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Packings of spheres placed on vertices of two- or three-dimensional Penrose tilings arise in various
models of glassy or “quasicrystal” metals. Such packings are described, with particular attention to
the packing fractions and coordination numbers: In particular, one of the three-dimensional pack-
ings attains a packing fraction close to that of random close packing. The frequencies of various lo-
cal environments are also enumerated. Relations between the tiling and density-wave pictures of

icosahedral structures are clarified.

I. INTRODUCTION
A. Complicated structures and sphere packings

The recently discovered icosahedral alloys, i(Al-Mn)
(Refs. 1 and 2) and i(Al-Zn-Mg) (Ref. 3) have diffraction
patterns closely similar to that of the nonperiodic three-
dimensional Penrose tiling (3D PT) (Refs. 4 and 5). This
similarity has motivated attempts to guess the structure
(i.e., atomic positions) using the 3D PT (or a set of
icosahedral density waves) as a framework. These model
structures®—1° are related, in various ways, to packings of
space by identical spheres.

Such packings, with spheres representing atoms, have
long been used to model complex metallic alloy phase
structures,'® large noncrystallographic clusters!”!® and
metallic liquids or glasses.'’~2* The spheres may interact
with central forces (“soft spheres™); or, in massive simpli-
fication, repulsive and attractive parts of the interaction
potential may be replaced by an impenetrable hard core of
diameter D, plus an external pressure to ensure that the
hard spheres are rigidly packed. Generally one is interest-
ed in (i) the packing fraction f (see below), which mea-
sures the density of the packing, and (ii) the distribution
of local coordinations.

In this paper, I describe some efficient packings in
which spheres are centered on special subsets of the ver-
tices of Penrose tilings in two and three dimensions. Re-
sults are also presented on the frequency of various local
environments in the Penrose tilings (independent of the
spheres packed on them). This information is needed to
compute the packing fraction and frequencies of local
coordinations of the sphere packings, but it is likely to
have wider applications.

It is proverbial that the “best” packing around a sphere
by neighbors is icosahedral.'®=2° In recent years this no-
tion has been developed systematically into a theory
which describes the atomic arrangements of Frank-
Kasper phases and metallic glasses in terms of defects
with respect to an ideal icosahedrally coordinated net-
work, which can actually be realized only in curved
space.! ~2* It is important to note that Penrose tiling
models’~!* are a parallel development to the curved-space
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models. They have different, not necessarily related,
kinds of icosahedral order, which may nevertheless be
studied in a similar spirit. My investigation of the local
coordinations of the Penrose tilings is parallel in this way
to the study by Mosseri and Sadoc?""?? of local coordina-
tions in the hierarchical packing of tetrahedra generated
by the “iterative flattening” method.

In this paper, I have only considered how best to pack
spheres, given that their centers lie on Penrose tiling ver-
tices. I have not determined whether there exist condi-
tions in which such a quasiperiodic packing might be
more efficient than any periodic one. Hope for this possi-
bility is not encouraged by the examples exhibited here (of
which the quasiperiodic pentagon packing of Sec. IIBA is
the best attempt).

B. Definitions

A set of points {y;} and diameters {D;} satisfying
lyi—y; | > (D;+D;)/2 for all isj will be called a sphere
packing (or disk packing, in two dimensions). Apart from
one place (Sec. IIB5), I will only consider sets {y;} which
are subsets of the vertices of a Penrose tiling, and I will
take the spheres (disks) to be identical, D;=D. The pack-
ing fraction f is the ratio of the occupied volume
37D} /6 (or area 3,,mD}?/4) to the total system volume
(or area) in the infinite-system limit.

A notable feature of Penrose tilings is that there is a
discrete set of possible site separations, say {r,r;,73. ..}
in ascending order (note Tables II and VI and Fig. 11,
below). This means that the interesting sphere packings
with centers {y;} on sites of the tiling must have D=r,
for some n. For if r,_,<D<r,, the {y;} are at least 7,
apart and one obtains a better packing fraction using the
same set of {y;} with D=r,.

There are two natural ways to specify which spheres are
neighboring in a packing. One says two spheres (disks)
have a hard contact if |y;—y;| =(D;+D;)/2. This is a
kind of bond; however the term “bond” will be reserved
for bonds defined by the Voronoi criterion, which is a
more useful one. In the Voronoi construction, given an
arbitrary set of distinct points {y;} we associate to each y;
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a domain, the Voronoi cell, of all points nearer to it than
to any other y;. Points are called neighbors, connected by
a bond, if their cells share a face (edge in two dimensions).
The number of bonds to a point is its coordination number
Z.

For {y;} chosen from Penrose tiling vertices, the set of
possible nearest-neighbor locations is discrete. Then there
will be a nonzero density of situations—four points in a
rectangle or trapezoid—where the Voronoi construction
becomes singular; here I choose to say that neither diago-
nal pair has a bond. Typically, the Voronoi bond network
of a 3D packing forms the edges of a set of tetrahedra
(and, in places where the construction became singular,
octahedra) which fill space; in the case of a 2D packing,
space is filled by triangles (and rectangles, trapezoids, pen-
tagons, ...).

C. Outline

An outline of the rest of the paper is as follows. Sec-
tion II considers the two-dimensional Penrose tiling (2D
PT), showing how a sphere packing may be constructed
on it, and how this packing relates to various structures
described by previous authors. The 2D PT is discussed
mainly to illustrate concepts which are applied to the
(more complicated) 3D PT in later sections; in its actual
content, Sec. II is independent of the rest. Section III in-
troduces the 3D Penrose tiling: first the “projection”
method of its construction is outlined, and then this is ap-
plied in a detailed investigation of the statistics of local
environments. With this information, it is then possible
to construct a good sphere packing.

In Sec. IV, the same treatment is applied to the “twelve-
fold” vertices, an interesting subset of 3D PT sites. Sec-
tion V discusses how the density maxima in the density-
wave models can be interpreted as packed spheres, and
how the latter can be interpreted as clusters of atoms in a
model of the i(Al-Mn) structure.*® Section VI concludes.
Three Appendices contain proofs and useful techniques
based on the projection construction.

II. TWO-DIMENSIONAL PENROSE TILING

A. Vertices and local environments in two dimensions

The motivation for studying the two-dimensional Pen-
rose tiling (2D PT) is in part didactic: It is easier to con-
struct, depict, and visualize than the 3D PT. The 2D PT
has already been uséd in various atomic models.!>*—%°
Furthermore, it seems to describe the rapidly quenched
phase T(A1-Mn),*®3! and is closely related to the Al;Fe
structure.'® 14

The properties of the two-dimensional Penrose tiling
have been reviewed elsewhere.?>32~3% It is a packing of
two kinds of rhombus with edge a: a large kind (L), with
acute angle 27/5, and a small kind (S) with acute angle
/5 (see Fig. 1). They have areas

A; =a%sin(27/5)=a’[(54+V'5) /8] (1a)
and

A5=azsin(77/5)=r_lAL . (1b)

FIG. 1. Large (L) and small (S) Penrose rhombi; arrows
represent the matching rules. The corner angles are indicated in
units of 7/5. The heavy dots mark the “pole” vertices (see text).

The arrow markings on adjoining edges are required to
match. [There is another representation®?**® in terms of
objects known as “kites” (K) and darts (D).] Vertices
where double arrows converge are called “poles” by
Mackay.?

The most efficient way to generate the 2D PT is by “de-
flation,”?>26.2%:32=34 3 process in which rhombi are re-
placed by geometrically similar ones with edge length
smaller by a factor of the golden ratio r=(1+V'5)/2.
(The 2D PT can also be generated by “projection” from a
high-dimensional space as outlined in Appendix A.) De-
flation has been illustrated already in Refs. 25, 32, and
33(a); here (see Fig. 2) I show how one can perform half
deflations to go from an (L,S) tiling to a (K, D) tiling to a
deflated (L',S’) tiling.

Let us represent a rhombus corner with interior angle

L' s'

FIG. 2. Deflation of the Penrose tiling in two stages: (a)
from rhombi to kites and darts; (b) from kites (K) and darts (D)
to deflated rhombi; (c) deflated rhombi. In (a) and (b) the
dashed lines and light arrows refer to the “deflated” objects. In
(a) and (c), the “poles” at these respective scales are marked by
dots. The circles in (c) mark the nonpole sites, where disks are
packed in disk packing (i) of the Sec. II B; these same circles are
marked in (a) and (b) to show how the same packing appears on
larger tiles. Note that in (a) and (b) the circles would suffice to
force the matching rules, but this is not the case in (c).
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km/5 by (k),or by (k)* if the corner is at a “pole.” We
see there are only six types of corner: In the L, (2),
(2)*, and (3);in the S, (1), (4), and (4)* (see Fig. 1).
The whole vertex is represented by (k,;k, - - - ); here ob-
viously ¥ ;k;=10. In the deflation, each of the single-
arrowed edges generates a {(433) vertex, or (since each
rhombus has two such edges)

L,S—2(433) . (2a)
Also, an interior vertex is generated:
L—(33121) . (2b)

Inspection of Fig. 2 shows that the corners map as follows
when rhombi are deflated:

(1)—5(2)*,

(2)—(2)*,
(2)*—>3(2)+5(2),
(3)—>3(2)*+5(4)*,
(4)>5(4)* +3(4)*,

(A)* >3 () + (1) +(1)+3(2) .

From this we can derive

(433) —>(422)* —(2211211) —(22222)* , (3a)
(33121) —(4222)* —>(222211) —(22222)* (3b)
and also

(22222)*>(22222) . (3¢c)

Thus, there are only eight types of vertex*? (Fig. 3), of
which three (with asterisks) are “pole” vertices. Around
each vertex in the bottom row, one can pick out neighbors
which form a perfect pentagon; I will call these “fivefold
vertices” (they are called “suns” in Ref. 32). These form
the 77 inflation of the 2D PT. The sites (22222) and
(22222)* have no neighbors besides the pentagon so they
have fivefold symmetry; I will call them “perfect fivefold
sites.” (In the 3D PT case, the analogous subsets—
“twelvefold” and “perfect twelvefold” vertices—also form
interesting superstructures; see Sec. IV.)

I~ I~

< 433> <33121> {22121y {22221)
/ \\ _ 7/ \\\ /// \\\
- | : - - - <
// \\ // \\ //
~ - I ]
i NV i I
(22222) aa2>* caz22)* (222225

FIG. 3. The eight allowed vertex types in the 2D PT.

TABLE I. Vertices in the 2D PT.

Vertex Name? aBy Frequency
(433) D 321 2 (0.3820)
(33121) J 520 73 (0.2361)
(442)* 1) 302 r—* (0.1459)
(4222)* K 401 3 (0.0902)
(2211211) S3 700 0 (0.0557)
(222211) S4 600 7 (0.0344)
(22222)* S 500 r=5/V'5 (0.0403)
(22222) S5 500 =15 (0.0154)

2As used in Ref. 32.

A striking feature of the 2D PT is the self-similarity of
the spatial distribution of different kinds of vertices. In
particular, consider the pattern made by taking all the
“nonpole” vertices. (This is just variation 2 of the “unit
disk packing;” see below.) The following subsets of sites
form inflations of this pattern by factors of 7, 7%, 7°, and
%, respectively: (i) all “pole” vertices; (ii) all (22222),
(2112112), and (221122) vertices (i.e., all nonpole “five-
fold” vertices); (iii) all {22222 )* vertices; (iv) all (22222)
vertices.

We can easily derive the frequencies of the different
vertices. [See also Ref. 33(b); a more rigorous treatment
of the frequencies of arbitrary patterns in the 2D PT is
given in Ref. 34.] I will normalize all frequencies of local
environments by the density of vertices, which is the same
as the (number) density of rhombi:® n(L)+n(S)=1.
Thus, since

n()/n(S)=r1, 4)

(which follows easily>>*? from the deflation rule) we have
n(L)=7"" and so, for example, using (2a) the frequency
of vertex (433) is

n({343))=r"2n(L)=7"3.

(The factor 7=2 comes because there are 72 new vertices
for each old vertex.) Continuing this way, we derive the
results in Table I (the frequencies add up to 1, of course).
A different way we can classify the vertices is to per-
form a Voronoi construction (see Fig. 7 of Ref. 26). In
fact, if we decorate each rhombus as shown in Fig. 4, then
the dashed lines will make up the Voronoi cell edges.
Thus, there are three kinds of neighbor bonds: those at
distance a, which are connected by Penrose tiling edges;

FIG. 4. Penrose rhombi showing Voronoi cell edges (dashed
lines). The nearest-neighbor bonds a, b, and ¢ are shown (solid
lines). These divide the plane into triangles, with every vertex
having §, 6, or 7 neighbors.
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short bonds across an S rhombus [Fig. 4(b)] at distance
c=2asin(7/10)=7"'a=0.618a; and “long” bonds
across an L rhombus, at distance

b=2asin(m/5)=[(5—V5)/2]"%a=1.176a .

For every (3) corner at a vertex, we have one b neigh-
bor; for every (4) corner we have a ¢ neighbor. Of
course, the total number of corners is the number of a
neighbors. Defining a, B3, and respectively, y as the num-
ber of a b, and ¢ neighbors, we get the numbers shown in
column 3 of Table I. It is easy to check (Fig. 4) that the
a, b, and ¢ bonds correspond one-to-one with rhombus
edges, L’s, and S’s, respectively, and so the averages are
@=4, B=2r"", and 7=27"% For the total coordination
number Z=a+pB+y we have Z=5 (from the three
“pole” vertices and (22222)), Z=6 (from (433) and
(222211)), or Z=7 (from (33121) and (2211211)),
with _ frequencies n(Z=5)=n(Z=7)=2r"*=0.292;
thus Z =6, as must be true in two dimensions (by Euler’s
theorem).

B. Packings on the 2D PT

The a and b distances are similar in magnitude and can
accommodate disks of diameter D=a =1. The “short” ¢
bonds do not allow this, but there are relatively few of
them, so we can make a reasonable packing of unit disks
by removing a disk at one end of each short bond.

1. Unit disk packing

In the densest possible packing of this type by identical
disks, the only types of vertices which need be vacant are
those with (4)* corners, namely (422)* and (4222)*,
which have a combined frequency of 7~3=0.236 (so the
occupied fraction is 1 —7~3=2r"2=0.764). This is suffi-
cient since one end of every ¢ bond is a {(4)* corner. The
average area per site is

A=1""4; +77 245 =37"H7/V5)/?=0.8117a>
so the packing fraction is
f=(ma?/4)(2r~2)/4 =(0.5950)/(0.8117)=0.738 .
(5)

This packing is illustrated in Fig. 5.
For comparison, a triangular lattice (close packing) has
f=m/2vV3=0.907, a square lattice has f=m/4=0.785,

FIG. 5. Unit disk packing on the 2D PT (compare Fig. 4 of
Ref. 25, from which this is adapted).

FIG. 6. Holes arising from the unused vertices (at junction of
dashed rhombus edges) in the packing by disks of unit diameter.
In the absence of the hatched disks, the two open disks (at bot-
tom) are free to move up into the hole and the packing is not
rigid. The holes may be filled by adding disks (hatched) of di-
ameter D'=0.54.

and a honeycomb lattice has f=7/3v3=0.605. Also,
the 2D “random close packing”*®3’ has fgcp=0.82.
Thus, the unit disk packing is rather loose. On the other
hand, its 3D analog (see Sec. III C) has a packing fraction
close to random close packing.

One would like to check whether the packing is actually
mechanically stable: i.e., are interior motions impossible,
if one fixes all disks on the surface of a finite cluster. A
weaker criterion (its advantage is being easy to check) is
local stability: does every semicircle around every disk in-
clude at least one neighbor (in this case an a neighbor) in
hard contact? Unfortunately, the unit disk packing is not
locally stable since the neighbors along the edges between
(2) corners next to the vacant (4222)* site are loose [see
Fig. 6(b)].

2. Unit disk packing: Second variation

We have removed disks from two of the “pole” sites; if
we also remove them from (22222)*, i.e.,, from all of the
“pole” sites, we get the disk packing shown by Mackay?’
in his Fig. 4. A fraction (677°+77%/v5=0.2664 of all
sites are vacant. The same packing describes one of the
layers of an idealized Al;Fe structure, with an Fe atom
occupying the (22222) site and Al atoms in the other
ones.'®! It also describes the pattern of bright spots in
high-resolution electron images of the icosahedral
(Tig.9Vo.1),Ni phase.*®

It is, in fact, very natural to find this pattern in layered
structures which are stackings of decorated Penrose til-
ings. The reason is that any 2D PT can also be interpret-
ed as a puckered surface in 3-space, called a “Wieringa
roof,”* which we are looking down on; the L and S
rhombi are imagined to be identical, but tipped so they are
foreshortened in different ways. It turns out that there
are only four possible values for the altitude coordinate,
and the outer two values correspond to the “poles” so
their removal leaves a much flatter layer.

3. Unit disk packing: Third variation

In the unit disk packing all (22222) disks—and also
(since we removed (442)* sites) all (2211211) and
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(222211) disks—have the same (pentagonal) surround-
ings as the (22222)* disks which were removed in the
first variation. If we vacate all of these “fivefold” sites,
we get the decoration shown by Mosseri and Sadoc in Fig.
7 of Ref. 27, or Fig. 5 of Ref. 28. It contains only (433)
and (33121) vertices. As they note, the remaining a and
b bonds form a perfect fourfold-coordinated net.

They defined defects by comparing this network to an
ideal structure which exists on a curved surface; the re-
sulting defect arrays had a hierarchical, self-similar struc-
ture. In view of the self-similar distribution of environ-
ments in the 2D PT (noted at the end of Sec. II A), this re-
sult is hardly surprising.

4. Pentagon packing

It is amusing to note that we can achieve a better pack-
ing by replacing the spheres of variation of 2 by penta-
gons, as indicated in Fig. 7. (Compare this to the penta-
gon packings illustrated in Refs. 12, 26, and 38.) The
packing fraction is f=7/2=20.809. A related pentagon
packilrzlg has been used in a hypothetical model of (i) (Al-
Mn).

Recently a random packing of edge-sharing pentagons®
was found to have a diffraction pattern similar to that of
the 2D PT. The random packing has a local order similar
to that of Fig. 7(b), but the packing fraction appears to be
much lower.

For comparison, we should consider crystalline pack-
ings of the same pentagons. Four examples are shown in
Fig. 8. Here Figs. 8(a) and 8(c) show packings where the
pentagon centers form a triangular lattice with a rec-
tangular distortion: b/a=V"3 becomes ~1.539 in 8(a)
and ~ 1.577 in 8(c). The packing fractions are, respective-
ly, V/5r2=0.854 in 8(a) and 2V/5/37=0.921 in 8(c). The
packing in 8(c) seems to be the closest packing of penta-
gons in two dimensions. Indeed, in a gas of hard penta-
gons which was slowly frozen,?* we find a large single
domain of the Fig. 8(c) packing (upper half of Fig. 3 in
Ref. 24); however, packing like Fig. 8(b) is favored in the
two or three layers next to the walls, and packing like Fig.
8(a) occurs in some regions (possibly grain boundaries).

The pentagon packings of Figs. 8(a) and 8(c) differ
from the quasicrystal packing [Fig. 7(b)] in having fewer

(a)

FIG. 7. Pentagon packing on the 2D PT. Decorating Pen-
rose rhombohedra as in (a) (the dots indicate the “pole” vertices
here) generates the packing shown in (b).

(b)

FIG. 8. Crystalline packings of pentagons. Packing frac-
tions: (a) and (b), 0.854; (c), 0.921; (d) 0.828.

shared edges. If we try to maximize the number of shared
edges, it appears the optimal packing is that of Fig. 8(b),
which has the same packing fraction as Fig. 8(a) but is ob-
viously closer to Fig. 7(b) in its local order. It can be gen-
erated by making elongated hexagonal cells of one L and
two S rhombi [like Fig. 6(a)], packing them on the plane,
and decorating them as in Fig. 7(a). The 8(b) structure
gives an alternate description of the layered phase Al;Fe.!*
(The pentagons represent clusters in the form of bipentag-
onal pyramids with composition Al;¢Fe,).

The periodic packings are also found in packings of
tubes composed of stacks of pentagonal capsomeres (virus
fragments):** Figures 3(a) and 3(b) of Ref. 40, are, respec-
tively, similar to Fig. 8(a) and identical to Fig. 8(b).

5. Packings with two sizes of disk

If another size of disk is allowed, the unit disk packing
can be imgroved. We can place disks of diameter
D'=(a*+b*'"?—a=0.543 in the gaps around vacant
vertices—one disk in the (244)* gap and two in the
(4222)* gap (see Fig. 6). There are 7~*/5=0.326 small
disks per vertex, i.e., the number ratio is
n(D')/n(D)=7"*V5/2, and the packing fraction is
f=0.832. This can be compared to regular lattices with
small disks filling interstitial holes: (a) square lattice,
D'/D=(V2—1)=0414, n(D')/n(D)=1, and f
=0.926; (b) honeycomb lattice (with three small disks in
each hole), D'/D =0.516, n(D')/n(D)=1, and f=0.847.

Another interesting disk packing on the 2D PT has
been discovered by Socolar and Steinhardt (see Ref. 29,
Fig. 6). They place a disk of radius D=7"" on every ver-
tex of the 2D PT; in addition one is placed in the interior
of every L rhombus away from the “pole” end, dividing
the long diagonal in the ratio 7~ ':7—2. (The interior site is
not a vertex of any deflation of the 2D PT so it does not
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belong to the class of packing I consider elsewhere in this
paper.) Smaller disks of diameter D’'=0.575, D=0.355
are placed, two per rhombus (both L and S), to fill the
interstices; the packing fraction is f=0.842.

III. SPHERES ON (MOST) VERTICES OF
3D PENROSE TILINGS

A. Projection method for constructing 3D PT

We shall follow the same path for the three-
dimensional Penrose tiling (3D PT) as for the two-
dimensional one. However, the 3D PT is most naturally
constructed by projection from a six-dimensional (6D)
simple cubic lattice®®*!%? rather than by deflation rules
(which become complicated?®*? in 3D). I will describe the
method briefly, focusing on its application rather than its
justification.

We let {€,,8,,...€¢] be a set of unit vectors in three-
dimensional “physical” space in icosahedral directions
(i.e., {+€;} form the vertices of a regular icosahedron).
To each €; we associate a corresponding vector 2%, in
another three-dimensional “gseudospace”4 orthogonal to
the physical space. The {€;}] also form an icosahedral
set, but permuted so that

&6 =+1/V5—>8} & =—8-¢ forij=12-6.
(6)

In other words, if €; and €; are nearest neighbors on the
icosahedron, then €; and € 11 are second neighbors, and
vice versa.

The physical quasilattice vertices are of the form

6
X(n)=Xo+ 2 n,-é‘,- , 7
i=1

where [n]=[n,,n,, ...,ng] is a set of integers which are
in fact the coordinates in the 6D lattice. Not every point

FIG. 9. (a) Rhombic triacontahedron %, which is the “accep-
tance domain” in pseudospace that determines which points are
included in the projection construction of the 3D PT. It has di-
ameters 2.753, 2.384, and 3.236 along the twofold, threefold,
and fivefold axes, respectively. The dashed tricontahedron,
which is smaller by a factor 72, is the sector € ,, corresponding
to the “twelvefold” vertices. (b) Expanded view of the smaller
triacontahedron ¥ |,, after caps have been removed to make a
sector /', representing the D=2.38 (“twelvefold”) sphere pack-
ing. The respective diameters are 1.051, 0.905, and 1.000 (1.236
in the fivefold direction before the caps were removed).

of form (7) appears in the 3D PT; we associate with each
X() @ pseudospace point

&
X(a=%o+ 3 ni€ @®
i=1

and include xp,; in the 3D PT if and only if x[l,,] lies
within a domain %, which will be called the acceptance
domain. Here we take the acceptance domain to be

¢

6
(xo+ 3 &fi: 0<&i<1), )
i=1

i.e., the 3D projection of the hypercubic unit cell of the
6D lattice of [n]’s. In fact, € is a rhombic triacontahed-
ron [Fig. 9(a)] with unit edges oriented in icosahedral
directions. For later use, I also note that if we took .¥ to
be a strict subset of €, then {x,;} would form a subset of
the 3D PT vertices. No matter what . we use, the re-
sulting structure has a diffraction pattern with the same
spot positions as for the 3D PT proper.

This construction gives a packing of 3-space by two
kinds of rhombohedral cell, with edges of unit length in
icosahedral directions (Fig. 10), which I will call P (“pro-
late”) and O (“oblate”). Their faces are identical rhombi
with acute angle cos~!(1/v/5)=63.4°; their volumes are

Ve=2a’[(5+V5)/81'2, Vo=1"1Vp (10)
and their numbers are in the ratio?>*
np/no=r. (11)
The average volume per site is
V=r"Wp+r2V,
=2a%(1-2/v'5)"/2=0.6498 . (12)

B. Local environments and neighbors

To determine the local environment around a vertex x
of the 3D PT, it suffices to know the location of x'
within €. For example, x has a neighbor at x,;+¢€ if
and only if xf,,]+é‘{e‘£, ie., x[l,,] is within the sub-
domain (“sector”) € N(€ —€}). [Here “(€ —€1)”
denotes the domain %, translated by —€;.] One can con-
struct successively more refined sectors representing the
specification of the positions of neighbors out to succes-

FIG. 10. The prolate ( P) and oblate (O) rhombohedra, show-
ing the corner spherical angles in multiples of 7/5.
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TABLE II. Vertex separations in 3D PT.

Name r Vector Frequency
0.563 3-6/V'5 [111000] 0.76 (2r72)*
a 1.000 1 [100000] 6°
b 1.052 2-2/V's [1T0000] 6.5 (642772
d; 1.451=(a?+b2)12 3-2/V’5 [117000] 7.7
d; 1.487=V"2b 4—4/V'5 [11T100] 2.2
b’ 1.701=1b 242/V'5 [110000] 14.2
d; 1.792 5—-4/V'5 [270000] 0.82
e, 1.973 34+2/V5 [110100] 18.4
a 2.000 4 [200000] 1.42
dy 2.000 4 (117010} 7.5
a; 2.236 5 [011111] 0.76
ds 2.236 5 [011111] 42
fi 2.260 6—2/V'5 [21T000] 1.09
¢ 2.384=1 3+6/V'5 [111000] 14.1
d5 2.406=1d, 4+4/V5 [111700] 17.4
de 2.471 7-2/V5 [217100] 0.26
e 2.606 5+4/V's [210000] 11.3
£ 2.626 6+2/V'5 [270100] 7.7
b" 2.753=7% 4+8/V'5 [111100] 19.9
£ 2.810 74+2/V'5 [211700] 3.3
d; 2.929 5+8/V5 [111110] 24.7
¢ 2.947=27% 6+6/V5 [111171] 3.6
e 2.947 6+6/V'5 [210100] 10.2
a; 3 9 [300000] 0.01
*Exact value [see Egs. (14)].
sively larger radii in physical space.*> The pseudospace () UNIT SPHERE PACKING
vertices {xj} are distributed uniformly over €; conse- 20+
quently, the frequency of any given environment in the
3D PT is proportional to the volume fraction of € occu- -
pied by the corresponding sector.*? o 101
As an exam?le of an environment, consider the “twelve- ie
fold” vertices,* defined by the presence of all twelve pos- H | i I[ L
sible rhombohedron edges around them (this subset is the 0 L | | i . l |
basis of Sec. IV, below). Their sector, which I will call | 2 3
% 12, turns out to be a triacontahedron*? smaller than € e
by a factor 72 [see Fig. 9(a)]; hence the frequency of
twelvefold vertices is 77°. (b) TWELVE FOLD
The neighbor separations*? which occur in the 3D PT SPHERE PACKING
are listed in Table II, up to r =3a. Their frequencies were Y
found numerically by counting the separations from ver- &
tices corresponding to N =200000 random points in . - [ \ | | l I l
The separations named with a are in fivefold symmetry s = i L1

directions, those named with b are in twofold directions,
those named with ¢ are in threefold directions, those
named with d and e are in mirror planes, and those
named with f are in general directions. The frequencies
are sums over all symmetry-equivalent separations (the
respective degeneracies are a, 12; b, 30; ¢, 20; d and e, 60;
f, 120). The lattice vector [n,n,, . ..,n¢] is given using
the convention of Refs. 5, 7, and 42 for the directions of
the {€;] (note that permutations and changes of sign of
the n;’s do not generally give an equivalent vector).

r/c'

FIG. 11. Radial distribution function r’g(r) among (a) all
3D PT vertices (b) “superlattice” of “twelvefold” vertices.
Every peak is a 8 function; the vertical scale is its total weight
(last columns of Tables II and VI). The radius r has been nor-
malized by the diameters (a) D =a, and (b) D =c’'=2.38a, used
in the corresponding sphere packings. In (b), the distribution
function is shown only out to 7' /c =2.5.
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o=s®
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+ OCTAHEDRON

BONDS:
a=1 b 105 cwu 056
—————e ~———eo @ :-0

FIG. 12. Placement of Voronoi bonds on the prolate ( P) and
the oblate (O) rhombohedra, which are the “tiles” of the 3D
PT.

The 3D PT radial distribution function (powder aver-
aged over angles) is a sum of 8§ functions centered at the
allowed separations; it is shown in Fig. 11(a). Note the
striking resemblance to radial distribution functions aris-
ing from random close packings of hard spheres.'>-2%%*
The first four prominent rings consist of nearest neigh-
bors at r=a, second neighbors across an approximate
square (e.g., in octahedra) at r = 1.4a, and ordinary second
neighbors at r=1.7a and r=2.0a. However, whereas in
the random-close-packed structure each ring formed a
rounded peak, now each ring forms a discrete pair of
peaks with a small splitting between them.

If we perform the Voronoi construction, we find that
neighbors are all at separations a, b, and c. In fact, every
edge of the 3D PT is an a bond, every short diagonal of a
face rhombus is a b bond, and every short axis of the O
rhombohedron is a ¢ bond. To show this, we divide up
each rhombohedron in analogy to Fig. 4 for the 2D PT;
the resulting “bonds” are shown in Fig. 12. We can be
sure that we will get proper Voronoi cells when we fit the
rhombohedra together, because all the cell boundaries in-
tersect the rhombohedron faces at right angles.

In the resulting bond network, the O rhombohedron is
“triangulated” into six irregular tetrahedra; the P rhom-
bohedron divides into two almost regular tetrahedra, at
the tips, and a slightly distorted octahedron (there is an
ambiguity in the Voronoi construction due to the
a—b—a—b rectangles visible in Fig. 12). Thus, the oc-
tahedra occupy a volume fraction (27/3)v'5=0.482 of the
packing; there is one octahedron per (3V/5+1)/2=3.854
tetrahedra.

Note that every a separation is a rhombohedron edge,
and every c separation is the short axis of an O rhom-
bohedron, but not all b separations are b bonds. Rather,
some b separations are second neighbors by two ¢ bonds;
these will be called b neighbors.

On the other hand, every rhombohedron edge is an a
bond, every face has a b bond, and every short axis of an
O rhombohedron is a ¢ bond. Thus, fractionally counting
bonds on the surface according to the angle the rhom-
bohedron subtends around them, every rhombohedron has
three a and three b bonds (and, if it is an O rhombohed-

ron, it has a ¢ bond). Also, it is obvious that (analogous
to the 2D case) the number density of rhombohedra is one
per vertex, i.e.,

np=1"1, ng=r"2. (13)

Then, defining a, B, and ¥ as the number of a, b, and ¢
coordinations, it follows that their averages are

a=6, (14a)
B=6, (14b)
y=2r"2. (14¢)

Thus the average coordination number is
Z=a+B+7=12427"2=12.764 . (15)

Because of the many octahedra, (15) is smaller than the
“ideal” coordination for a random network of tetrahe-
dra?®¥

Zidcal§]3'4 . (16)

C. Classes of vertices and their frequencies

In the 3D PT, just as in the 2D PT, there are two ap-
proaches to classifying a vertex by its immediate local en-
vironment: (i) by the number and arrangement of rhom-
bohedron corners which pack around the vertex and (ii) by
the number and arrangement of its (Voronoi) first-
neighbor vertices. These approaches (i) and (ii) are

P
O
BONDS: TO NEIGHBORS BETWEEN NEIGHBORS
a e e
b + ———————
c A e,

FIG. 13. The four kinds of corner spherical angle (compare
Fig. 10) projected onto faces of an icosahedron around the
corner vertex. Bonds to and among points in the nearest-
neighbor coordination shell are indicated as explained in the
key.



34 SPHERE PACKINGS AND LOCAL ENVIRONMENTS IN PENROSE TILINGS 805

COORDINATION (af7y)=(56l)

CORNERS 4P5+ 0, + 0y

FIG. 14. A frequent vertex in the 3D PT. The light solid
“coordinate” lines are the edges of an icosahedron on which the
local environment is projected (the cap from the bottom five
faces is shown at the right). The vertices in the coordination
shell and the Voronoi bonds between them are marked as in Fig.
13. The pattern of b neighbors arranged radially around the a
bond at the center (of the left side of figure), is also found in
most of the other kinds of vertex.

equivalent (see Appendix B 1).

Let us consider approach (i) first. There are just four
kinds of rhombohedron corner, which I will label P;, P;,
0,, and O; according to the rhombohedron type and the
solid angle (in units of 7/5). To represent how the solid
angle around a vertex is apportioned into corners, it is

convenient to project it down onto the faces of a reference
icosahedron (Figs. 13 and 14). Each face is a unit 7/5 of
solid angle.

One can also project the shell of nearest-neighbor ver-
tices radially onto the same icosahedral “coordinates,” as
indicated by the point symbols in Fig. 14. Corners of a
given type always have the same “decoration” of bonds
extending into their solid angle (compare Figs. 12 and 13).
As an example, one of the commonest 3D PT vertices is
shown in Fig. 14.*® Altogether, 24 distinct vertex types
are allowed in the 3D PT (Ref. 41) (counting together
those related by rotations and reflections of the
icosahedral symmetry group). Diagrams like Fig. 14 have
been drawn for each of them.*® A common feature is the
occurrence of rings of (up to five) b neighbors around a
bonds.

The vertices are listed in Table III; they are labeled by
(aBy),, where (a,B,y) are the numbers of (a,b,c) neigh-
bors as before, and p is the number of b neighbors in the
most complete ring around an a bond (e.g., p=4 in Fig.
14). Note that (afBy) uniquely specify the number of
rhombohedron corners of each type which meet at a ver-
tex (see Appendix B2). For many combinations (aBy),
there is only one arrangement of rhombohedra around the
vertex which actually occurs in the 3D PT (although
many arrangements are geometrically possible). However,
there are few “twelvefold” types where (aBy) do not
uniquely specify the environments; in these cases p is

TABLE III. Vertices in the 3D PT and their frequencies.

(num)

(aBy))p N(P,P;0,0,) s n n
(452), 0202 2:2 0.2358 3 (0.2361)
(561), 1041 1 0.2354 3 (0.2361)
661), 1331 1 0.0553 6 (0.0557)
(670)s 0620 2 0.2369 3 (0.2361)
(770)s 1540 1 0.0558 8 (0.0557)
(870)s 2460 2 0.0684 277 (0.0689)
(960), 5360 1 0.0165 2710 (0.0162)
970)s 3380 1 0.0263 270 (0.0263)
(1050), 8260 2:2 0.0031 12 (0.0031)
(1060), 6280 1 0.0037 2713 (0.0038)
(1070)s 42100 2 0.0063 2r—12 (0.0062)
(1200), 20000 23.3.5 0.01312 r° (0.013 16)
(1210), 18020 2:2 0.00316 12 (0.00311)
(1220), 16040 2 0.00386 278 (0.003 84)
(1230), 14060 0.00857 224171 (0.008 58)
(1230), 2:3 2712 (0.00621)
(1230), 2 271 (0.002 37)
(1240), 12080 0.00456 27 B 18 (0.00457)
(1240), 1 213 (0.003 84)
(1240), 2 1 (0.00073)
(1250), 100100 0.01324 0 (0.013 16)
(1250); 2:2 PR (0.006 94)
(1250), 2 12 (0.003 11)
(1250)s 5 12 (0.00311)
(1260), 80120 0.00544 T2 (0.005 48)
(1260), 1 2714 (0.002 37)
(1260)s 2 12 (0.003 11)
(1270)s 60140 2 0.00378 2713 (0.003 84)
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necessary (and sufficient) to distinguish them.

For each vertex, Table III also lists s, the number of
icosahedral symmetry operations which leave the local ar-
rangement of corners and neighbors unchanged. This is
factored to display the symmetry elements of that ar-
rangement, e.g., s=2-3 means a threefold axis and one
kind of mirror plane, while s=2%3-5=120 means full
icosahedral symmetry. Each vertex, then, has 120/s dis-
tinct orientations (if we counted these separately, we
would find a total of 1693 different vertices).

The frequencies of the different vertices are evaluated
by computing the volumes of the corresponding sectors of
the triacontahedron % in pseudospace. To do this exactly
is a tedious exercise in elementary geometry. However,
one notices that the resulting frequencies are always sim-
ple combinations of powers of 7~!. Therefore, a
“numerological” approach was used. First 250000 ran-
dom points were generated in ¥ and the frequencies
n‘™™(aBy) were determined numerically. (To get ade-
quate statistics for the last eight rows of Table III, an ad-
ditional 100000 random points were generated within
%1, the sector of vertices with a=12.) These
frequencies**® were then identified as integer multiples
n(aBy) (in a few cases, sums) of powers of 7! as shown
in Table III. The proposed identifications satisfied
> n(aBy)=1, and Egs. (14).

The numerical method lumped together the vertices
(12 B0), which are distinguished only by p. To get their
separate frequencies, the volume of every sector was cal-
culated analytically, as described in Appendix B. All the
identifications from the numerical results were confirmed;
this supports use of the “numerological” method to find
the frequencies of extended patterns which may be more
difficult to handle analytically, such as the ¢ chains of
Table V (see below).

Roughly speaking, the sectors are nested with a in-
creasing as one goes inwards from the (4 52) sectors at the
surface of € to be (12 B0) sectors at is core. The (12 80)
sectors are tiny silvers formed between intersecting planes
which slice up the volume in a way closely analogous to
the 2D case [Fig. 18(c)]. At the center is the sector of
“perfect” (1200) sites, analogous to the dark shaded
(22222) pentagon in Fig. 18(c). More details of the ar-
rangement of sectors are given in Appendix B (see Table
VIID).

For later use, let us turn our attention to the short ¢
bonds. Since at most two of them come in to any vertex
(note ¥ <2 in Table III), they form chains. The longest

TABLE IV. Frequencies of J values.

aB?’ B’ n (num) n

4520 0.0558 76 (0.0557)
4521 0.0680 277 (0.0689)
4522 0.1120 276 (0.1115)
5610 0.0681 277 (0.0689)
5611 0.1673 376 (0.1672)
6610 0.0423 278 (0.0426)
6611 0.0130 r° (0.0132)

TABLE V. Frequencies n.(I) of chains of / short (¢) bonds.

! N, p tnum) n.

1 1 0.05646 76 (0.05573)

2 1 0.05514 76 (0.05573)

4 2 0.02646 2770 (0.02631)

5 3 0.00190 13 (0.00192)

8 4 0.00629 2712 (0.00621)
10 5 0.00502 1 (0.00502)

such chain is a closed ring of 10 links in the form of a
puckered decagon. Its center always lies on the midpoint
of a 3D PT edge oriented along the decagon fivefold axis.
The other ¢ chains are fragments of this decagon with 1,
2,4, 5, or 8 links. A b separation is just a second neigh-
bor along such a chain. The sites with ¢ bonds can be di-
vided into subclasses labeled by (aByB), where B is the
number of b separations. Their frequencies are shown in
Table IV (derived from the same data**® as in Table III).

The frequencies of ¢ chains are also tallied, in Table V;
the n.™™ were derived by generating 100000 random
points x! in & and following out the chain on which the
corresponding vertex x lies. This brute-force Monte Carlo
numerical integration was again followed by numerology
to get the n. values. Note that the exact frequencies of
the five possible combinations of (yf) can be calculated
from the inferred exact frequencies of Table V and
independently from those of Table IV [eg,
n(y=1, B=0)=n(5610) + n(6610) =2n.(1)]. They can
also be extracted using Table III and pictures of the local
environments,*® since every chain (I >2) lies entirely in
the neighbor shells of the two vertices on the chain’s axis;
the results agree. Table V also lists N,(/), the number of
vacant sites on a chain of / links in the “unit” sphere
packing of the 3D PT, which is described next.

D. “Unit” sphere packing (based on 3D PT vertices)

Most of the Voronoi bonds between 3D PT vertices
have length a =1 or b=1.05; therefore, it is possible to
make a reasonable packing with spheres of diameter D =1
on most of the vertices. This is exactly analogous to the
“unit” disk packing on the 2D PT (Sec. II B): it suffices
to ensure that one of the two endpoints of each ¢ bond is
left vacant. This is slightly harder to arrange on the 3D
PT, since there is no essential asymmetry between the two
endpoints of the ¢ bond (compared to the 2D PT, where
one endpoint is always a “pole” and the other is not).
However, we can use the fact that the short bonds always
form chains (or rings) to specify which sites are vacant:
namely, every other site on the chain. For a chain of /
links, the number of vacated sites is N,(/)=1/2 when [ is
even and N,(/)=(/+41)/2 when /is odd (I=1o0r 5). Itis
clear that this is the optimal number, but it does not
uniquely specify the placement. For the closed rings of 10
links, there are two ways to place the spheres (once we
choose one site to be vacant, the rest are determined). For
the even length chains, we must leave the endpoints occu-
pied and this does determine the placement. For the odd
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FIG. 15. A rhombic dodecahedron (RD), with occupied ver-
tices indicated by spheres. The lines are 3D PT edges (dashed
lines meet at the unoccupied site in the RD interior).

chains, there are (/+3)/2 ways to place the spheres so
that adjacent neighbors on the ¢ chain are never both oc-
cupied; however, if we also require that adjacent ¢ neigh-
bors are never both vacant, we have only two choices
(determined by which endpoint site is vacant).

The unoccupied sites are all of type (aBy)=(452), ex-
cept for a few at endpoints of ¢ chains. The sites sur-
rounding a vacated (452) site form a “rhombic dodecahed-
ron,” (RD) shown in Fig. 15 (the 3D analog of Fig. 6). In
the even chains, the RD’s around the properly vacated
sites almost always have twelvefold sites at their tips.

Figure 15 suggests another way to view the procedure
for vacating sites, in two stages. In the first stage, we
group adjoining O rhombohedra (equivalently, connecting
¢ links) into pairs. Between each pair the central (452)
site is removed and the surrounding two O rhombohedra
and two P rhombohedra are recombined into the RD,
which becomes a new kind of tile in the structure. We
create the maximum possible number of RD’s, but out of
each odd chain one (isolated) O rhombohedron must
remain. The second stage consists of removing an axis
site from each remaining O rhombohedron (on a side
where it is not touching an RD).

The advantage of the two-stage process is that its inter-
mediate product—the tiling with RD tiles and a
minimum of O tiles—is the basis for two decoration
schemes describing real atomic structures.’~!! The num-
ber of RD’s per chain is Ngp(l)=1/2 (leven),
Nrp(D)=(—1)/2 (lodd), which gives a frequency of
RD’s

ngp= > n“Npp()=7"64+57"8=0.1622 . a7
)

Using Table V, the frequency of occupied sites is
Noee=1—2Y, nf{oN, (1)
1

=1—(67""47"%)=0.7802 .

The average volume per 3D PT site is ¥ given by (13), so

the packing fraction is
f=(7a°/6)n /V=0.6288 . (18)

This is essentially identical to the packing fraction of
“random-close-packed” spheres,?* 3

frep=0.64 .

The unit sphere packing can be implemented as a pro-
jection with an acceptance domain .| in place of (9).
One first rephrases the conditions in the site-vacating
rules in terms of local environment type, rather than c-
chain length. [The diagrams of the environments*® are
essential to performing this translation, e.g., they tell us
that the /=38 chains are the set of all chains with (107 0)s
and (12 80), sites on their axes.] Then the domain % is
the (complicated) shape formed by subtracting from ¢
the sectors corresponding to vacated sites.*

Although 7, is connected, it is far from being spheri-
cal (or even convex): Its diameters in the two, three, and
fivefold directions are, respectively, 2.103 (reduced from S
by a factor 2772, 2.384 (reduced by 7/2), and 3.236 (not
reduced at all). Note that ., is a bit larger than the
icosahedron which Ref. 6 chose as the acceptance domain.

IV. TWELVEFOLD VERTICES
OF 3D PENROSE TILINGS

A. Distribution of twelvefold sites

A different sphere packing, which (we shall see) seems
related to the structure of the icosahedral Al-Mn-Si alloy,9
is based upon the subset of vertices which have all twelve
possible edges radiating from them (“twelvefold ver-
tices”). As mentioned above, these correspond to an ac-
ceptance domain %, in pseudospace [Fig. 9(a)]; this is a
triacontahedron like the 3D PT acceptance domain ¥,
but is reduced by a factor 7* so the twelvefold sites have
frequency 7—° within the 3D PT.

The twelvefold vertices do not form a twice “inflated”
3D PT, although they are distributed with the same
density,”*® nor are they the vertices of any simply
described tiling. Rather, the twelvefold vertices form a
sort of approximate superlattice, which I will call a “su-
perstructure.”

There is a subset of the twelevefold vertices, which I
will call “perfect” twelvefold vertices, with a perfectly
icosahedral local environment. These sites have (afy)
=(1200); at them, 20 sharp P, tips of the rhombohedral
tiles meet. The “perfect” twelvefold sites correspond in
pseudospace to an acceptance domain which is yet anoth-
er smaller triacontahedron, reduced from € by a factor
7%; thus the “perfect” 12’s are a fraction 7~ of all twelve-
fold sites. It turns out that®! the perfect 12’s are the 7° in-
flation of the 3D PT (see Fig. 16).

The allowed separations between twelvefold sites up to
r=>5a are listed in Table VI frequencies derived from
200000 random points in € ;. They are shown in Fig.
11(b). As in the unit sphere packing, one can identify
double peaks corresponding to »/D=1.0, 1.4, 1.7, and 2.0
[if we take D =2.6a, interpretable as a ‘“soft-sphere” di-
ameter, in place of the hard-sphere diameter D =2.38a
used in Fig. 11(b)]. However, here the splitting of the
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TABLE VI. Vertex separations in “superstructure” of twelvefold sites.

C. L. HENLEY

Name r r? Vector Frequency

a 1.000 1 [100000] 0.18 (277%)
¢ 2.384=1% 3+6/V'5 [111000] 59 (6—2r77)
b"” 2.753=1% 4+8/V'5 [111100] 6.5 (642777
(e) 3.642 7+14/V'5 [211100] 39

dy 3.893=V"2b" 8+16/V'5 [211101] 2.2

a’ 4.236=r% 9+20/V5 [211111] 8.3

b 4.453=1% 10+22/V'5 [212100] 14.2

(d) 5.052 13+28/V'5 [222100] 10.6

as 5.236 14+30/V'5 [311111] 1.41

dy 5.236=1r%d, 14+30/V'5 [222170) 7.4

(e) 5.753 17+36/V'5 [32TT711] 1.40

f) 5916 18+38/V'5 [320012] 1.09

2Exact value.

double peaks is much greater.

The closest allowed separations are a=1 (fivefold
direction), c’'=2.38 (threefold direction), and b''=2.75
(twofold direction). These correspond roughly, but not
necessarily precisely to the Voronoi neighbors within the
twelvefold superstructure (the b and ¢ separations are
also third-nearest neighbors within the 3D PT).

The number of separations to nearby twelvefold sites of
each type will be denoted a, 7', and 8.5 Sites will be la-

beled (aB"y'),, where p is the number of b" neighbors
around a fivefold direction of the reference icosahedron,
analogous to the p defined for the 3D PT. Table VII lists
the frequencies of the different twelvefold site types
(aB"y'). There are 21 different environments (or 2010, if
we distinguish orientations). As in the preceding section,
the frequencies n'™™ were determined numerically from
1000000 random points in € ;, and then matched to po-
lynomials in 7—!. To get better statistics on the less fre-

TABLE VIIL. Vertex frequencies in the “superstructure” of twelvefold points.

(aBu,y)p s n(num) n
(175)s 2 0.1806 273 (0.1803)
054), 1 0.0162 2710 (0.0163)
(055), 1 0.0100 271 (0.0100)
(056), 2:2 0.0289 (r=847719) (0.0294)
064), 1 0.0956 27774779 (0.0952)
065), 1 0.0591 2847710 (0.0588)
066), 1 0.0263 2r~° (0.0263)
076)s 1 0.1804 273 (0.1803)
077)s 2 0.1668 376 (0.1672)
007) 2 0.01320 7 (0.01316)
017), 2 0.00312 12 (0.00311)
027), 1 0.00384 213 (0.00384)
037), 0.00861 2r= 247 (0.00858)
(037), 1 2r—12 (0.00621)
(037); 2 27— (0.00237)
047), 0.00455 27 BB (0.00457)
(047); 1 2713 (0.00384)
(047), 1 1 (0.00073)
057), 0.01616 2710 (0.01626)
(057); 271 (0.01005)
(057)s 1 R (0.00311)
(057)s 2 12 (0.00311)
067), 0.02550 27710437712 (0.02558)
(067)s 1 2104 7712) (0.02247)
(067)s 1 12 (0.00311)
077)s® 2 0.16110 443071 (0.16097)

2“Nonperfect” (07 7)s sites.

bPerfect” (07 7)s sites [same arrangement of neighbors as in nonperfect (07 7)s site].
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quent environments, 472 136 additional points were gen-
erated, restricted to the “perfect twelvefold” sites. The
latter were found to include all the sites with
(aB"y’')=(0B"T), except that some (077) sites are “imper-
fect.” To calculate the frequencies of the (0B”7), sites
which differ only in p, the following fact was used: The
b" neighbors among twelvefold sites are distributed exact-
ly like the b neighbors among the 3D PT vertices. Conse-
quently, the values of n((0B7),) in the lower rows of
Table VII can be read off from the values of n((1250),)
in the lower rows of Table III.

From Table VII, the average values of the ‘“coordina-
tions” are @=27"°=0.180, B" =6+ 277>=6.472, and
7'=6—27r""=5.931; thus the average “coordination”
number is

Z=12+47"%=12.584, (19)

which is similar to the value (16) for 3D PT vertices.

It is interesting to view the twelvefold sites as a decora-
tion of the rhombohedra of the 7-inflated 3D PT, as in
Fig. 16. Every face is decorated the same way, with one
site dividing the long face diagonal in the ratio 7~ :7—2
There are two types of P rhombohedra: a fraction 7!
have no interior vertices, while a fraction 7—2 have a site
[typically, perhaps always of type (054); or (064);], divid-
ing the threefold axis in the ratio 7—3:r~2. The O rhom-
bohedra are all the same and each has one short a bond
(note the threefold axis is a ¢ bond). The decoration of
the faces defines a set of matching rules for packing
rhombohedra (one must add the restriction that two
neighboring P rhombohedra cannot both have interior
sites in the ends near their shared tip vertex).

In the twelvefold superstructure, the short separations
are the a bonds. In contrast to the case of Sec. III, they
cannot form chains since @ < 1. Close neighbors can only
form isolated pairs. It is interesting to note that these
pairs of close twelvefold sites correspond one-to-one with
the closed rings of 10 ¢ bonds discussed in the preceding
section—the a bond is, in fact, the symmetry axis at the
center of the ring.

In Fig. 17, I show the environment of a site having a
close (a) neighbor in the twelvefold superstructure.*®

(b)

INTERIOR

FIG. 16. (a) Prolate and (b) oblate rhombohedra from the 7°-
inflated 3D PT. Solid circles indicate twelvefold sites. Vertex,
face, and interior sites are distinguished by circle diameter; also,
those not on the visible surface are shown dashed and stippled.
Note in (a) that the interior site ( A) is found in only a fraction
-2 of the prolate rhombohedra. Also, note the short a bond
BB’ in (b). This figure should be compared with Fig. 8 of Ref.
7.

(@p"y")=(175)

FIG. 17. Environment of a site with a close neighbor in the
“superlattice” of twelvefold sites, projected as in Fig. 14.

B. Sphere packing on twelvefold sites

There are relatively few a bonds in the “superstructure”
of twelvefold sites, so we can pack spheres of radius
D=c'=2.38 in most sites. This “twelvefold” sphere
packing has close relations to some interesting physical
models described in Sec. V. To construct it, we need only
ensure that, for every close pair of sites, exactly one is va-
cant. This can be accomplished by taking the points
represented in pseudospace by the acceptance domain % |,
shown in Fig. 9(b); it is produced by removing folded
“caps” around each of the 12 fivefold vertices of the
triacontahedron % ;,. To construct .,,, we take % i,
and, for each fivefold axis €;, we draw lines through € ;,
parallel to that axis. Where the intersection of the lines
and ¥ ,, is longer than one unit, we only include in %}, a
centered sub-segment of unit length. We have now en-
sured that for each i,

flzﬂ(fn—'é,%)———ﬂ ’ (20)

which (recall Sec. III B) shows that there are no accepted
points separated by €; in physical space.

This sphere packing occupies all of the twelvefold sites
except exactly half of the (175);s sites, i.e. (see Table VII),
a fraction

% —r=11=0.05070 1)

of all 3D PT vertices is occupied. Hence the packing
fraction is

f=(mc/6)(r~ =711 /V =0.5535 (22)

which is much smaller than the packing fraction in Eq.
(18).

After the close neighbors are eliminated, most sites in
the twelvefold packing have “coordination” Z= 12, about
30% of them have Z=10 or Z=11, and a small number
have Z=7, 8, or 9. This reflects the existence of octahe-
dra and larger voids in the structure (which, however, are
too small to admit another sphere).

The “unit” and “twelvefold” sphere packings are
unique in a sense which I will now explain. Imagine we
take the 3D PT acceptance domain 4 and continuously
shrink its diameter D, monitoring the resulting (progres-
sively sparser) patterns of vertices. At the start we have,
after the deletions discussed in Sec. III, the unit sphere
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packing (a rather good one) with sphere diameter D =1.
As we decrease D, the vertices have a decreased density
(«D?), but there is still an appreciable number of neigh-
bors at distances a =1 and b'=1.70. Thus we must
maintain D =1 and consequently the packing fraction de-
creases with the density. It is only after D, is reduced by
a factor ~772 that most of the a and b’ neighbors go
away, allowing the “twelvefold” packing based on b'' and
¢’ neighbors with D =2.38. In turn, the b"’ and ¢’ neigh-
bors are eliminated after a further reduction of D, by
~771, which gives a packing based on the “perfect
twelvefold” sites. However, this is just a 7> inflation of
the original unit sphere packing.

This does not show that these packings have the op-
timal packing fractions if our only condition is that
sphere centers be vertices of the Penrose tiling. In the
limit D >>a, one could approximate a random (or fcc)
close packing arbitrarily well by the appropriate selection
of 3D PT sites. Then the packing fraction could ap-
proach that of fcc close packing, fy.. =0.7405. However,
the acceptance domain would then become a complex tis-
sue of interleaving tongues or layers of accepted and re-
jected sectors, rather than the simply connected, nearly
convex acceptance domains | and .7 |,.

V. RELATIONS OF 3D PENROSE TILING SPHERE
PACKINGS TO OTHER MODELS

Icosahedral structures have been modeled theoretically
in two (related) fashions. The first approach uses an order
parameter p(x) which is assumed to be a sum of density
waves%”303=5% (related by icosahedral symmetry), such
as

6
p(x)= cos(k¢€;'x+¢;), (23)

i=1

where the phases {¢;] may be chosen arbitrarily. Equa-
tion (23) is known as the “vertex” density-wave pattern’2*
since the wave vectors kq€; point in the vertex directions
of the reference icosahedron. The main interest was in the
Landau theory of the freezing and the microscopic in-
tepretatlon was entlrely unclear. [Is p(x) the density of
electrons,’® of atoms,'? or of some clusters of atoms?]
However, others have put objects on maxima of the densi-
ty waves, thereby generating sphere packings.!* !53¢

The second approach uses discrete and identical
tiles;>*8—10:25-29 jt has been used in this paper. Recently
an improved density-wave theory has bridged the gap be-
tween the two approaches by producing a p(x) which can
be interpreted as a projection from six dimensions with
partial or full occupation of various sites,” closely related
to the 3D PT. Here I try to complete the connection by
identifying each density-wave model with a corresponding
3D PT sphere packing. Reference 56 turns out to be the
unit sphere packing, while the rest”!>!>53 are the twelve-
fold sphere packing. I will conclude the section by dis-
cussing the relation of sphere packings to a model which
almost certainly describes the local order in Al-
transition-metal quasicrystals.®®

A. “Vertex” wave patterns and sphere packings

Given a packing constructed by placing spheres upon
the strongest maxima of (23), Appendix C implies that we
can find an acceptance domain .¥ which selects a subset
of 3D PT points forming essentially the same sphere
packing (differing only by small displacements of the
sphere centers). The edge length of the 3D PT is given by

a=w/ky . (24)

The domain % is roughly spherical (like those of the
“unit” or “twelvefold” sphere packings of the preceding
sections); we can determine its diameter, since we know
that the density of sphere centers is proportional to the
volume of % in pseudospace.*?

For example, consider the icosahedral packing of Mer-
cier and Levy*® (before it is relaxed under interatomic po-
tentials). In their units ko=13.85, D=0.96; this gives
a=1m/ky=0.227 units, so D/a=4.23, or almost precisely
7. Thus their structure should be, very nearly, the unit
sphere packing on a 7°-inflated 3D PT. A comparison of
their packing fraction f=0.60 and their radial distribu-
tion function®® (see their Figs. 10 and 14) to my Eq. (13)
and Fig. 11(a) confirms this identification. [Intriguingly,
one planar cut of their packing (their Fig. 1) has a striking
resemblance to the 2D PT disk packing of Socolar and
Steinhardt,?® while another cut (their Fig. 2) seems identi-
cal to variation 2 of the “unit” disk packing of Sec. II C.]

Watson and Weinert'® defined another structure based
on (23) and intended as a model of real i(Al-Mn). They
chose the wave vector whxch is strongest in x-ray diffrac-
tion,? namely k,=2.896 Al , or a=1.085 A. Then they
fill possible sites by ; atoms up to the real alloy’s density of
one atom per 15.1 A’ , i.e., [see Eq. (12)], 0.060 atoms per
site of the 3D PT of edge a. This occupied fraction is
close to (but somewhat greater than) that of the twelvefold
sphere packing, Eq. (21).

Furthermore, they designated a fraction 0.14 of the
atoms to be Mn, locating them on the sites of lowest coor-
dination number. In the projection-method picture, it
turns out that about half the Mn atoms are on
(@B'y")=(0B'7) sites with B’ <6 (these comprise about +
of the “inflated” vertex sites of Fig. 16). These corre-
spond in pseudospace to x' close to the center of the ac-
ceptance domain. The rest of the Mn atoms occupy sites
such as (054), (055), and (064), which have x! close to
the edge of the acceptance domain.

For comparison, note that the (probable) real struc-
ture® 1% corresponds to all Mn atoms being on vertex
sites. This would give an Mn-Mn pair distribution func-
tion like Fig. 11(a) (with a=4.60 A). Such a pair distri-
bution is closer to that of known Al-Mn alloys in that it
lacks the nearest-neighbor Mn-Mn pairs found in the
model of Ref. 13.

Straley!® has performed a Monte Carlo annealing to
find stable states of a system of mutually repelling parti-
cles (one type only) which also feel an external potential of
form (23). The wave vector k, and the density are taken
from i(Al-Mn) in the same way as Ref. 13. It is clear that
the atoms must find the deepest minima of (23); the repul-
sions (provided they are not too strong) merely ensure that
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each site is singly occupied. The resulting structure,
therefore, must be very similar to that of Ref. 13, and
hence to the twelvefold sphere packing.

B. Sachdev-Nelson structure

Sachdev and Nelson’ have used an (atomic) density-
functional approach to find a metastable structure for
hard spheres with the 3D PT symmetry. This is related to
the twelvefold packing (see below) and has an intriguing
resemblance to the atomic decoration in the i(Al-Mn-Si)
structure;’ however, the existence of two different simple
sphere packings on the 3D PT suggests that the assump-
tions of the density-functional theory should be reexam-
ined to see how robust its results are.

Their theory is formulated in terms of a density p(x,x")
defined in six-dimensional space; the physical density is a
section taken at constant x'. [This is the same notion as
Egs. (C1) and (C2), but now generalized to include higher
harmonic wave vectors.] Roughly speaking, one seeks
that p(x,x') which gives a physical density, the radial dis-
tribution function of which must closely approximate’
that of a random close ?acking of spheres'>?° (or an ele-
mental metallic glass?>?%. As it turns out, the 6D density
is well represented by

p(x,%5)= 3, p1 (X5 —X{n))p) (X —X(n]) » (25)
[r}
where x[l,,] and x(, are given by (7) and (8), and both
pi(+--)and p,(---)are Gaussians.” The physical space
Gaussians p( * - - ), which represent thermal vibrations,’
are rather sharp; they can reasonably be replaced in (26)
by & functions centered on 3D PT sites, giving

P(x,x5) =3, p1 (X5 —X{))8(x— X)) (26)
[n]

which describes a zero-temperature structure. This can be
viewed as a generalization of the projection construction
(Sec. IIT A), in which the boundaries of the acceptance
domain ¥ become fuzzy. [In other words, the acceptance
function X, ( - - - ) of Eq. (C3), which only takes the values
0 or 1, is replaced in (26) by the continuous function
p.(+++).] Sachdev and Nelson’ interpret p 1(x(l,——xf,,]) as
a partial (statistical) occupation of site X,).

Now, in fact, the Sachdev-Nelson structure has a densi-
ty of occupation ~0.060 spheres per 3D PT site, similar
to (21), and its ball size is D =2.5a. Thus, this packing is
an approximation to the “twelvefold” packing. Compare
Fig. 16 to their Fig. 8.

Sachdev and Nelson’s computation allowed variation of
the ratio D /a to minimize the density-functional free en-
ergy. It is somewhat surprising that the density-
functional calculation selects the twelvefold sphere pack-
ing, with its low density, over the “unit” sphere packing.
There are two possible explanations.

(i) Possibly Fig. 11(b) is a better approximation than
Fig. 11(a) to the radial distribution function of random
close packing.

(ii) The acceptance domain %, [Fig. 9(b)] is very near-
ly spherical; on the other hand, the corresponding domain
&, for the “unit” sphere packing extends out much far-

ther in fivefold directions than in twofold directions.
Since the calculation of Ref. 7 assumed p,(x;) was a
spherically symmetric Gaussian, it might find it easier to
approximate the acceptance function of %, than that of
1.

One should note in any case that the density-functional
calculation is not very sensitive to the packing fraction.
Although the density is constrained to be equal to that for
the random-close-packed structure, the model allows oc-
cupations p, (x') greater than unity of single sites, as well
as clusters of mutually inconsistent sites with combined
occupation greater than unity. These excess occupations
compensate for the excessive voids. Possibly a different
scale would be selected by an improved model. This could
mean allowing more general forms of p (x'), forcing
P l(xl ) < 1, or taking into account correlations between oc-
cupancies of neighboring sites.

C. Sphere packings and the i(Al-Mn-Si) structure

Another packing which seems closely related to the
twelvefold sphere packing is described in Refs. 8 and 9.
The structures of the crystalline alloys a(Al-Mn-Si) and
a(Al-Fe-Si) are described by (respectively) bcc and hexag-
onal packings of 54-atom Mackay icosahedra (MI’s),
which are practically spherical clusters with D=11.6 A.
The a phases can also be described as (periodic) packings
of 3D rhombohedral Penrose tiles, with the Mn (or Fe)
atoms at vertices; in this description the centers of the
MI’s sit on twelvefold-type vertices. Furthermore, in
these structures the centers of two neighboring MI’s are
separated by either b"- or c’'-type displacements; the
centers are (respectively) at the tips of a rhombic dode-
cahedron (RD) or a P rhombohedron. The same thing
seems to be true of the 3D PT, from inspection of a finite
realization; that is, b or ¢’ separations between twelve-
fold sites are usually (but not always) spanned by an RD
oraP.

Since a(Al-Mn-Si) and a(Al-Fe-Si) have atomic struc-
tures closely related to the icosahedral alloys i(Al-Mn)
and i(Al-Mn-Si),*° this suggests a model for the latter
structures in which MI clusters are placed on sites of the
twelvefold sphere packing. Three kinds of icosahedral or-
der coexist in the structure: (i) orientational (the MI clus-
ters are all aligned the same way), (ii) bond orientational
(of the bond vectors between neighboring MI’s), and (iii)
translational (which give rise to the sharp diffraction
peaks.!=6442 For the MI, a relationship of (i) and (ii)
propagates a long-range order in (iii). Any Landau theory
that can adequately represent this ordering mechanism
must have (i) an order parameter p(x) representing a den-
sity of MI units (not of atoms), and (ii) orientational or
bond-orientational order parameters® to account for the
different kinds of order.

Although the model of i(Al-Mn-Si) as a decorated
sphere packing is attractive, one should be cautious about
taking it too seriously, for two reasons. (i) The packing
fraction (20) is much less than that for a bec lattice [i.e.,
a(Al-Mn-Si)], fyc.=0.68. (ii) It is hard to believe that an
alloy formed only by rapid quenching can develop the
subtle long-range translational correlations of a defect-free
quasicrystal.



812 C. L. HENLEY 34

VI. SUMMARY

I have presented many facts, methods, and statistics
that will be useful for models of icosahedral and pentago-
nal structures. In particular, methods were given in Secs.
III and IV and in Appendixes A and B, for using the
“projection” technique to find any desired information
about the distribution of local environments or other pat-
terns.

Three kinds of good packing have been displayed: the
unit disk packing (and its pentagon variant) in Sec. II, the
unit sphere packing in Sec. IIID, and the twelvefold
sphere packing in Sec. IVB. As noted in Sec. IV B, there
are no other good sphere packings described by a 6D pro-
jection with a simple acceptance domain. The disk and
sphere packings exhibited have shown that simple
Penrose-tiling based structures are not excessively loose; in
fact, it is conceivable that for packings with several sizes
of sphere, there are some diameter ratios for which a
Penrose-tiling packing, using a mixture of sizes, might
give a better packing fraction than a mixture of ordinary
close-packed domains.

I have described how these packings are related to pre-
vious physical models. The unit disk packing was related
to the Al;Fe atomic structure!®!* (Secs. IIB2 and I1B4)
and to other 2D PT models.'”>?*~% Atom decoration
schemes describing the i(Al-Mn) and i(Al-Zn-Mg) struc-
tures’~!! were related to the unit sphere packing (Sec.
IIID) and the twelvefold sphere packing (Sec. IVB). Fi-
nally, the density-wave models®”33—5¢ were related to
both sphere packings (Sec. V, and Appendix C).

Note added in proof. Kumar et al.>’ have an indepen-
dent treatment of 2D PT very similar to my Sec. II. Fur-
ther discussions of the relations between tilings, density-
wave patterns, and other structures with continuously
varying displacements u(u') (cf. Appendix C and Ref. 54)
have appeared.’®*
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APPENDIX A: 2D PENROSE TILING CONSTRUCTED
BY PROJECTION

The projection method is an alternative means to ‘“de-
flation” for constructing the 2D PT. I outline it here for
purposes of exposition: some concepts which appear in
applying the 3D PT construction (Sec. III) are more easily
visualized and represented in the 2D case. This discussion
assumes previous exposure of the reader to the projection

method (as presented for the 3D PT).>%*42 [Also, other
descriptions of the 2D PT projection may be found in
Refs. 31, 32, and 33(b).]

Real quasilattice vertices x(,; and pseudospace vertices
x[l,,] are defined just as in Egs. (6) and (7); however, we
omit one of the €;’s so that points are now indexed by [ 7]
=[n,n,,...,ns]. Thus, we still picture real space and
pseudospace as three dimensional. (By the end, both the
pseudospace lattice of included {x[l,,]} and the physical
space lattice will reduce to essentially two-dimensional ob-
jects.)

We should include a vertex x(,} whenever the corre-
sponding x[l,‘] is in ¥ s, the projection [analogous to (9)] of
the 5D hypercubic unit cell; this turns out to be a rhombic
icosahedron [Fig. 18; compare Fig. 9(a)]. The fivefold
(vertical) axis 2! is chosen parallel to the omitted € in
pseudospace. Similarly, Z is chosen parallel to the omit-
ted €, in physical space; the edges connecting vertices lie
along the remaining icosahedral (€;) directions.

Now, note that all the remaining €; have vertical com-
ponents +1/V/5 so that the set {x{,)} defined by Eq. (8)
uniformly fills a set of planes®' spaced by 1/V'5 (instead
of uniformly filling space as in the 3D PT case). The
points included in the 2D PT lie in the intersection of
these planes and the rhombic icosahedron ¥'s. Since the
latter has an axis of length V'5, we get five levels in the
intersection for a generic choice of xj.

In real space, if we choose Z parallel to the omitted €,
then by (6) all the remaining €; have (§;),=—(€;),, so
the physical points also lie in equally spaced layers corre-
sponding one-to-one to those in pseudospace. Since only a
few levels in pseudospace have any included points, the
physical space levels are similarly restricted. In fact the
physical points form a Wieringa roof,** a surface which
can be projected flat to make a tiling of Penrose rhombi
(see Sec. II B2).

One can go through the tiling of Penrose rhombi label-

(a) (b) <442>%

<4222>%

<22222>%

<222211>
<22222>

FIG. 18. Acceptance domain in construction of 2D PT by
projection. (a) The rhombic icosahedron € s in pseudospace. (b)
and (c) Views of two layers in ¥ s showing division into sectors,
labeled by the corresponding vertex type. [The other two layers
are 180° rotations of (c) and (b).] Shaded sectors correspond to
“fivefold” sites.
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L2

ing alternate vertices “even, odd, even, ...;” since each
tile has an even number of edges, this is well defined.
Then the levels in pseudospace correspond alternately to
all even and all odd points. The genuine Penrose tiling
(which satisfies the matching rules) has equal numbers of
“even” and “odd” points; this forces a choice of xg, which
gives the symmetrical set of four pentagonal levels shown
in Fig. 18(a). The top and bottom layers [Fig. 18(b)] cor-
respond to even and odd ‘“‘pole” sites, while the middle
layers [Fig. 18(c)] correspond to odd and even “nonpole”
sites. Note how the sharp distinction of “pole” and “non-
pole” sites (which makes it simple to define matching
rules) arises because the domain of included {xf,,]} is
disconnected. (In the 3D PT case, the domain % is con-
nected and no sharp division is possible.)

Sectors corresponding to the eight vertex types of Fig. 3
are indicated in Figs. 18(b) and 18(c); note an equivalent
picture appears in Figs. 8 and 9 of Ref. 32. If we distin-
guish different orientations of the same vertex, we find a
total of 64 sectors. Note that, of the ten possible orienta-
tions of a typical vertex, five are found only at even ver-
tices and five only at odd vertices. (The 3D PT can also
be divided into even and odd sublattices, but each sublat-
tice contains every possible orientation of every vertex
type.)

It is interesting to consider point sets defined by using
subdomains: if we include only points from the middle
layers [Fig. 18(c)], we get the “unit” disk packing varia-
tion (ii). The series of pentagons highlighted by shadings
in Figs. 18(b) and 18(c), each smaller by a factor 7, corre-
sponds to the succession of inflations mentioned in Sec.
ITA.

APPENDIX B: CALCULATION
OF 3D PENROSE TILING VERTEX FREQUENCIES

Here I present the proofs and details of the methods
used for the results in Sec. III C.

1. Directions of (a,b,c) neighbors are equivalent
to packing arrangement of rhombohedron
corners at a vertex: proof

Imagine we are given (i) a packing of the shapes in Fig.
13 over a reference icosahedron, in which everything has
been erased except (ii) the points indicating a, b, and ¢
neighbors: Can we uniquely reconstruct the packing of
the solid angle? We can immediately locate all the O,
corners from the ¢ bonds. In the remaining part of the
reference icosahedron, any icosahedron vertex that does
not have an a neighbor over it must be in the interior of
the projection of a P; corner; the orientation of this P,
corner on the icosahedron is determined since, of the five
icosahedron edges radiating from this empty vertex, ex-
actly two will have b neighbors over them [see Fig. 13(b)].
Any remaining icosahedron-face triangles without any b
neighbors over their edges must be P, corners [see Fig.
13(a)] and what is left over can be divided up into O,
corners. The converse—that the packing of the corners
determines the arrangement of Voronoi neighbors—was
demonstrated in Sec. III B (see Fig. 12).

2. Numbers of (a,b,c) neighbors are equivalent to numbers
of rhombohedron corners at a vertex: proof

This is not equivalent to the preceding proof: given a
set of corners, there are many ways to pack them around a
vertex. Here I show that each of these (including those
which are not allowed in the 3D PT) must have the same
numbers (aBy) of neighbors. For, given the numbers of
corners of each type, N(P;), N(P3), N(O;), and N(O,),
we have

e
u s 3% 5 3| [N(WP)
B 0 1 5 3 ||NwPy
»[=lo o o 1||§oy (B1)
s v = = NOy

The first three rows come from apportioning bonds which
are shared between corners; for instance, a P; corner (see
Fig. 13) has two a neighbors with a % share in each and
one with a + share for a total of +, plus two b neighbors
with a + share in each for a total of 1. The last row
comes because the solid angle must add up to 4.

The matrix in (B1) can be inverted as

N(Py) 1 =2 =1 8 ||a
N(Py) -1 0 -3 12 ||B
Nopl|=|2 2 3 —2l|ly (B2)
N(0;) 0 0 1 0 1

and this proves the equivalence of (aBy) and

(N(Py),...).

3. Analytic calculation of vertex frequencies

A “numerological” method was described in Sec. III B
for (reliably) guessing the exact frequencies of each vertex
class of the 3D PT. Here I present the direct approach:
determining the coordinates, and then calculating the
volume, of each sector within the acceptance domain, the
triacontahedron ¥. This confirms the “numerological”
results.

A motivation for this calculation is that, in realistic
structural models of quasicrystals,g’ 10 yertices are decorat-
ed by different types (or different arrangements) of atoms,
according to their vertex type. Calculation of the diffrac-
tion patterns of such models requires an integration over
pseudospace,*?

f(g d’xte'T ' F(q,x!), (B3)

where (q,q') are the physical and pseudo components of
the wave vector, and F(-,x!) is the form factor for the
decoration of a vertex corresponding to x!. Any analytic
evaluation of (B3) requires knowledge of the sector loca-
tions and boundaries.

In mapping out the sectors, it was very useful to know
which sectors shared faces with each other. This informa-
tion is presented in Table VIII: the sectors adjoin in € if
their entries do in Table VIII. [The relationships in Table
VIII were determined by examining pictures of the envi-
ronments*® and determining which ones differed by addi-
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TABLE VIII. Relationships between 3D PT site types.

(670)s (561), (452),

(770)s (661),

(870)s

(970)s (960),
(1070)s (1060),4 (1050);
(1270)s (1260),4 (1250);
(1260)s (1250),4 (1240);
(1250)s (1240),4 (1230);

(1230),

(1220), (1210) (1200),

tion of one neighbor—which must always be a (452)
neighbor.] It was also helpful in mapping the sectors to
have the symmetry numbers s from Table III, e.g., if a
vertex has threefold symmetry s =3-2, its sector must
have the same symmetry and lie on the corresponding
pseudospace symmetry axis in & .

The sectors are convex polyhedra; their vertices are
given in Tables IX and X. In Table IX, s labels the sym-
metry of each point using the same convention as Table
III. Note that I suppress a factor of (rv'5)~!/2 in all the
coordinates. For convenience, a coordinate system is
chosen so that (X§2Z) are oriented on icosahedral 22
axes, so the icosahedral vectors +€; have coordinates
(0,1, £7) plus cyclic permutations. I only consider the
parts of sectors within one asymmetric unit € 4, of ¥,
which is bounded by points 0, 18, 19, and 20. The points
2, 7, 9, and 11 come only from the intersections with
planes bounding the asymmetric unit. Note also that
points 1—3 lie on the surface of the inner (1200) triacon-
tahedron, points 6 and 10—13 are on the surface of & y,,
and points 18—20 are on the surface of €. It is now trivi-
al to calculate the fraction of & 4 occupied by each sector
in Table X. The results agree with the last column of
Table III.

TABLE IX. Vertices of sectors in pseudospace.

Label Coordinates Symmetry s
0 (0,0,0) 23.3.5
1 0,7~%, 771 2:5
2 0,0,/ ") 22
3 (r=3%,0,771) 2.3
4 (0,0,27~2) 22
5 (r=4,773,2772) 2
6 (r~2,0,1) 2-3
7 0,773,2772) 2
8 0,773 77 779 2
9 (r=3/2,77 /2,77 '+ 772 /2) 2

10 0,774,1) 2

11 (0,0,1) 2.2
12 (r=3,7731) 2

13 0,7=4,1) 2:5
14 0,0,277") 2:2
15 (r~1,0,7) 23
16 (0,0,2) 2:2
17 [5,7'/2,(2+1)/2] 2

18 (1,0,72) 2.3
19 0,r,7) 2:5
20 (0,0,7%) 2:2

APPENDIX C: RELATIONSHIP OF DENSITY-WAVE
PATTERNS AND PROJECTION METHODS

Here I show how sphere packings made from density-
wave patterns,”!>1%:31:53:36 guch as Eq. (23), correspond to
those made by projection. (This correspondence has al-
ready been discussed in Refs. 7 and 56.)

Equation (23) can be rewritten as

6
p(x)= 3 cos[ky&;-(x—xo) —ko€} x5] . (C1n

i=1

So far (xo,x3) are just an alternative way to parametrize
the six independent phases of the density waves. Howev-
er, writing

6
p(x,x')= 3 cos[ko& (x—Xo)+ko€; (x' —xg)] (C2)
i=1

we see that (Cl1) is just a three-dimensional section taken
at x' =0 through a density (C2) in the six-dimensional
space of { x,x'}. (This is illustrated in Ref. 54.)

TABLE X. Sectors in pseudospace.

Site type Labels of corners of sector
(1200), 0,1,2,3)
(1210), 1,2,3,4)
(1220), (1,3,4,5)
(1230), (3,4,5,6)
(1230); (1,5,7,8)
(1240), (4,5,6,8)
(1240), (1,5,8,9)
(1250), (4,6,8,10,11)
(1250), (5,6,8,9,12)
(1250)s (1,8,9,13)
(1260),4 (6,8,10,12)
(1260)s (8,9,12,13)
(1270)s (8,10,12,13)
(1050); (6,10,11,14)
(1060), (6,10,12,14)
(1070)s (10,12,13,14)
(960), (6,12,14,15)
(970)s (12,13,14,15)
(870)s (13,14,15,16)
(770)s (13,15,16,17)
(670)s (13,16,17,19)
(661), (15,16,17,18)
(561), (16,17,18,19)

(452); (16,18,19,20)




34 SPHERE PACKINGS AND LOCAL ENVIRONMENTS IN PENROSE TILINGS 815

Furthermore, the density (C2) has the periodicities of a
6D simple cubic lattice generated by six orthogonal vec-
tors {a(€;,€{)} of length V2a. Here ko=m/a. (I have
generally taken a=1, without loss of generality.)

A set of points { x{,;} defined by projection [Eq. (8)] us-
ing some acceptance domain .#, can be written as a densi-
ty

px)=3 X p(x' —X{n)8(X—X[n)) (C3)
[n]

with the same periodicities; here X »(-) is the “acceptance
function:¥! X »(x!)=1 if x' €% and X +(x})=0 other-
wise.

One converts a density-wave structure into a discrete set
of sites (on which spheres may be placed) by selecting lo-
cal maxima of (C1). I will show that such sets are very
similar to projected sets (C3), taken using an appropriate
acceptance function. [Since the local maxima of (C2) in
6D space occur at vertices ( x[,,],x[l,,]) of the 6D simple cu-
bic lattice, this is not so surprising.]

When xj=0, then X, is an absolute maximum point of
(C1) and is a center of icosahedral symmetry. In general
the position x* of the local maximum depends parametri-
cally and continuously on x3:

x*(x3)=x0+ul(xy) . (C4)

(We choose the branch of solutions of Vp(x)=0 which
has u(0)=0.) To lowest order in u*,
2 6
)= 3 @}u) (C5)
12 &
so that, for small u', the displacement is very small and
x*(u') is essentially the point x, which would be generat-
ed by projection. [Note in (C5) that when u' is in a sym-
metry direction in pseudospace, then u is in the corre-
sponding symmetry direction in physical space.] Inspec-
tion of (C2) makes it clear that there will be similar
branches near other projected points,

X{n)(X5) =Xy} + U(X{n)—X3) (C6)

with the same displacement function u( - - - ).

Of course, we cannot follow the maximum, Eq. (C4),
out to arbitrarily large u'. As u' moves away from zero
(say along a symmetry direction), the amplitude decreases
and at a value ul; the maximum bifurcates or splits up

into a ring of weak, nearby minima; as we continue to
vary u' these branches of solutions will similarly recon-
nect, by some reverse bifurcation, to the branch x[',,] from
a different [ n].

In general, the criterion for accepting a maximum (for
placing a sphere) depends upon its amplitude and its local
environment (e.g., upon whether there are other maxima
nearby). But these are functions of u[l,,lzx[l,,]——xo, SO we
can express the criterion by an acceptance function X(u'):

p(x)= 3 X(X{n)—X5)8(X —X()—u(X{;;—X5)) , (C?)
[n]

where X(u)=1 for u' yielding an acceptable maximum,
X(u')=0 otherwise. It is now evident that (C7) describes
a subset of 3D PT vertices {x,;}, selected by X(---),
each of which is then displaced by u(x{,;—x).

What is the sphere packing which most resembles the
density-wave pattern (C1) (i.e., the dark regions in Fig.
1(a) of Ref. 53)? It should include all of the well-defined
maxima, i.e., the “natural” acceptance domain . should
extend out to (ul;). Now the diameters D, =2|uly|
are, respectively, 1.27, 1.52, and 1.00 in the twofold, three-
fold, and fivefold directions in pseudospace; thus . has
perhaps twice the volume of the acceptance domain of the
twelvefold” sphere packing (compare Fig. 9 caption). The
inclusion of more points (primarily at b'=1.70 separa-
tions) is the main difference from the twelvefold centers;
for the maximum displacements from the projected posi-
tions, u(uZy), have magnitudes ~0.16, 0.09, and 0.50,
respectively, which are small compared to the typical
separations between sphere centers in the twelvefold pack-
ing (2.38 and 2.75). To get to the unit sphere packing we
would have to increase the acceptance volume by ~ 75, or
20 times that of the twelvefold packing; thus, it is reason-
able to view the density-wave structure (C1) as a rough
approximation to the “twelvefold” sphere packing.

Previous authors selected maxima by a somewhat dif-
ferent procedure: They chose the highest (remaining)
maxima until they reached a specified density (Ref. 13), or
until spheres placed on the maxima started to overlap
(Ref. 56). Now, the amplitude of a maximum is a func-
tion of u' which deviates from spherical symmetry only
in order |u'|® Thus these procedures also correspond,
in pseudospace, to filling up a nearly spherical acceptance
domain (which may be smaller than that of the twelvefold
sphere packing).
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FIG. 7. Pentagon packing on the 2D PT. Decorating Pen-
rose rhombohedra as in (a) (the dots indicate the “pole” vertices
here) generates the packing shown in (b).



(a) (b)

FIG. 8. Crystalline packings of pentagons. Packing frac-
tions: (a) and (b), 0.854; (c), 0.921; (d) 0.828.



