2.11d)

(2.12a)

(2.12b)

(2.12c)

Now the system of coupled recursion relations is reduced
to one third-order, one second-order and two first-order
maps.

As it will be seen later, the local properties (magnetiza-
tion and pair correlation function) will be calculated in
terms of the fixed points or attractors of the recursion re-
lations of the effective fields. Therefore, the reduction of
the order of the equations is very important for the nu-
merical calculations.
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+q82 (e„+h„,h„), (2.13b}

~here h„=d„+k2.
Equations (2.13) represent the system of coupled recur-

sion relations for the two effective fields for the Van-
nimenus model for arbitrary coordination number and
under an external field. The local magnetization and the
pair correlation function of the Vanmmenus model can be
evaluated exactly from the fixed points or attractors of
these coupled maps and its phase diagram can be also ob-
tained.

If we go further by neglecting the second-nearest-
neighbor exchange interactions ( J2 ——0) we have
A2(x„)=0, Ii„=d„and the system reduces to one first-
order equation, that is

In the absence of the third-nearest-neighbor interactions
(J3——0) we have A3(x„)=0 and f„=g„=O, n =1,. . . .
Therefore the system of recursion relations is reduced to

e„+,=2K, +qA2(e„+d„+K2) —qA2(d„+K2), (2.13a)

Ii„+,——8 —Ki (1+q)+q A2(d„ i+ K2 )

magnetization or the magnetization of the central site and
the pair correlation function between sites deeply in the
interior of the lattice. Perruggi' has clarified the dicho-
tomy between the clashing alternative approaches for in-
vestigating one-step Markov-Hamiltonian models on
Bethe lattices. He emphasizes that the so-called Cayley
tree solution, that is, the use of the thermodynamic limit
of the free energy for calculating extensive properties like
the magnetization, generate results not related to the sys-
tem, since it takes into account the non-negligible surface
effects which arise in the process. We remind the reader
that the ratio for the number of surface sites to the total
number of sites of the Bethe lattice is (q —1) in the ther-
modynamic limit. On the other hand, the approaches
where the partition function of finite system is used to
calculate local properties, and subsequently the thermo-
dynamic limit is taken, gave exact results although they
may be criticized from the formal point of view. ' We be-
lieve that Peruggi's conclusions also hold for our three-
step Markov model although it has not been proved.

We define the magnetization of the central site by

l„+i 8+q ta——nh '(tanhK i tanhl„), (2.14)

which is the recursion equation for the effective field of
the Ising model on a Bethe lattice with nearest-neighbor
exchange interactions only and an external field. '

l
Tr(o ~ -i'")(op)= lim lim0—+OS~co Z~+1

(Z.V+1 ~ZA'+ i ) —1= lim lim
H~PN ~ (Z&+ IZ (2.15)

C. Local properties: local magnetization
and pair correlation function

In order to investigate the phase diagram of our model
we have to look at the local properties, that is, the local

We can evaluate the ratio (Zz+&/Zz+~ ) in terms of the
effective fields by using Eqs. (2.3) and (2.4), and the defi-
nitions of the effective fields given by Eqs. (2.7). We get,
after straightforward calculations,

+
Zn+1

1l +1

where

=exp[2[ —Ki qK2+Ci(d. —)+q'A3(d )] )

expI 2[Ki+C3(d„ i)+q Bi (b„,d„))ID(a„+i)+D(b„+,)

expI2[ Ki+C3(d„ i—)+q 8& (b„,d„)]}D(c„+i)+D(d„+,)
(2.16)

C~(x) =8 qKi qK2+q—'A (x—),
D(x)=(e "+IV.

(2.17)

(2.18}

A (x) and 8-(x,y) are given by Eqs. (2.9) and (2.10), respectively. The pair correlation function (op, oi) is defined as
usual, that is,

1
(ap, oi) = hm hm g opoiexp( PH) . —

0—+0 %~ 00 Z~+1

By using the Eqs. (2.3) and (2.4) we can write
—Bq0'O

( opo'i ) = lim lim g o'pe g o t) (apo i ) g Zx+ i(o'p a 1 ~o2)
H~on~oo '

~0 PI 0'y

(2.19)

0'0

—Bq0' 'q q+1 —1gf ( ~alp) g Ztv+1(~p~ol~o2)
0'

I

(2.20)
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TABLE I. Sequences of stable fixed points of the recursion relations that characterizes each phase.

Sequence

Paramagnetic

Ferromagnetic
I++++++++.. . )

Antiphase (2,2)
(++——++——++. . -)

One fixed point with a*&—d*, b*=—c, a*&b*

One fixed point with a *&b &c*&d

Pour fixed points with a;*=a;*+4———d;+2, b; =b;*+4——c;+2, a; &b;

Antiphase (3,3)
(+++-—-+++-—-+++. . . )

Antiphase (2, 1)
I, ++ —++ —++—.. . )

Antiferromagnetic (1,1)
~+ —+ —+ —+ —+. . . )

Modulated

Six fixed points with a;*=a;+6=—&;*+3, b; =b;+6= —cj+3 aj Wbj

Three fixed points with a; =a;+3, b;*=b;+q,

Two fixed points with a;*=a;*+2———d;*+I, b; =b;*+q ———c;*+I, a*~b

High sequences of fixed points or attractors

where f(a,o ) is given by Eq. (2.5). Now, if we make use again of the effective fields definition, given by the Eqs. (2.7),
we get after straightforward calculations that

En[F» D(&n+1) D(b»+1 ])[ F»D(on+1) +D( b»+1 ])[F» D(en+1) D(dn+&)][F» D(c»+&)+D(dn+&)]
n-+ ao E„[F„+D(a„()+D(b„+()]q+'+[F„D(c„,)+D(d„)]s+

(2.21)

where III. THE PHASE DIAGRAM

E„= pex[
—K( —qE2+C3(d„)+q A3(d„)],

F. =expI 2[+&(+C3(d.)+q'K(b. d. )]1

(2.22)

(2.23)

Now, with the solutions of the Eqs. (2.15), (2.16), and

(2.21) we can study the phase diagram of the model.

In this section, we present a qualitative study of the ex-
act phase diagram of our model in the (t,a, 5) space for a
fixed q, where t =k&T/J is the reduced temperature,
a = —J2/J~ and 5= —J3/J] are the competing parame-
ters. This can be achieved numerically by observing the
qualitative behavior and evolution of fixed points of the

(a) 20 d (c) i0"g (e) 5" 0
~l0

0

I0
~2

7

0

~ l4
~ I

9 6
+ II

)B.gi6
~ ..4

~8

—20-- —5-

-20 20
IO

-
I 0-

FIG. 3. Fixed Points in the (a,d ) plane for the phases (a) antiphase (2,2), (b) antiphase (3,3), (c) antiphase (2, 1), (d) antifer-
romagnetic, (e) high-order commensurate, and (f) incommensurate.
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recursion relations given by Eqs. (2.11) fs. . a ter a large num-
r o iterations steps orland by evaluating the local ma-

netization and the
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phases in the (t,a, 5,q) space. The ferromagnetic phase
(F) is identified by one single stable fixed point, obtained
for o. ~0 and 5~0, at low temperature. In this point we
should have (cro)&0 and (crooi) =1. If the temperature
is raised the ferromagnetic fixed point evolves continuous-

ly to a fixed point lying along the ct = —d line. In this
case the local magnetization vanishes (oo) =0 as well as
the pair correlation function (crocri) characterizing the
paramagnetic phase (P). The ground-state modulated
phase (1,1) (antiferromagnetic), (2, 1), (2,2), and (3,3)
are characterized by sequences of two, three, four, and six
fixed points as shown in Figs. 3(a)—3(d). The lower-order
commensurate phases (short period) are described by a se-
quence of a few fixed points while the higher-order com-
mensurate phase (large period) or incommensurate phases
(infinite period) are described by quasicontinuous or con-
tinuous attractors as shown in Figs. 3(e) and 3(fl, respec-
tively. "

The phases can also be described by the local magneti-
zation (cro) and the pair correlation function (ooo).
We can plot both quantities against the shell label n after
a large number of iterations. This plot should represent
the shell magnetization and the pair correlation function
deeply in the interior of the tree. In Figs. 4(a)—4(fl we
show the local magnetization and the pair correlation
function evaluated at the same points, in the (t,a, 5,q)
space as used in Figs. 3(a)—3(f), respectively.

To obtain the phase diagrams, firstly, we assume that
q=2 and J& «0 and 1ook at the phase diagram in the
plane (a, t) for 5 fixed, For —2/(1+q ) &5&0 (Ji &0)
we get a typical diagram, as shown in Fig. 5, where the
main feature is the existence of a multiphase point at fi-
nite temperature where the paramagnetic (P), ferromag-
netic (F), antiphase (2,2) and modulated (M) phases
met. This diagram is quite similar to the one obtained by
Vannimenus. The latter can be easily reproduced if we

do have 5=0 showing that the multiphase point drops to
the point T=O, a=1/(1+q). For 5& —2/(1+q ) the
phase diagram, shown in Fig. 6, is quite different from
the previous one. For a & (1+q)/(1+q ) we note the ap-
pearance of the antiphase (2, 1), reflecting the frustration

v l3-
CL

E

8-

a

I I I

—2.0

Competing Parameter (-Jp/Jl j

FIG. 6. Phase diagram in the (a, t) plane for q=2 and
5= —1.2.

effects arising from the competition between the second-
nearest-neighbor antiferromagnetic interaction and the
third-nearest-neighbor ferromagnetic interaction.

The phase diagrams for 5 & 0, that is when the second-
and the third-nearest-neighbor interactions are both anti-
ferromagnetic, have also two distinct regions to be
analyzed. For 0&5& 1 we have the diagram shown in
Fig. 7, where we note the presence of the antiphase (3,3)
in addition to the F, P, (2,2), and M phases. We also
note that the (3,3) phase is symmetric about the point
a=1/(q+1) and reaches the P phase dividing the M
phase in two regions. Nevertheless for 5&1 the antifer-
romagnetic ( AF) is stable against the ferromagnetic phase
due to the large strength of the third-nearest-neighbor an-
tiferromagnetic interaction, as shown in Fig. 8. It can
seem in this diagram that the AI' phase is reentrant into
the whole diagram. We pointed out that the multiphase
point t =O, a= —q is independent of 5. Now, we can
look at the phase diagrams in the (5, t) plane. We draw
our attention to the a g —q region where there is a coex-

3.6

2.8D

E 2.0

I.2

CC

0.2 0.4. 0.6 O. 8
("ornpet(ng Parameter (-J~/J{ )

E 2.0

Q. 2 0,&O.2 , 0.4 0.6 Q8
O. 566.3

Cornpet Ing Pa r a meter (-J~iJ l }

FIG. 5. Phase diagram in the {u,t) plane for q=2 and

5= —0.1.
FIG. 7. Phase diagram in the (o;, t) plane for q=2 and

5=0.1.
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FIG. 8. Phase diagram in the (a, t) plane for q=2 and
5= 1.1.

0.2 ot.6 o.a
0 5~1

Competing Parameter (-J~/J, )

I.Q 5 l.2

FIG. 10. Phase diagram in the (5, t) plane for q=2 and
o.'= —1.0.

istence between the I" and the AI' phases as shown in Fig.
9. We note the reentrance of the AI' phase into the F
phase and that the point T =0, a =1 is independent of a.
For —q & a & 1/(q + 1) the phase diagram is shown in

Fig. 10. We note the appearance of the modulated phase
and the antiphase (3,3) meeting with ferromagnetic and
paramagnetic phases at a Inulticritical point at T=O. For

1/(1+q) «& (1+q)/(1+q')

the phase diagram is sho~n in Fig. 11. In this case the
antiferromagnetic phase is absent, but we note the appear-
ance of antiphase (2,2) dividing the modulated phase in
two regions. For ay(l+q)/(1+q ) we get the phase di-
agram as shown in Fig. 12.

As we have pointed out in the beginning of this section
the phase diagrams shown in Figs. S—12 are obtained in a
qualitatively numerical way. If we want to look at the to-
pological structure of the modulated phases in each dia-
gram we have to study the Vannimenus wave vector de-
fined by k =limz „[n(N)/2N], where n (N) is the num-

ber of times the local magnetization changes sign as a
function of the temperature (with fixed a and 5). To go
further into details of the nature of the attractors charac-
terizing the long period commensurate or incommensurate
phases we have to consider the Lyapunov exponent associ-
ated with the trajectory of the system. We believed that
the present model for finite q shows the same features as
presented by the Vannimenus model, that is, the
Lyapunov exponent is never positive meaning that the
system does not exhibit strange attractors with fractal
character, associated with possible chaotic phase. The
same behavior has been also found for the extended Van-
nimenus model.

The ground-state phase diagram line (a,6) plane can be
obtained analytically by minimizing the ground state ener-
gy of the I', AI', (2, 1), (2,2), and (3,3) phases. In Fig.
13 we show the ground-state phase diagram for the q=2
connectivity tree. The critical lines for an arbitrary q are
given in the Table II. The phase diagrams for the case
Jt &0 (antiferromagnetic coupling) can be obtained
directly from the J»0 diagrams, since there is an iso-
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-2.0 —t. O 0 t. o 2.0

Competing Parameter (-J~/J, )
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04 06—0.6 —04 -102 0 t 0.2-0.25 O. OT(

Competing Parameter (-J~/ J, I

FIG. 9. Phase diagram in the (6, t) plane for q=2 and
o.= —2.1.

FIG. 11. Phase diagram in the (6, t) plane for q=2 and
a =O.S.
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TABLE II. Ground-state critical line equations in the (a,6)
plane.

Critical line

F —AF
F —&3, 3)
F —(2,2)
F —(2, 1)
&2, 2) —(3,3)
&2,2) -&2, 1)
&AF) —&3,3)

Equation, .

6=1
(q +1)o.=1—5{1+q+q')
(q+1)a=1—6q

(q +1)a=q+1
{q+1)o.= 1+6(1+q+q )

(q+1)a= —1 —5{1+q+q )

a+q =0

—2,Q -10 0 5/~ 2.Q
Competing Porameter t-J&/J, )

FIG. 12. Phase diagram in the (5, t) plane for q=2 and
cx =2.0.

2—
b„+i—d„+i —— 2 K2+q [A3(C„)—A3(d„)] .

On the other hand

(4.2)

morphism between the system characterized by ( J, ,Jz,J3)
and that characterized by ( —Ji,J2,Js ), as shown in Table
III.

a„+i b„+i————Ki+q [A3(b„,) —A3(d„ i)j

+q [83 (a„,b„)—Bi (c„,d„)], (4.3)

IV. THE INFINITE CONNECTIVITY LIMIT: q —+ &x) c„+i—d„+i ———Ki+q [Ai(b„ i) —A3(d„ i)]

In this section we study the infinite connectivity limit
q~ao of the present model. We recover the previous re-

sults obtained by Moreira and Salinas. '

In order to evaluate the q~ &x& limit we have to renor-
malize the exchange interactions coupling constants Jj,
J2, and J3 with respect to connectivity number. This can
be done by assuming that Ji ——Ji/q, J2 ——Jz/q, and

J3 —J3/q . To perform the q~an limit for the local
magnetization we have to calculate, beforehand, the effec-
tive field recursion equations in the q ~ ao limit. We note
firstly, from Eqs. (2.8), that

a„+,—C„+,=,K2+q [83 (a„,b„)—B~ (a„,b„)]

+q [83 (a„,b„)—Bg (c„,d„)j . (4.4)

&n+]—n+ j —dn+1+ &» (4.5)

b„+j-d„+), (4.6)

d„+i=8 +—(K i tanhd„+Kptanhd„ i+Kptanhd„ i) .

(4.7)

If we expand the equations up to the first order in 1/q we

gei

2 K2+q [A3(a„) Ai(b„)], —
q

(4.1) The local magnetization can be evaluated straightfor-
wardly by using Eqs. (4.5)—(4.7), (2.15), and (2.16), that is

+
Zn +1 =exp
Zn+ j

2 e "+ +l2b„ 5+2+ l
2a

28 —2K, —2K2+2q A3(dn)+q ln +q ln
e +2'+ i edn+2+ l

=exp(28 +2K i tanhd„+, +2K2 tanhd„+ z+ 2K3 tanhd„)

=exp(2d„+3) .

(4.8)

(4.9)

Therefore &o„+i& =tanhd„+3, and if we use Eq. (4.7)
we can finally get the recursion relation for the local mag-
netization in the q ~ limit, that is

&o„+,&=tanh 8+—(&o„,&
—a&o„,&

—5&o„3&)1

t

where t =K&T/J&, cY= —J2/Jj, and 6= —J3/J&.
The phase diagram in the (a, t) plane for several values

of 5 for the present q~ oo limit model has been already
studi. ed in Ref. 14. Nevertheless, the ground state phase
diagram in the (a,5) plane can be obtained directly from
the q~ce limit of the critical lines, given in Table II, as
we show in Table IV. The ground state phase diagram
(a,5) is shown in Fig. 14. We note that the antiferromag-
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AF
TABLE IV. Ground-state critical line equation in the q ~ (x&

limit.

Critical line

F—AF
F (3-, 3 &

F-(2,2)
F —(2, 1}
(2,»-&3,3)
&2, 2&-&2, »
aF —(3,3&

Equation

+=1
5=a —1

5= —(1+a)

FIG. 13. Ground-state phase diagram in the (a, 5} plane for
/=2.

netic ground-state is not stable in the q~ oo limit, while
the antiphase &2, 1) is.

V. CONCLUSIONS

%'e have solved exactly the Ising model on the Bethe
lattice with arbitrary coordination number q and with
competing interactions between first-, second-, and third-
nearest-neighbor spins belonging to the same branch (con-
secutive generations) and under an external field. Interac-
tions between sites belonging to the same generations are
excluded from the present model. The partition function,
the local magnetization, and the pair correlation function
are calculated exactly by solving, numerically, the coupled
set of the recursion equations of appropriated effective
fields. These effective fields are defined by the ratio of
the partition functions of pruned branches of the lattice.
The particular choice of these branches in our approach is
an essential feature for calculating the pair correlation
function. The partition function is expressed by means of
the partial partition function of these branches, and can
also be obtained numerically by evaluating the fixed
points or attractors of the effective field recursion rela-
tions.

The phase diagrams in the space ( t,a, 5), where r is the
reduced temperature and a and 5 are the competing pa-
rameters, are obtained by observing the changes in the
behavior of the fixed points (or attractors). The phases
are identified by the local magnetization and the pair
correlation functions. Each phase is characterized by a

particular sequence of fixed points. Besides the paramag-
netic and the ferromagnetic phases, there are a large (in-
finite) number of commensurate phases. The main com-
mensurate phases, namely the antiphases (2,2), (3,3),
(2, 1), and (1,1) are stable even at T=O, as shown in
Fig. 11, for the q=2 case. We have shown several phase
diagrams for different ranges of values of the competing
parameters a and 5. The antiphases (3,3), (2, 1), and
(1,1) are characteristic of the present model since they
arise from the frustration effects introduced by the third-
nearest-neighbor competing interactions. %e were not
able to give the boundaries between the higher commensu-
rate phases in the modulated region of the phase diagrams
due to our lack of computational facilities to handle a set
of high-order coupled recursion relations. However, we
note the existence of a multiphase point at finite tempera-
ture for the particular range of values 0 & —5 & 2/(1+q )

as shown in Fig. 5. For 5=0 we recover the Vannimenus
phase diagram where the multiphase point is located at
T=O and a=1/(1+q). for 5~0 (Ji &O, Ji pO) we note
the appearance of the antiphase (3,3) centered about the
point T =0, a= 1/(1+q), and dividing the modulated
phase in two regions (see Fig. 7). For 5 & 1 the antiphase
(1,1) (truly antiferromagnetic phase) is stable against the

TABLE III. Isomorphism between the phase diagram of the

( Jl J2, J3 ) and the ( —Jl,J2,J3 ) systems.

Jl &0

(F) vstvrv&
(~F)»»~~~
( 2, 1) tt)ttit
&2, 2& t»i»ii
&3,3»»»it»

(&+) kl tlkLfll
{F) tttttftt
&3,3) t)»»»t
&2, 2& t»»»i
(2, 1) 1 I i11$t t i

FIG. 14. Ground-state phase diagram in the (a,6) plane for
q =Qg.
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ferromagnetic phase and has a reentrant character over
the whole diagram, as shown in Fig. 8. In this region the

multiphase point t =0, a= —q is independent of 6. The
phase diagram is also studied in the plane (t,5) for four
ranges of values of a showing similar features, as can be
seen in the Figs. 9—12. The ground-state phase diagrams
are obtained analytically for general q by minimizing the
energy of the F, AF, (2, 1), (2,2), and (3,3) phase at
T=Q, as shown in Table II and in Fig. 13. For q=1 we
recover the result of Barreto and Yeomans" for the

A3NNI model in the cubic lattice.
Finally we worked out the q~ oo limit recovering the

previous results of Moreira and Salinas' where the set of
high-order coupled recursion relations reduces to a single
third-order recursion relation for the effective magnetiza-
tion. We note that in the q~ oo limit the antiferromag-
netic phase is no longer stable at T=O while the antiphase
(2, 1) remain stable. The ground-state critical lines in the
q ~~ limit are shown in Table IV and in Fig. 14.
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