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A new algorithm for the numerical simulation of lattice field theories with fermion degrees of
freedom is presented. Changes are proposed on a set of lattice sites or links using an approximate,
local updating algorithm. The entire set of changes is then accepted or rejected according to a
prescription that makes the algorithm exact. An efficient method of measuring the fermion Green’s
functions during the simulation is also presented. The algorithm is expected to be useful in studying
a variety of lattice-field-theory problems in three space and one time dimensions.

I. INTRODUCTION

Numerical techniques are presently being used to study
a wide variety of problems in quantum field theory. One
of the major challenges in this area is to develop efficient
algorithms for the simulation of systems with fermion de-
grees of freedom. In this paper we present a new algo-
rithm for this purpose. We believe that it has consider-
able potential for the simulation of lattice field theories in
three-space and one-time dimensions.

We are primarily interested in lattice-field-theory prob-
lems that arise in condensed-matter and high-energy phys-
ics. Ordinarily in these areas the action is either quadratic
in the fermion fields or can be made so by the introduc-
tion of one or more auxiliary boson fields. One can there-
fore integrate out the fermion fields to obtain a nonlocal
effective action for the bosonic degrees of freedom. As is
well known, one cannot use standard Monte Carlo
methods to study this effective action, since each step in
the Markoff chain requires the solution of a set of linear
equations of dimension at least equal to the number of
fermion degrees of freedom. Thus to update the boson
fields individually at each lattice site or link is prohibi-
tively expensive in computer time. Attention has focused
instead on approaches such as the pseudofermion
method,! the microcanonical ensemble,? and the Langevin
equation® in which one updates many degrees of freedom
in a single step. Our algorithm also involves the simul-
taneous updating of many degrees of freedom. We first
propose changes in each member of a set of variables ac-
cording to an approximate local algorithm. We then ac-
cept or reject the entire proposed set of changes in a
Metropolis step that ensures that the algorithm is exact.
It is only in the final acceptance-rejection step that one
must pay the computational price associated with the
nonlocality of the effective action.

In Sec. II we describe the algorithm in detail. We also
present an efficient method for measuring fermion
Green’s functions during the course of the simulation.
This method is applicable to most fermion algorithms
presently in use. In Sec. III we present numerical results
obtained by applying our algorithm to the spinless Hub-
bard model in one space and one time dimension. Al-
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though this model has a simple structure, we believe that
it provides a significant test of fermion algorithms be-
cause the fermion matrix has a wide range in its eigenvec-
tor spectrum even for small systems. Finally we discuss
the application of the method to large systems in three
space and one time dimensions.

II. THE ALGORITHM

We take the path integral for the partition function to
have the form

—[Sg(A)+¥M (A4 )]

Z=[8A48yspe
= [ 84" VdetM () . (1)

Here A is a boson or gauge field, ¥ and ¢ are Grassman
variables representing the fermion field, Sz(A4) the pure
bosonic part of the Euclidean action, and M (A) the fer-
mion matrix which includes both the fermion kinetic en-
ergy and interaction with the A4 field. D, the dimension
of M, is of course equal to the total number of fermion
degrees of freedom. M is ordinarily a very sparse matrix.

We shall assume throughout this paper that M is posi-
tive definite. In many applications in condensed matter
physics it is also real. We shall start by considering this
case, and then discuss the modifications that are necessary
when it is complex. For M real the determinant can be
represented by a Gaussian integral over a real c-number
field.* The partition function then takes the form

_ —1
Z=f8A 5D e [Sp(4)+@0 ~'®]

— [ 848 T )

where O =M (A4)"™M (A).

In carrying out the simulation we wish to generate con-
figurations of the 4 and @ fields such that the probability
of finding a particular configuration is proportional to
exp(—Ses). We shall alternatively update all components
of A4 and all components of ®. Let us being by consider-
ing the updating of the & field. Although M is a sparse
matrix, M ! is not. As a result, the Metropolis algorithm
will not be useful for this procedure. Instead we use a
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generalized Langevin equation. Given a field configura-
tion @, we choose a new one, ', through the relation’

<I>’—-<I>=_§(d>’+¢>)+\/%MTR ) 3

Here R=(R,R,,...,Rp) is a vector of Gaussian ran-
dom numbers, so the probability density for finding a par-
ticular value of R is m~2/%exp(—R?). ¢ is a constant
which determines the step size of ®. If we make use of
Eq. (3), the probability density for obtaining a field con-
figuration @’ starting from the configuration & is

—D/2

em detM ~lexp[ —(1/2¢)®0 ~'®] ,

14+c/2

Py o=

(4)

where ®=(®'—®)+(c/2)(®'+P). Detailed balance is
satisfied exactly since

Po.o —e— (PO 000" D) (5)
Py .o

Notice that Eq. (5) holds for all values of ¢. A particular-
ly appealing choice is ¢ =2 for which ®' =M 'R, and is
thus independent of ®.°

Let us now turn to the problem of updating the boson
field, A. If we make a change A—A’, then
O—0'=0+A0. The change in the effective action is
given by

AS.s=ASp(4)—®0'"'AO O~ ' . (6

Thus, in order to evaluate AS.g we must calculate O ~'®
and O'~!'®. Each of these calculations requires the solu-
tion of a set of D linear equations. We propose to solve
these equations by conjugate gradient or other iterative
methods. Clearly we cannot afford to update one com-
ponent of A4 at a time. On the other hand if we propose
random changes in a significant number of components of
A at once, the probability of accepting a set of changes is
likely to be unacceptably small. In order to deal with this
dilemma we divide the updating process into two parts.
First we propose changes in all, or a significant fraction,
of the components of A4 using an approximate transition
probability, P,_, 4. P,4_, 4 will be chosen so that the al-
gorithm for suggesting changes in the individual com-
ponents of A is a local one. In order to ensure that de-
tailed balance is satisfied exactly we accept the entire set
of proposed changes with a probability Q,., which is
chosen so that

Py.aQu  —asy

=e @)
Py 4Q4

If, for example, we use the Metropolis algorithm for Q,
then we would write

04 =6(p—1)+p61—p) (8)
with
—aS; Para
=e o, 9)
P Py_oq

With a good choice for the approximate probability, p will
be sharply peaked about one, giving an acceptance proba-
bility close to one. The important questions are whether
one can find suitable approximate transition probabilities,
and how sharply p must be peaked to have a useful algo-
rithm.

We have examined a variety of choices for the approxi-
mate transition probabilities. The simplest was motivated
by the pseudofermion algorithm. In the pseudofermion
method one makes a full sweep of the lattice ignoring
changes in O ~! resulting from changes in the components
of A. This suggests that one use the Metropolis algorithm
to determine P,_, 4, approximating the change in the ef-
fective action by Eq. (6) with ®O'~! replaced by ®0 ~'.
Before making a sweep of the lattice we must calculate
O ~'®, which we propose to do by the conjugate gradient
method. Then changes in each element of A are suggest-
ed by a completely local process. After 4’ has been deter-
mined, we must calculate O'~'® in order to obtain the
exact value of AS.¢ and the reverse transition probability
P,._, 4, which are needed to determine p.

This simple pseudofermion approach can be improved
significantly in the following manner. If one begins by
randomly suggesting changes in each component of the A4
field, one obtains an intermediate field configuration, 4",
and its corresponding fermion matrix O”. One can then
define P, _, 4 to be the product of the probabilities for ac-
cepting each change using Eq. (6) with O’ ™! replaced by
0"~ 1. In order to calculate the reverse transition proba-
bility, one needs the intermediate state 4"’ encountered in
going from A’ to A. We define it by taking A4;"”=A; for
those i for which a change was accepted, and A;”"=A4;’
for those i for which it was rejected. This algorithm re-
quires one extra conjugate gradient calculation for each of
these transition probabilities, but we have found that, at
least for the model discussed in Sec. III, these extra calcu-
lations are more than made up for by the ability to make
larger field changes, while keeping a reasonable final ac-
ceptance probability, leading to a significant decrease in
the number of sweeps needed to obtain independent con-
figurations. As we shall see, it is necessary to operate
with rather large local acceptance probabilities. This
means that the vector 0" ~!® is a significantly better ap-
proximation to O'~!® than is O ~!'®. Of course in the
limit A”—A’, p becomes one. We expect this improved
pseudofermion algorithm to be particularly useful when
the correlation length is short, since it correctly takes into
account the proposed on-site changes.

We have also explored an approximate transition proba-
bility based on the Langevin equation. In its simplest
form the Langevin equation gives for the updating of the
A field

A'=A—+€VS+V2€R . (10)

Equation (10) is a vector equation of dimension, D,,
equal to the number of degrees of freedom of the A field.
V,=9d/34; and R=(R,R,,... »Rp,) is a vector of
Gaussian random numbers distributed as

4’ exp(—R?). The transition probability for going
from the configuration A4’ to A is then given by



34 NEW ALGORITHM FOR THE NUMERICAL SIMULATION OF FERMIONS

P(A'—>A)=1 1 exp[ — (4’ — A + +eVS )2/ 2€] .
(11)

This approach requires one conjugate gradient calculation
to update each new set of A fields, so the number of arith-
metic operations per sweep of the lattice is comparable to
the simple pseudofermion method. However, the
Langevin equation typically has a significantly shorter au-
tocorrelation time because it leads the system to more
probable distributions, thus producing a larger final ac-
ceptance probability.

The Langevin approach can be improved in the same
manner as described above for the pseudofermion algo-
rithm. In this case the intermediate field configuration
A" is generated by the Langevin equation, Eq. (10), and
then used to determine O~ !®. Then one proceeds with
an acceptance-rejection step for each of the proposed local
changes to obtain A’, determines the reverse transition
probability, and makes a final decision as to whether to
accept the configuration 4’. We will refer to this as the
combined algorithm.

After one has obtained equilibrium distributions of the
A fields, it is ordinarily a time consuming task to measure
the fermion Green’s function. For example, it takes one
conjugate gradient calculation to obtain each row of M~
One can run a separate Monte Carlo calculation to obtain
the Green’s function as in the traditional pseudofermion
method, but this ordinarily gives noisy estimates at large
distances. Our algorithm suggests a new approach to this
problem. In the course of our calculation we must com-
pute the quantity O ~'®=M ~'R. Thus no significant ex-
tra computation is needed to obtain

(M;')=2((0~'®)R;) . (12)

The average in Eq. (12) is over configurations of the 4
field and over random number vectors R. We obtain an
independent measurement every time that we update the
® field. Note that we obtain a measurement of all com-
ponents of the Green’s function. If one wishes to measure
the expectation value of a product of Green’s functions, it
is necessary to cast an additional vector of random num-
bers and perform an additional conjugate gradient calcula-
tion for each additional Green’s function in the product.
Nevertheless the cost is small compared to the updating
time as well as to conventional approaches. This mea-
surement method can obviously be used with any fermion
algorithm.

The eigenvalue spectrum of the matrix O
=M(A)TM (A) strongly affects both the number of con-
jugate gradient sweeps required in the computation of
O~ '® and the distribution of the final acceptance factor
p- We have found that preconditioning O to decrease the
spread in its eigenvalues can significantly improve the cal-
culation. One can write

det M =det Mydet My 'M
=det M, [ 6®e—®07'® (13)
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with O=(My'M)T(M5'M). Two particularly simple
choices for M| that we have explored are obtained by
dropping the kinetic or potential energy terms in the
Hamiltonian. In general they are expected to be useful in
the strong and weak coupling limits, respectively, but for
the model discussed in Sec. III we found that they both
gave considerable improvement over a wide range of cou-
plings. In the weak coupling approximation M| is ordi-
narily independent of the bosonic variables, and only the
conjugate gradient calculation is improved by the condi-
tioning. In the strong coupling approximation one can
hope to calculate det M, analytically and include it in the
bosonic part of the action. In this case both the conjugate
gradient calculation and the distribution of p benefit.
Preconditioning is of particular importance at low tem-
peratures. Here an interesting possibility is to take M to
be M with At replaced by Ar/2. detM, cannot be
evaluated analytically in this case, so it is necessary to in-
troduce a second auxiliary field analogous to ®. Al-
though this approach requires additional conjugate gra-
dient calculations, preliminary studies indicate that it may
well lead to significant savings in total computer time.
We hope to return to this point on a later occasion.

Up to now we have assumed that the matrix elements
of the fermion determinant, M, are real. That is not the
case in lattice gauge theory. However, all of our results
remain valid if we simply allow ® to become a complex
vector and replace M7 by M . R now becomes a complex
vector with the real and imaginary parts of each com-
ponent being Gaussian random numbers. For example,
Eq. (2) becomes

_ *o—1
Z=[s48sdre TP

Sp(4)

= [ 5A(det O)e~ (14)

with O =M'M. In lattice gauge theory detM =detM T so
the price we have paid for the introduction of the complex
field, ®, is a doubling of the fermion species. However,
this doubling can be avoided for staggered fermions.®

III. NUMERICAL RESULTS

To explore the algorithm described in Sec. II, we have
studied a model of fermions in one-space and one-time di-
mensions interacting through nearest-neighbor Coulomb
interactions. The Hamiltonian is given by

N
H= EI_t(Ci+Ci+l+CiT+lci)+ V(n,-—%)(niﬂ—%)] .

i=1
(15)

+ . .
Here ¢; and c¢; are the creation and annihilation operators
of the fermions, n; :c,-*c,-, and N is the number of spatial
lattice sites. For O0< ¥V /2t <1, the ground state of the
model is gapless and the correlation functions exhibit
power-law correlations determined by ¥V /2t. This model
has been extensively studied by bosonization techniques as
well as by various stochastic methods. Thus it provides a
natural testing ground for new numerical approaches. We
are interested in studying the model at finite temperatures,
so the average value of an operator Q will be given by



7914

trQe ~BH

o (16)

(Q)=

tre

As usual we use periodic boundary conditions in space
and antiperiodic boundary conditions in imaginary time.

In integrating out the fermion degrees of freedom we

follow the approach of Ref. 7. We first divide the imagi-

nary time interval 0 <7< B into L intervals each having a

width A7, so the partition function can be written in the

form

Z =tre ~PH =tr(e ~A™H)L (17)

We then introduce a Hubbard-Stratonovich variable,
A;(7}), for each pair of lattice points, (i,i +1), on each
time slice, 7;, using the identity

e—AfV(ni—l/Z)(ni+,—1/2)

=V Ar/me ATV /4

+o —AT{ A (12 + 224 (r)) (0, —n, | (])
x [ " dd (rpe A Gl
- 0

(18)

In applying Eq. (18) to the factors of exp(—BH) in Eq.
(17) we must temporarily separate the hopping and
Coulomb terms in the Hamiltonian. This process is only
good to order A7%, so this variable will be kept small. In
the results reported here we have taken t=¥F=1.0 and
Ar=0.25, although we have also studied the strong-
coupling regime. All results are for a lattice with 32 spa-
tial sites and eight time slices.
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With the introduction of the Hubbard-Stratonovich
field A, the partition function has the form of Eq. (1)
with the bosonic part of the action, Sp, quadratic in A.
We can therefore make use of the algorithms discussed in
Sec. II. In updating the ® field we generally set c=2 in
Eq. (3) so it reduces to @' =M TR, and successive ® field
configurations are independent of each other.

Let us begin by considering the improved pseudofer-
mion algorithm. Changes in the A field are proposed
through the relation

Al'=A;+8(ri—3), (19)

where r; is a random number uniformly distributed in the
interval (0,1), and 6 is a constant that sets the scale for
changes in 4. In Fig. 1 we show the distribution in the
acceptance factor, p, resulting from the simultaneous up-
dating of all 256 Hubbard-Stratonovich variables on our
32 % 8 lattice. Data is shown for §=1.0, 1.5, 2.0, and 3.0.
Naturally for small 6, p is sharply peaked about one.
However as § in increases the peak broadens and eventual-
ly shifts to the origin indicating the decreased likelihood
of acceptance. In Fig. 2 we show the correlation time, 7,
measured in lattice sweeps between independent field con-
figurations. For small 8, T is large since the Hubbard-
Stratonovich variables are being changed little from sweep
to sweep. For large 8, T is also large since the global ac-
ceptance factor is small and the set of changes is frequen-
cy rejected. This latter situation corresponds to Fig. 1(d).
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FIG. 1. Distribution of the acceptance factor, p, resulting from the simultaneous updating of all 256 Hubbard-Stratonovich vari-
ables on a 32X 8 lattice using the improved pseudofermion algorithm. Data are shown for the step size §=1.0, 1.5, 2.0, and 3.0. For
6=3.0 the first bin goes off the graph by a factor of 2.
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FIG. 2. The correlation time, T, between independent field
configurations as a function of the step size 8. T is measured in

lattice sweeps. The data are from the improved pseudofermion
algorithm on a 32X 8 lattice.

There exists an optimal step size, 8.y, which gives a
minimum correlation time, T,;,. As one might expect,
8opt corresponds to a global acceptance probability of or-
der one-half. This means that we explore phase space
most rapidly when p has roughly the distribution of Fig.
1(c).

For the pseudofermion, improved pseudofermion,
Langevin, and combined algorithms discussed in Sec. II,
T min 18 95, 20, 26, and 15 sweeps, respectively. In choos-
ing between algorithms one must take into account the
time per sweep as well as the value of T;,. Thus for this
model the Langevin approach is preferred over the im-
proved pseudofermion algorithm since it has approxi-
mately the same value of T, but requires half the num-
ber of conjugate gradient calculations to implement. The
Langevin and combined algorithms take approximately
the same amount of computer time to generate indepen-
dent configurations, giving a slight advantage to the
Langevin approach because of its simplicity. In general,
we expect the choice of algorithm to be model and even
parameter dependent. The important point is that with
our exact algorithms we can simultaneously update a sub-
stantial number of sites with step sizes large enough to
produce reasonably small correlation times.

In Table I we give results for the equal time fermion
Green’s function

G(D={c; ic;) (20)

obtained using Eq. (12). As always we work on a 32x8
lattice with ¥'=¢=1.0. The “exact” results quoted in this
table were obtained from the well-tested algorithm of Ref.
6. The data were collected from 3,750 sweeps through the
lattice, so the noise is gratifyingly low. This is due in part
to the fact that Eq. (12) gives an unbiased estimate of each
element of M ~!, so the right-hand side of Eq. (20) can be
averaged over the lattice sites, i. In addition, we obtain a
measurement of G(/) each time that the & field is updat-
ed at no significant cost in computer time. Even if the 4

TABLE 1. The fermion Green’s function G(/) on a 32 x 8 lat-
tice for V=t=1. The Monte Carlo results, G(/)yc, where ob-
tained with the algorithm based on the Langevin equation using
3,750 sweeps of the lattice. The exact results, G(I)g, were ob-
tained with the algorithm of Ref. 6. The numbers in
parentheses are statistical errors in the last two decimal places
quoted.

l G(Dmc G(Dg
0 0.5001(19) 0.5000
1 —0.2896(28) —0.2891
2 0.0008(17) 0.0000
3 0.0584(22) 0.0580
4 0.0006(18) 0.0000
5 —0.0171(21) —0.0152
6 —0.0002(23) 0.0000
7 0.0056(15) 0.0042
8 —0.0010(31) 0.0000
9 —0.0010(26) —0.0012
10 —0.0003(19) 0.0000
11 0.0004(21) 0.0003

field is slowly varying, we obtain an independent contri-
bution to the average over the vector of random numbers,
R, from each sweep.

Another illustration of the fermion measurement pro-
cedure is given in Table II where we present results for the
density-density correlation function

Ch={(n; . j—3)n;—+))
=—0.2540.58,0+ (M3}, o M
—AMGLMT) 21

Since this correlation function involves the average of a
product of two matrix elements of M ~!, we must intro-
duce an extra vector of random numbers and perform one
extra conjugate gradient calculations as was discussed in
Sec. II. Once again we obtain excellent results from only
2,000 sweeps through the lattice. The results presented in
both Tables I and II are from the Langevin algorithm, but
similar accuracy was obtained with both the improved
pseudofermion and combined algorithms. This correla-
tion function could also be obtained from a measurement
of the Green’s function of the A4 field, but the noise would

TABLE II. The correlation function C(/) on a 32X 8 lattices
with ¥'=t=1. The Monte Carlo results, C(/)yc were obtained
with the algorithm based on the Langevin equation using 2,000
sweeps of the lattice. The exact results C(I)g, were obtained us-
ing the algorithm of Ref. 6. The numbers in parentheses are
statistical errors in the last two decimal places quoted.

/ C(Dmc C(Dg

0 0.2500(10) 0.2500
1 —0.1164(14) —0.1152
2 0.0233(21) 0.0270
3 —0.0149(18) —0.0139
4 0.0052(16) 0.0043
5 —0.0015(08) —0.0018
6 0.0001(08) 0.0004
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FIG. 3. (A?) as a function of the step size €. The straight
line is the exact result, the open circles are Monte Carlo data ob-
tained from our exact algorithm based on the Langevin equa-
tion. The filled circles are data taken without the standard
Langevin algorithm.

be considerably greater.

In Fig. 3 we plot data for (A42) obtained from the
Langevin algorithm as a function of the step size, €. The
straight line is the exact result, and the open circles Monte
Carlo results using our algorithm. The filled circles are
data taken without the final acceptance-rejection step,
that is using the standard Langevin algorithm. It is clear
that in this case one would not want to use the standard
Langevin algorithm with € >0.1, whereas in our exact al-
gorithm T, occurs at €=0.3. Thus, in this case the ex-
act algorithm has a distinct advantage. However, we
should emphasize again that the relative merits of the al-
gorithms is likely to depend on the model, the lattice size,
and even the particular range of parameters being studied.

It is important to understand how T, varies as a
function of the number of degrees of freedom being up-
dated, N. In the absence of long-range correlations, one
expects that the maximum step size allowable in the stan-
dard pseudofermion or Langevin algorithms will be
roughly independent of lattice size. In our exact algo-
rithms we expect T, to increase as N '/? under these cir-
cumstances. This expectation is born out in Fig. 4 where
we plot T, as a function of spatial lattice size for the al-
gorithm based on the Langevin equation. Of course the
coefficient of N'/2 and in principle the power of N can be
decreased by improving the approximate transition proba-
bility.

The calculations reported in this paper were carried out

Spatial Lattice Size
FIG. 4. The minimum correlation time, T, as a function of

spatial lattice size for the algorithm based on the Langevin
equation.

on a VAX 11/750, so it was not practical to explore the
behavior of T,,;, on large lattices in three-space and one-
time dimensions. While it may not be possible to update
all of the degrees of freedom of the A field simultaneously
on such lattices, one can also imagine updating a fraction
of the lattice at a time. The improved pseudofermion al-
gorithm in particular will be enhanced by updating near
neighbors in different passes. Even if the approximate al-
gorithms prove more efficient on large lattices, we believe
that it will be useful to have a reasonably efficient exact
algorithm for use on intermediate sized lattices. Data
such as that shown in Fig. 3 can be used to determine the
maximum step size allowable in the approximate algo-
rithms for the desired accuracy. The final acceptance-
rejection step can then be removed to collect high statis-
tics data on large lattices.
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