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%e study the growth kinetics of a time-dependent Ginzburg-Landau mode1 appropriate for the
dynamics of a simple order-disorder transition by direct numerical solution of the associated
Langevin equation, Our results are consistent w'th the Lifshitz-Cahn-Allen theory of curvature-

driven dynamics. Our calculations indicate that such methods can be used to analyze more sophisti-
cated models, and that they are at least competitive with Monte Carlo simulations.

I. INTRODUCTION

We study here the growth kinetics of an order-disorder
transition by direct numerical solution of the appropriate
Langevin equation. This work is, to some degree, of a
preliminary nature since one of our purposes is to investi-
gate the power and capabilities of the direct solution
method, as compared, e.g. , to Monte Carlo (MC) simula-
tions. However, even at this level, we find a strong
correspondence between the growth kinetics of this case
and those generated by the extensively studied kinetic Is-
ing models. Our calculations therefore serve as a test of
the feasibility of using these methods to analyze more so-
phisticated models.

Only recently has it been appreciated that the growth
kinetics of systems subjected to strong perturbations can
be grouped into a relatively small number of classes. The
parameters differentiating these classes are beginning to
emerge. In particular, Ising-like systems quenched from a
high temperature to some temperature below a transition
temperature Tc show quite similar behavior independent
of the detailed nature of the dynamics used to generate the
time evolution of the system. The difference in growth
kinetics —how the system grows an ordered state from a
disordered state—appears to depend only on rather gen-
eral features of the system. It is well known that it is very
important to distinguish the case where the order parame-
ter is conserved from those cases where it is not. Among
the variables which play a role in determining the growth
kinetics classes are the number of phases that can coexist
at low temperature, ' the number of components of the
order parameter, and possibly whether the domain walls
are hard or soft. The constraint of a conservation law
slows down the equilibration process considerably. By
now much is understood about systems whose dynamics
can be described by kinetic Ising models and a picture is
emerging which explains the robust feature of the various
growth kinetics classes. In Refs. 6 and 7 we have
developed a theory in which the asymptotic behavior of
the growth kinetics is understood in terms of attractive

zero-temperature fixed points in a renormalization-group
picture.

While the growth kinetics of systems with a discrete
number of states (Ising, Potts, clock models) have been
well investigated, rather little has been done about systems
with more complicated order parameters and kinetics.
The main reason for this is the appealing simplicity of the
kinetic Ising models. Because of the finite-state nature of
Ising and Potts models, these systems can be very con-
veniently simulated using Monte Carlo techniques. Such
methods have been extremely useful since there is no obvi-
ous expansion parameter that can be used to develop
analytical work. Much less attention has been paid to sys-
tems where the order parameter is more naturally treated
as a continuous variable (a field) rather than a discrete
variable. One expects the symmetry of the order parame-
ter (spin waves in the case of a broken continuous symme-
try) and "mode" coupling nonlinearities to play an impor-
tant role in the analysis. One knows, for example, that
flow is an important element in treating the hydrodynam-
ics of fluids. Although we shall not focus on it in this pa-
per, one of the intriguing questions which can be ad-
dressed using these techniques will be the existence and
annealing of trapped defects after quenching. For exam-
ple, how much vorticity is trapped in helium after it has
been rapidly quenched below the lambda transition. Very
little quantitative work has been carried out on these ques-
tions.

%bile it has seemed natural to use simulation methods
for treating systems with continuous order parameters of
the type mentioned in the paragraphs above, previous ef-
forts have not been particularly encouraging. The diffi-
culty is that the amount of computing needed to obtain
comparable results is much larger, for example, for the
scalar order parameter Langevin equation than for a
single-spin-flip kinetic Ising model (SFKI). It has only
recently been appreciated how much computing is really
necessary in order to obtain quantitative results for local
quantities, even for the SFKI model. Often one needs
hundreds of runs for a given quantity before one has sam-
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pled enough initial conditions to give quantitative results.
For the Langevin equation, since it contains a random
Gaussian field, one must solve it many times and average
the solutions. Each solution (or trajectory) may be
thought of as a "run, " and one again needs a fairly large
number of runs. The main problem, however, is the need
to carry out, in each trajectory, a fairly large amount of
floating point arithmetic, including in particular the gen-
eration of the Gaussian noise fields. As we shall see
below, these fields can be generated quite efficiently using
the vectorizing capabilities of the Cray computers. Al-
though some results for the conserved case have been ob-
tained, it appears that one has had to wait for the availa-
bility of large enough computers before such calculations
could be made quantitative.

We treat here the simplest problem involving a
quenched field: a Langevin equation driven by a
Landau-Ginzburg free energy —model A in the nomencla-
ture of Hohenberg and Halperin. This is a model for a
scalar, nonconserved order parameter. Much of the dis-
cussion (see Refs. 10—13) of this model has been of a
phenomenological nature. There is a systematic calcula-
tion for the N-vector model in the large-N limit, in
which one recovers scaling behavior and the Lifshitz-
Cahn-Allen (LCA) growth law for the time evolution of
the average domain size L(t)=t' . This would seem to
indicate that the LCA growth law holds for model A

(N =1), but many other questions are pending. One of
particular interest to us, but which will not be addressed
here, is the following: How do those field theories fit into
the renormalization-group picture of Ref. 7?

The simple model we treat here serves as a good first
test case since we think that we know how it should
behave. We expect that it belongs to the same class as the
SFKI model. Indeed our results are consistent with the
LCA growth law.

This paper is organized as follows. In the next section
we specify the model and parameters chosen and the nu-

merical techniques employed. The early time behavior is
investigated analytically. Then, in Sec. III we present nu-
merical results for several quantities of interest. We give
a brief discussion of the phase diagram since the system
studied here is more complicated than an Ising model. In
particular, the equation of state and the transition tem-
perature are now functions of the parameter 8 which con-
nects the Ising and "displacive" limits. We then show re-
sults for the time-dependent susceptibility X(t) and the
quasistatic structure factor C(q, t) The lat.ter quantity
shows the expected development of a Bragg peak, as for
the Ising model. From analyzing the peak in C(q, t) we
verify the LCA law. The spatial correlation function
C(r, t) is also studied. We point out that the zero-
temperature limit must be handled with care.

As a result of our study we have gained some feeling
for the statistics associated with the problem and the
capabilities of new large-scale computing facilities. %'e
note that direct brute force simulations, of the type car-
ried out here, have not usually been conclusive. They
must be used together with some theoretical development.
Scaling analysis and renormalization-group methods have
proved very useful in the Ising limit and we expect similar

methods to work well also in the continuum case.

II. LANGEVIN EQUATIONS

A. Model

We consider a set of scalar fields g;(t) set on an N )&N
square lattice, in the range —oo &P; & oo. We assume
that in equilibrium the statistics of these fields is governed
by an effective Hamiltonian or free energy F[P] of the
Ginzburg-Landau type

(2.1a)

where the i denote lattice sites and (Vf; ) the discrete ver-
sion of the squared gradient. Since the overall scale of

is arbitrary, only two of the three parameters r, K',
and u are independent. There does not seem to be a con-
sensus in the literature as to how to choose these parame-
ters. Petschek and Metiu (Ref. 8) chose the mean-field
correlation length plus the Ginzburg criterion parameter.
We choose here the parametrization used in Ref. 15 to ob-
tain an approximate phase diagram, which is given by

The general form (2.1a) can be put into the form (2.1b)

by rescaling
~ P~ by a factor of u/[2( ~r

~

+E')]. Then
one has 8=

~

r
~

/K' and E=2K' (1+8)/u. The parame-
ter 8 can vary from 0 to oo. In the limit 8~~, (2.1b)
reduces to the Ising Hamiltonian, where E is the usual Is-
ing coupling constant. In the 8~0 limit one obtains a
purely displacive free energy and no phase transition.
Thus, the parameter 8 measures the "Ising-like" or
"displacivelike" quality of the system. Our numerical cal-
culations have been performed using (2.1b).

By further rescaling
~ P ~

by a factor of 8/(1+8), Eq.
(2.1b) can be rewritten as

(2.1c)

where K=K8/(1+8). Note that a constant terin has
been added to obtain (2.lc), but this affects neither the
statics nor the dynamics. The fact that 8—+oo corre-
sponds to the Ising limit is particularly transparent from
(2.1b), but the displacive limit is quite different. A factor
of the inverse temperature is customarily included in E.
This factor will have to be considered explicitly later on,
when it will be important to look at the low-temperature
properties of the system. Thus, in (2.1b) and (2.lc), K is
in units of the temperature.

The equilibrium properties of this system are given by
averages of the form:

(A[/]) =fdP, dP . . A[/] ~)/Z, (2.2)

where Z is the partition function obtained by choosing
A[/]=1 and demanding (1)=1 in the equation above.
The dynamics of this model are assumed to be generated
by a Langevin equation of the form:
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(2.3}

Inserting (2.1b) in (2.3), we have

=I K[8/ —(1+8)g +V 1( ]+rl (2.5)

where V f; is the usual discrete version of the Laplacian:

(2.6}

and a is a nearest-neighbor lattice vector. This completes
the specification of our model. Note that the lattice con-
stant is the unit of length. The physical quantities of in-
terest in the context of a temperature quench are the
correlation functions:

(2.7)

where the average is over the noise and the initial proba-
bility distribution governing P;(0). The time t is mea-
sured from the time of the quench.

B. Methods

The first step in solving (2.5) numerically is to discre-
tize the time into intervals 5t. The presence of the ran-
dom force severely restricts the numerical methods one
can use in this case. The simplest procedure is to use the
Euler method, i.e.,

(2.8)

where V' g; is given by (2.6) with four nearest neighbors
and g; is the discrete time version of the noise term, de
fined by g; ( t )=v'(5t /2) g; ( t), and satisfying

(2.9)

To improve on this development, one can use a modi-
fied Euler or predictor corrector method. Instead of re-
placing the time derivative in the interval (t, t+5t) by its
value at r [as done in (2.8)], one replaces it by the average
of its value at t and the value at t+5t predicted by (2.8).
In the presence of the random force there is no guarantee,
as in its absence, that this procedure allows one to increase
the interval 5t, and indeed this does not appear to be the
case. However, the resulting noise term involves a corn-
bination of g;(r) and (;(r+5t) and its root-mean-square
average is smaller than I by a factor of ~2. This allows
for a reduction in the number of times the equation must
be solved before convergence for the averaged results is
obtained. However, this advantage is roughly cancelled
by the necessity to perform more involved floating point
arithmetic. For this reason we have used the simple Euler
method, given by (2.8) in nearly all of our calculations.
The modified method may turn out to be advantageous
for other forms of the free energy.

where I" is a kinetic coefficient and rl; is a Gaussian noise
satisfying

(2.4)

The next question is the generation of the Gaussian ran-
dom field (;(t) from the uniformly distributed random
numbers generated by the computer. Many ways to ac-
complish this are available. A popular one is to write

' 1/2

M
(2.10)

which, by the central limit theorem, generates a Gaussian
distribution for g from a uniform distribution for the x;
for large M. M=12 is a common choice for obvious
reasons. We have found, however, that we could obtain
faster results by generating a single x; and then numeri-
cally inverting the probability function. ' The reason lies
in the vector capabilities of the Cray computer: the whole
field g;(t) can be generated by a single vectorizable loop,
while generating twelve xj in the same loop is apparently
slower than doing the small amount of algebra required to
invert the probability distribution. Thus, we have chosen
the latter method, which also yields higher quality results,
as determined by computing higher-order moments of the
distribution.

Because of the random force and the random nature of
the initial conditions, one obtains a different solution

tP;(t)I of the system (2.5) for each set of initial condi-
tions. Each solution is a trajectory in phase space. Clear-
ly, one must collect the relevant information (in our case
the correlation functions discussed in Sec. III) from every
trajectory and then average over a sufficient number of
trajectories. Informally, we will call the generation of
each trajectory a "run. "

We turn now to the initial conditions. In problems of
interest one quenches from some initial, presumably
equilibrium state, characterized by an initial temperature
Tl ~ 1/KI, to a final state characterized by a lower tem-
perature TF ~1/KF. Unlike the Ising case, the high-
temperature (KI~0) limit of our model is not completely
trivial, because of the 8 variable. One cannot simply set
KI ——0 in the free energy since correlation functions such

C, =q, K,"4=q,K, 1+I9I

then the free energy can be put into the form

F[e]=—'y [K' (Ve ) +—'8(e —K' ) ]

(2.12)

(2.13)

(2.14)

For the system governing the 4 fields one can take the
limit Kl ~0 and obtain

C,J
——25 1[(1+8I )/8I ]I (3/4) /[(KI8I )

' I (1/4) ], (2.15)

(2.11)

will not be defined because the resulting integrals do not
converge. If one makes the substitution:

3/4
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where the I 's are the ordinary I functions. Thus C,~. in-
creases with the square root of temperature for large tem-
peratures. The initial state then corresponds to a set of
uncorrelated spins which are distributed with a weight
proportional to exp( Kt—8tg; ).

It is obviously impractical (except in the Ising hmit) to
choose true infinite-temperature initial conditions (as usu-
ally done in Monte Carlo simulations of the Ising model)
because a set of initial f; uniformly distributed from —oo

to + oo would pose considerable numerical difficulties.
With no detriment to the physics, we have used three dif-
ferent kinds of initial conditions.

(i) Set all Ig;j =0 (as in Ref. 8). This condition does
not correspond to any equilibrium point in phase space.
Its appeal is its simplicity.

(ii) Random Ising initial conditions, I g; =1j.
(iii) Ig;j randomly and uniformly distributed in the

range [—40 Po].

qett =4—2(cosq» +cosqr ) . (2.17)

For r & 0, Eq. (2.16) represents an unstable system, grow-
ing exponentially for small enough q. We can, in princi-
ple, also check the early-time evolution which can be
determined analytically. One can easily show (most con-
veniently using the Fokker-Planck representation for this
problem), that

where the averages are over the nonequilibrium probabili-
ty distribution. If, however, we evaluate this expression at
t=0, then the averages are over the initial equilibrium
probability distribution characterized by Kz. Note that
the F I Q j, in the equation of motion above corresponds to
KF. Writing F=(K~/Kt)Ft, one can easily derive the
rather elegant results for quenches at constant 8 from
equilibrium conditions El to EF..

Choice (iii) would be the real Tt~ao limit if $0~00,
and it is a reasonable approximation to the equilibrium
high-temperature case if we take $0——3C;; where C;; is
given by (2.15). We have typically taken $0——3. Choice
(ii) corresponds to C,J ——5;~ and choice (i) to C;J =0. Note,
however, that only for case (ii) is the initial system in
thermal equilibrium at a definite point in the (K,8) phase
diagram.

We have found, however, that the behavior of the corre-
lation functions is not affected by the choice of initial
conditions except at very early times (I't &g 1). Of course,
the long-time growth law is, a fortiori, independent of the
initial conditions as we shall see in Sec. III. This is as ex-
pected.

It is very useful to check our numerical technique
against some exact results. If u=0 in (2.1a) then one
easily obtains for C(q, t) (the Fourier transform of

C 1):
—2I"(—r+K&Z )

C(q, t) =
z (e '" —1), (2.16)

( r+Kq—crt)

where we have taken type (i) initial conditions and

dC) (t)
2—I 5ii (Kt K—p )/Kt .dt, 0

(2.19)

For the initial conditions of types (i) and (ii) the initial
derivative can be obtained directly from (2.18), which
holds for arbitrary initial states.

Note that if the system is quenched with Ising initial
conditions while keeping 8~ ao, it will not evolve in time
since each variable is trapped at the bottom of an infinite-

ly deep potential well.

III. RESULTS

(3.1)

which can be collected very efficiently. For this reason
we have more information on g(t) than on the general
C(q, t).

We find, as expected, that the order in the system after
the quench increases. The growth of order is best moni-
tored by observing the peak in C(q, t) that grows and nar-
rows with time. After a time which depends on the
quenching parameters but is typically of order t-4 (we
use units of time such as I = 1 unless otherwise indicated),
the typical domain size is comparable to 32, or, in other
words the width q~(t) of the peak in C(q, t) becomes of
the order of the smallest nonzero wave vector in the Bril-
louin zone. We point out here that the relation between
Langevin equation times and Monte Carlo steps in a cor-
responding Monte Carlo simulation is not trivial. ' %e
will get into this question in more detail later, but as a
simple guide, one Langevin time unit may be thought of
as being on the order of 5000 MC steps per site. Howev-
er, even after the domains have reached this size, X(t) con-
tinues to grow until very few "domains"' remain and
finite-size saturation effects set in. The integration step 6t
required to obtain convergence is of order 0.01 when 0 is
of order unity, but it becomes very small if 8 is too large.

The physical quantities of interest are the correlation
functions C,&(t) or equivalently their Fourier transform
C(q, t) where q is an appropriate discrete wave vector in
the first Brillouin zone. The lattice size employed in the
bulk of the results reported here is 32)&32. This choice
represents a reasonable compromise between the amount
of computing time needed for a run, and the need to have
as large a system as possible. From the point of view of
computing efficiency, one would like to collect all the
products P;f~. This collection process can easily be vec-
torized and is, therefore, very fast. However, there are
more than 10 such products (for %=32) and since the
Cray 1 has memory "only" for about 4)&10 floating
points numbers, this collection could be done only for a
very small number of runs (or, alternatively, of time bins).
We can reduce the memory requirements (at the expense
of slowing down the process) by taking advantage of the
translational invariance of the system and grouping to-
gether all of the P;fz with the same separation r; rj-
One has no such storage problems for the time-dependent
susceptibility:
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The results reported here are average over a number of
runs ranging from 30 to 90. The computer code needed to
solve (2.8) by the methods indicated in Sec. II is not very
complicated. As a check, we have verified that the u =0
limit (2.16) is properly reproduced at small q for type-(i)
initial conditions. Equation (2.19) also gives a check
when the u term is present, but only at times t ~& 1/I9.

A preliminary step before quenching the system into
the ordered region is to determine the line of critical
points in the (E,8) plane. We do this in the following
fashion. For a given set of disordered initial conditions
and a system of size N, we drive the system with the fixed
final set of parameters EF and 8F and monitor the growth
of X(r) X.will typically grow rapidly with time showing a
power-law behavior (the exponent will be analyzed below).
Eventually, for large enough times X saturates. We then
increase the size of the system to N' & N and repeat the
analysis. If g saturates at a value which is independent of
N for large N, then the system equilibrates without order-
ing. If, however, one finds that the saturated value ofI is
proportional of N, then one can conclude that the system
has ordered for that choice of Ez and 8F. Looking at
Fig. 1, one can gain some idea about the ordering process
by looking at longer times and by varying the size of the
system treated. Fixing K=1.75 and 8=2.5 and carrying
out 30 runs for lattice sizes N=8, 16, 20, 32, one obtains
the results shown. %e easily see that there is a saturation
effect for the smaller systems as expected. If one is in the
ordered region then the growth continues until 1 is of the
order of the magnetization squared times N . We have
performed this process by fixing 8 and then varying E un-
til we can clearly see that we have crossed the phase
boundary. The values of 8 chosen were 0.5, 1.5, 2.5, 4,
6.4, 12, and 20. (The larger values were used to verify
that the Ising limit was correctly obtained. ) There are

FIG. 2. The phase diagram in the (E,H) plane. The x axis is
tanh(1/4E) and the y axis is 1 —tanh(8/4), as in Ref. 15. The
dashed line represents the results of Ref. 15 and the solid line
the results of our present work.

enough values of 8 to map out the approximate phase dia-
gram (Fig. 2). Note that this diagram differs from the ap-
proximate renormalization-group (RG) result of Ref. 15.
The error bars are due to the fact that near the transition
it becomes impossible to verify, in a finite time, whether X
saturates. This is illustrated in Fig. 3 where results for 30
runs are shown for 8=12 (very near the Ising line in Fig.
2, although the system is not really Ising-like, since ampli-
tude fiuctuations are still far from negligible). At
E~ 0.8 the sy——stem is clearly ordered, while at EF 0.7——
one is extemely close to the transition. Note that our
main purpose in determining the phase diagram was
chiefiy to make sure that we really quench into the or-
dered region, and that for this purpose a lower bound to
the transition temperature suffices.
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FIG. 1. Results for g [defined in (3.1)] for quenches to
I( =1.75, 8=2.5, and systems of different sizes as indicated.
Each set of points represents an average over 30 trajectories.
Note the linear growth followed by size-dependent saturation.

FIG. 3. Results (30 run averages) at 8=12. For %=0.8
(squares), g shows clear linear growth, while at %=0.7 (solid
circles), which is very close to the transition line, the growth is
very weak.
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It is already evident from Fig. 1 that X(t) grows linearly
with time until saturation effects set in. A more careful
examination of the data shows that for times t ~0.2, X(t)
can be fitted to a form:

50—

+0

In Fig. 4 we show a typical example of X(t) at intermedi-
ate times [while q (t) is still narrowing]. Figure 4
represents 90 runs at %=1.75, 8=2.5. A best fit of the
data gives a=4.193, to=0.077 (with coefficient of deter-
mination r =0.997). The scatter of the points in Fig. 4 is
a measure of our statistical error. The small time to is
very sensitive to statistical error and we have not been
able to determine whether it is a systematic function of K
or 8.

The results of Figs. 3 and 4 correspond to Il( I =0 [type
(i)] initial conditions. That this time regime is not appre-
ciably affected by the boundary conditions is shown in
Fig. 5 where results for 30 runs at each of the three kinds
of initial conditions are shown. Clearly the memory of
the initial conditions is lost, within statistical error, at the
times of interest. This removes any worry associated with
using initial conditions which do not correspond to a
definite point in the phase diagram.

In order to gain a qualitative feeling for the ordering
process, we show in Figs. 6 and 7 "pictures" of the order-
ing as a function of time. In Fig. 6, for K=1.75 and
8=2.5, the evolution of a typical row of fields during a
simulation are shown for a sequence of increasing times.
One can see the evolving order —this particUlar row
becoming part of a $~0 domain. The conditions in Fig.
7 are the same as in Fig. 6 except that the whole lattice is
plotted with a dot for a positive value of the field and a
blank for a negative value of the field. Again, one clearly
sees the ordering develop on comparing the two times.

The most direct method for the determination of the
growth law cornea from a direct analysis of X(t) where
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2.0

10

2 4 6 8 10 12

t
FIG. 5. Results for g(t) at intermediate and long times for

three kinds of initial conditions. (i} [i(;I=0 (solid circles), (ii}
random Ising (squares), and (iii) random uniform (triangles) (see
text, Sec. II for details). All quenches are to @=1.75, 8=2.5
and each set of points is a 30-run average. The straight line is
the best overall linear fit. One sees that the initial conditions do
not affect the intermediate- and long-time regions.

one can, for quenches into the ordering region, define a,

characteristic domain size I. (t) using
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in two dimensions. As stated in conjunction with (3.2)
and Fig. 4, we find that for times t y&to, where to is al-
ways very small, X(t) ~(t —to). We therefore have that
1.(t)cct'~ at long times, in agreement with the LCA
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FIG. 4. Linear fit to g(t) for quenches to I( =1.75, 0=2.S.
The solid circles represent an average over 90 trajectories and
the line is a best fit as indicated by (3.2) and below.

FIG. 6. Evolution of a typical row of f;{t}on the square lat-
tice, for a quench to K= 1.75, 8=2.5. One can see that this par-
ticular row largely becomes part of a domain in which iA{t} is
positive.
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FIG. 7. Another picture of the same run as in Fig. 6 at times
t=0.5 (lower panel) and t=S (upper panel). The dots represent
sites where f; ~0. The row plotted in Fig. 6 is the twelfth from
the top.

FIG. 8. Evolution of the central peak: the circularly aver-

aged C(q, t) at several times as indicated. The results represent
an average over 60 trajectories for quenches to K=0.8, 0=12.

down q~(t) by numerically calculating the first moment
of C(q, t). The results depend on cutoff chosen unfor-
tunately, because the "tail" of C(q, t) is noisy, but the ex-
ponents obtained are very near 0.5 if one uses no cutoff,
that is, sums over the whole Brillouin zone when calculat-
ing the moment.

As one can anticipate from the growth laws for q~(t}
and X(t) given above, our results for C(q, t) can be writ-
ten in the scaling form:

C(q, t ) =X(t )F(q jq~(t) ) . (3.4)

The scaling function F(x) for the circularly averaged
C(q, t) is, within statistical error, indistinguishable from
that found in Ref. 1 for the Ising model (solid line in Fig.

law. " Although we have chosen the K,8 pairs (1.75, 2.5)
and (0.8, 12) for particularly detailed analysis (as is obvi-
ous from the figures), we have verified the X ~ t law for
values of (8,K) over the entire ordered portion of the
phase diagram and obtained the same long-time behavior
for l. (t).

We can gain more-detailed quantitative information by
studying C(r; rj, t) and C(q, t). W—e plot the angular
averaged C(q, t) in Fig. 8 for K=0.8, 8= 12 and 60 runs,
and a sequence of increasing times. One clearly sees the
development of a central peak with a shrinking width. In
Fig. 9 we have X=1.75 (a much lower temperature than
in Fig. 8), 8=2.5, and 30 runs. In this case the develop-
ment of a central peak is even sharper. A second deter-
mination of the characteristic domain size can be made if
one recognizes that the shrinking width of C(q, t}, q, as
obtained from careful extrapolation of data such as that
shown in Figs. 8 and 9, is inversely proportional to the
domain size. In this case, we fit q (t) to the form
q„(t)=a'(t —to} ", and taking to from the fit to the cor-
responding X data (i.e., the height of the peak) we deter-
mine the best exponent b. Exponents obtained in this way
vary from 0.46 to 0.56 in satisfactory agreement with the
LCA law. %'e have, as an alternative, attempted to pin
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FIG. 9. Same as Fig. 8, but with @=1.75, 0=2.5, and 30
runs.
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FIG. 10. The correlation function C(r) along the x axis for a

quench to K=1.75, 8=2.5, at the times indicated. The lines are

only a guide to the eye. The solid circles are 30 run averages.

FIG. 11. g(t) for quenches to zero temperature J=1.75,
8=2.5 (see text). Each set of points represents 30 trajectories
with random [type {iii), see text] initia1 conditions. Note how

the long-time behavior appears to be extremely sensitive to ini-

tial conditions, in the absence of noise.

5 of Ref. 1), and it differs slightly but appreciably from
the prediction of Ref. 13 (see dashed line in the same fig-
ure) in the range 1.5 ~ x & 4.

The spatial dependence of correlation functions along
the x axis and for three times is shown in Fig. 10 for
K=1.75 and 6I=2.5. One clearly sees that larger regions
are correlated as time proceeds.

Another matter of particular interest is the zero-
temperature limit. In the Ising case the behavior of the
system in that limit determines, by renormalization-group
arguments, ' the growth law. It is therefore important to
check what happens in the present case.

%ith the parametrization used here, the zero-
temperature limit would correspond to taking K= ~ and
the noise strength I finite. This is numerically impracti-
cal. Therefore, we take the physically more transparent
route of writing explicitly K =J/T, I =I"t', and taking
T~O while keeping J and I finite. Our basic equations
(2.5) and (2.6) remain the same except for replacing I E by
I J in the deterministic terms and I by I"T in the noise
terms. At T=O only the deterministic part of the equa-
tion remains. As is usually the case with nonlinear equa-
tions, the solutions are extremely sensitive to the initial
conditions. Initial condition (i) leads to I|(;(t)I=—0 which
is unphysical and also unstable. %e believe that the phys-
ics is best represented by averaging over many trajectories
with type-(iii) initial conditions. The results of doing this
[for J=1.75, 0=2.5 and the time in units of (I ') '] are
shown in Fig. 11, for four 30-run sets of results for X(t)

We see that for the same number of trajectories, the deter-
ministic trajectories fluctuate much more than those ob-
tained in the presence of noise, where 30 runs are usually
enough to obtain fairly satisfactory convergence. Further,
the region of linear growth is very short. The early-time
region is expanded and 7 starts bending towards satura-
tion earlier than at higher tempertures.

To further investigate this limit we consider next (Fig.
12) very low but nonzero temperatures. The curves in
Fig. 12 correspond to the same conditions as Fig. 1 but
with T=O 1(i.e., K=1.7.5) and T=0.5 (K=3.50). Note
that in the Ising case these would correspond to values of
the usual low-temperature variable y=e of 10 ' and
10, respectively, which are very small indeed. However,
in the continuum case the appropriate low-temperature
variable is I/E, the second value behaves quite normally
and even the first shows clear linear growth at intermedi-
ate times, even though there is a "shoulder" near t = 1. It
seems that when the noise is weak it takes longer for its
influence to be felt.

For TF&0 the system is rather insensitive to initial
conditions, that is, memory of the initial conditions is de-
stroyed by the noise within a very short time. For TF ——0
the initial conditions are the disordering agent. Our con-
clusion is that the initial conditions seem to be much less
efficient than noise in randomizing the system. This may
mean that one would need to average at zero temperature
over a number of runs much larger than at finite tempera-
ture. This would be reminiscent of the SFKI case, where
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FIG. 12. g(t) for quenches to low but finite temperature.
The quantities K and 8 are as in Fig. 11, but the temperature is
now T=J/%=0. 1 (squares and triangles) and T=0.5 (solid
circles). Each set of points represents 30 runs. Note that there
is now no problem with convergence, even at the lowest tem-
perature.

If one takes ! 5/0! =0.5, which seems to be the largest
reasonable size for the model of Ref. 17, one gets that one
of our units of time is about 5000 steps per site, and fol-
lowing the system to time t=10 would be about SOOOO

MC steps. We emphasize that these are only order-of-
magnitude estimates.

Assuming 5t as small as 0.005 (and we usually do not
need such a small step) we have 200 integration steps in
our time unit. Therefore our procedure will be more effi-
cient than the MC algorithm unless the algebra involved
in each integration step is 25—50 times slower than the
corresponding algebra in one MC step. This is certainly
not the case, as one can see from a rough count of the
number of floating point operations involved in each case.
This assumes that the number of runs needed in each case
is roughly the same.

An additional argument can be given in support of our
contention that the direct method compares in effective-
ness with MC. We have seen that for the quenches con-
sidered here correlations grow up to a distance of 32 units
in a time t-5. For the Ising model' the corresponding
times are larger than 10 steps. Thus, the time range con-
sidered here is, in a sense, long when compared with MC
times.

IV. CONCLUSIONS

X(r) is very unstable. Alternatively, it is also possible that
one must consider the lim. it T~O, i.e., when a small but
finite amount of noise is present, as distinct from the
purely deterministic case. Clearly this matter will need
further study.

Finally, we turn to the question of comparing this
method with MC techniques. Since the Ising limit
(e~ ~ ) for the Langevin equation is nonergodic, we can-
not compare with simulations in the Ising case. However,
one can perform the simulations directly with the free en-
ergy (2.1) by choosing a site i at random, attempting to
change f; by an amount 5$; randomly distributed be-
tween —5/0 and 5/0, and accepting the change with prob-
ability proportional to e . The comparison between
this MC procedure and direct solution of the Langevin
equation has been discussed in Ref. 17. They study a dif-
ferent model, but their conclusions should apply to our
case, at least semiquantitatively, which is all we need for
our purposes. It turns out that the two methods will give
equivalent results in the limit where ! 5/0! ~0, provided
that I is not too small. Within our units and conven-
tions, the correspondence between MC time tMC in step
per site and Langevin equation time t is given approxi-
mately by

We have shown that direct numerical solution of
Langevin equations can be quite useful in treating the
growth kinetics of an order-disorder transition. One re-
covers the expected results, such as the Lifshitz-Cahn-
Allen law. The amount of computing required appears to
be at least competitive with that needed for the simula-
tions, provided that proper attention is paid to the need
for a fast generator of Gaussianly distributed random
numbers.

It is obviously of interest to apply this procedure to oth-
er models. We are currently working on the case of spino-
dal decomposition, where, in the pure Ising case, our RG
analysis leads to a logarithmic law rather than to a power
law. The potential of the method for use in other situa-
tions (such as discussed in the Introduction) is now quite
clear.
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